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Abstract.  We report the results of measurements of nonlinear scale 
factor corrections, resulting from the backscattering effect in a 
laser gyro with a rectangular bias. It is shown that taking conserva-
tive and dissipative backscattering components into account allows 
one to obtain analytical relationships that adequately describe the 
frequency response of a laser gyroscope over the entire working 
range of angular velocities. Using these relationships to correct the 
frequency response of a laser gyroscope makes it possible to reduce 
the value of nonlinear corrections to 1 – 2 ppm.

Keywords: ring laser, laser gyroscope, backscattering, scale factor, 
frequency bias.

1. Introduction

Backscattering of light by ring cavity (RC) mirrors leads to 
nonlinear distortions of the frequency response of a laser 
gyroscope (LG). The most striking manifestation of this 
physical effect is the so-called frequency locking of counter-
propagating waves (CPWs) of a ring laser (RL), which occurs 
at low rotation velocities [1, 2]. The use of an alternating fre-
quency bias can significantly reduce nonlinear distortion of 
the frequency response without decreasing the LG sensitivity 
at low velocities [2, 3].

Currently, two types of alternating biases are widely used. 
Firstly, this is a harmonic bias, in which an RL is mounted on 
a mechanical vibrator [2]. Secondly, this is a rectangular bias 
in the case of an RL with magneto-optical control of the fre-
quency nonreciprocity of the CPWs. An example of this type 
of a gyroscope is a Zeeman LG [4, 5], where the nonreciproc-
ity is produced by applying a longitudinal magnetic field to 
the active medium of a laser with a nonplanar RC.

The main distinctive feature of the second type of the bias 
is significant nonlinear distortions of the LG frequency 
response at a rotation velocity slightly different from the rect-
angular bias amplitude. At this rotation velocity, the LG is in 
the lock-in zone during one of the half-periods of the bias. In 
calculating the nonlinear correction resulting from backscat-
tering (BS) effects, the value of the scale factor (SF) K at a 
high rotation velocity W of the rotary table (for the LG 
W max » 400 deg s–1) is taken to be unity, and the value of the 
nonlinear correction is calculated using the relation
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Until recently, a theoretical dependence [5, 6] 
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was used to describe the results of the SF measurements of a 
Zeeman LG, where W L is the threshold lock-in frequency 
and W 0 is the rectangular bias amplitude. Relation (2) 
describes the left and right wings of the DK(W ) dependence 
for W < W 0 – W L and W > W 0 + W L, respectively. The cen-
tral part of the dependence (W 0 – W L < W < W 0 + W L) is a 
linear function. At an angular velocity equal to the bias 
amplitude, the correction is DK = 0. According to [5], the 
maximum and minimum values of the nonlinear correction 
are expressed as
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Figure 1 shows the DK(W ) dependence for typical values 
of the parameter (W L = 0.1 deg s–1 and W 0 = 30 deg s–1) of the 
MT-501 gyroscopic sensor developed at the Polyus Research 
Institute.

From our point of view, the correctness of relation (3) is 
doubtful. In particular, Khoshev [6] presents the following 
estimate for the maximum and minimum values of the nonlin-
ear correction:
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Figure 1.  Calculated dependence of the nonlinear SF correction for the 
LG with a rectangular bias on the angular velocity.
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where F is the switching frequency of the rectangular bias (the 
frequency in Hz must be converted into deg s–1).

The value of this correction can also be estimated within 
the framework of the model of the quasi-stationary sign 
switching regime of the rectangular bias. At a low switching 
frequency (for definiteness, less than 1 Hz), the influence of 
parametric resonances can be neglected and use can be made 
of the classical dependence of the RL beat frequency on the 
rotation velocity:

( ) L0
2 2!nD W W W= - . 	 (5)

The signs ± refer to half-periods of a slowly switching 
rectangular bias. We assume that half the time t the sign of the 
LG bias is positive, and half the time it is negative. Then for 
the nonlinear correction to the SF we have the relation:
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This relation is written for the case when the LG is outside 
the lock-in zone, that is, when |W – W0| ³ W L (without loss of 
generality, we assume that W > 0). Inside the lock-in zone, the 
first term in the numerator of fraction in (6) becomes equal to 
zero. It is easy to verify that the maximum and minimum val-
ues of the nonlinear SF correction are reached at rotation 
velocities W = W0 ± W L and are equal to
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As can be seen from a comparison of relations (3), (4) and 
(6), they yield mutually exclusive estimates of both the magni-
tude and functional dependences. We should also add here 
the results of calculations and experiments presented in [7]. 
The authors of this work showed that the central part of the 
DK(W ) dependence comprises several parametric lock-in 
zones of comparable width. They note that the central part of 
the dependence is not a monotonic function and the width of 
the oscillation region caused by the influence of parametric 
resonance zones is noticeably larger than that of the lock-in 
zone.

It is also worth noting that the nonlinear distortions of the 
SF of this LG type exceed several hundred ppm. Such a signifi-
cant scale of nonlinear distortions makes the use of the SF cor-
rection in an LG with a rectangular bias quite important. 
However, to do this, LG developers must rely on a physical 
model that adequately describes the influence of BS effects. 
The development of such a model is the main task of this work.

2. Results of measurement and modelling  
of nonlinear SF corrections of a Zeeman LG

The SF of uniaxial MT-501 sensors was measured using stan-
dard measuring equipment developed at the Polyus Research 
Institute. In these measurements, by the SF is meant the num-
ber of pulses of the SPW beat signal when the sensor is rotated 
through an angle that is a multiple of 360° (up to several full 
revolutions). To eliminate the effect of the LG zero shift, two 

SF measurements were performed – with the sensor rotating 
clockwise and counterclockwise. The SF value was the half-
sum of the obtained values. In determining the value of the 
nonlinear correction, the SF value at an angular velocity of 
400 deg s–1 was taken as unity and the correction was calcu-
lated by formula (1). The sensors were mounted on a rotary 
table, the relative deviation of the rotation velocity of which 
did not exceed 0.001 %. The error in the measurements of the 
nonlinear SF correction was less than or equal to 2 – 3 ppm.

Figure 2 shows one of the measured DK(W ) dependences. 
Three characteristic areas of this dependence can be distin-
guished: the central part near the bias amplitude with a width 
of about 1 – 2 deg s–1, as well as the right and left wings, cor-
responding to rotation velocities higher and lower than the 
bias amplitude. With all the variety of the shape of these 
dependences for different sensors, they are easy to classify. 
We investigated several dozen MT-501 sensors. The central 
part of the dependence has the most complex shape. We will 
describe it later. Let us now consider in more detail the wings 
of the DK(W ) dependence. In Fig. 3, the solid curves corre-
spond to the wings of this dependence for one of the sensors. 
Dashed curves indicate the boundaries inside which there are 
the wings of the dependences for all studied sensors. It is easy 
to see that the theoretical dependence shown in Fig. 1 differs 
significantly from that observed experimentally. First of all, 
this concerns the positive SF correction characteristic of most 
sensors on the right wing of the dependence, while relation (2) 
gives a negative sign of the correction. To understand the rea-
son for this difference, we turn to the system of equations 
describing intensities and phase differences of the RL coun-
terpropagating waves [2, 3, 6]:
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Figure 2.  Dependence of the nonlinear correction DK on the angular 
velocity of the MT-501 sensor.
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where Icw and Iccw are the intensities of the RL counterpropa-
gating waves passing in the clockwise and counterclockwise 
direction; y is the phase difference of the CPWs; a is the gain 
of the active medium; and d is the RC loss. Coefficients b and 
q are parameters of nonlinear self-saturation and mutual sat-
uration of CPWs in the active medium, respectively; c is the 
speed of light; and L is the RC perimeter.

The BS effect is described by two complex coupling 
parameters (CCPs), which are parts of the natural oscillation 
field scattered in the opposite direction:

( )exp ir rcw cw cwj=u ,	 (11)

( )exp ir rccw ccw ccwj=u .	 (12)

In the weak coupling approximation, when the beat fre-
quency of CPWs significantly exceeds the lock-in threshold, 
the system of equations (8) – (10) can be solved by the small 

perturbation method. As a result, we obtain the relation for 
the LG beat frequency:
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where W is the frequency bias in rad s–1. The parameter Wg is 
called the strength of the limit cycle and is determined by the 
expression
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where DWc = cd/L is the RC bandwidth. Parameters S+ and 
S– are CCP combinations:

2 ( )cosS r r r rcw ccw cw ccw cw ccw
2 2 j j= + + ++ ,	 (15)
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In the theory of ring gas lasers (see, for example, [8]), two 
types of BS sources are considered, i.e. dissipative and conser-
vative. Their difference lies in the magnitude of the CPW 
phase shift during backscattering. For dissipative and conser-
vative sources, the phase shifts are p (jcw = jccw = p) and p/2 
(jcw = jccw = p/2), respectively. In a real RC, the fields of BS 
waves are formed as a result of interference of waves scattered 
from sources of both types. In this case, the total modulus of 
the CCP of dissipative BS sources is r = S+/2, and of conserva-
tive ones – R = S– /2. It is easy to see that the lock-in threshold 
for the RL is determined by the presence of dissipative BS 
sources on the RC mirrors. In the language of the system of 
equations (8) – (10), the lock-in threshold WL is determined by 
the relation

L
c SLW = +. 	 (17)

If we now turn to relation (13), we can see that dissipative 
and conservative BS sources yield SF corrections of different 
signs for the LG. The correction for dissipative sources has a 
negative sign, and for conservative sources it is positive. When 
modelling the parametric LG effects with an alternating bias, 
the influence of conservative BS sources is neglected. As a 
result of simplifications, equation (10) is reduced to the well-
known phase equation:
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y
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This equation does not make it possible to explain the posi-
tive sign of the correction for the right wing of the DK(W ) 
dependence.

Using relation (13), we can determine the DK(W ) depen-
dence for the ‘quasi-stationary’ (slow) sign switching regime 
of a rectangular bias. To this end, we must take into account 
the fact that during the time t of the LG rotation by the angle 
F = Wt, the value of the bias is equal to W – W0 during one 
half of the time and to W + W0 during the other. Accordingly, 
for the CPW beat frequency, we have
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Figure 3.  (a) Left and (b) right wings of the DK(W ) dependence for the 
MT-501 sensor (solid lines) and the boundaries of the dependences for 
the array of sensors in question (dashed lines). Points are the measure-
ment results.
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By summing the number of pulses of the beat signal over time 
t, the above formula (6) is obtained.

After further calculations, we arrive at the relation 
describing the left and right wings of the DK(W ) dependence:

( ) ( )
K S S

2 2 g g

g

0
2 2

2

0
2 2

0
2 2

2 2 2
0
2

D
W W W W W W W W

W W W
=

-
+

- + + +

+ -+ -

^
^

h
h

6 6@ @
.

(21)

Using this relation makes it possible to quantitatively and 
qualitatively approximate in an analytical form the measured 
DK(W ) dependences. Thus, we developed a computational 
program that allows us to solve the inverse problem: to deter-
mine the parameters S– , S+ and Wg directly from the mea-
sured DK(W ) dependence. In this case, the standard deviation 
of the difference between the measured and approximated 
values, as a rule, did not exceed 1 – 2 ppm. As for the value of 
Wg, in our experiments we used sensors with approximately 

the same pressure and composition of the gas mixture, RC 
losses and discharge current. In approximating the DK(W ) 
dependences, we used Wg = 75 deg s–1.

Figure 4 shows several examples of approximation of the 
results of measurements of the wings of the DK(W ) dependence. 
The shape of the right wing is determined mainly by the ratio of 
the parameters S–  and S+. At S–/S+ > 5, a characteristic maxi-
mum is observed at a rotation velocity of 40 – 50 deg s–1. If the 
conservative BS component slightly (two to three times) 
exceeds the dissipative component, the SF correction for the 
right wing has a negative sign in the entire velocity interval.

The S–  and S+ parameters for the sensors in question var-
ied in the ranges 0.1 – 1.4 deg s–1 and 0.03 – 0.20 deg s–1, respec-
tively. For some sensors, we observed a slight difference in the 
S–  and S+ values obtained by approximating the right and left 
wings. This difference did not exceed 10 % – 15 %.

It should be noted that, depending on the conditions of 
the problem, the dimension of the parameters S–  and S+ can 
vary. In the case of relations (15) and (16), the CCP moduli 
are the ratio of the amplitudes of the backward and forward 
waves and are expressed in units of ppm. In measuring non-
linear SF corrections, nonlinear corrections are present in the 
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Figure 4.  (a, c, e, g) Left and (b, d, e, h) right wings of the DK(W ) dependence for four adjacent modes of the MT-501 sensor. Points are the measure-
ment results, solid lines are the results of calculations by formula (21) at Wg = 75 deg s–1. The indicated voltages U at the piezoelectric correctors 
correspond to the central position of the RL mode.
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initial equations in the form of their ratio to the angular 
velocity. Therefore, for greater visibility of the CCPs, it is bet-
ter to use degrees per second.

Of course, such a good coincidence of the approximated 
and measured dependences does not allow us to state that we 
found an exact analytical relation to describe nonlinear SF 
corrections of the LG with an alternating bias. First of all, it 
is necessary to check how much the found parameters S–, S+ 
and Wg are related to the parameters (rcw, rccw, jcw, jccw, a, d, 
b and q) that appear in the system of equations (8) – (10). The 
issue of using this system of equations, which is derived under 
the assumption that the excess of gain over losses in the RL is 
small, also raises doubts. In particular, in [2], the excess h = 
(a/d – 1) < 0.2 was considered to be a criterion of smallness. 
Under real conditions of LG operation, this value is an order 
of magnitude larger.

First, it is necessary to compare the strength of the limit 
cycle Wg obtained by approximation with its calculated value 
(14). To this end, it is necessary to determine the values of 
three parameters: RC loss, d; gain of the active medium, a; 
and the ratio of the parameters of mutual saturation and self-
saturation, q/b.

The cavity losses of the sensors under study were 
~2000  ppm and were determined on the basis of measure-
ments of the resonance width of the radiation intensity emerg-
ing from the RC. For a four-mirror RC with a perimeter L = 
20 cm and losses of ~2000 ppm, the RC bandwidth is ~3 ´ 
106 rad s–1, which, in terms of the angular velocity, is 
~360 deg s–1. In determining the value of a, we assumed that 
the CPW intensities in the RL slightly differ (Icw » Iccw = I0) 
and, as follows from the solution of the system of equations 
(8) – (10), are related to the parameters a and b as follows:

/I 1
0 d

b q
a d d

b q
h

=
+
- =

+
. 	 (22)

In dc discharge LGs, there are two identical discharge 
gaps. Therefore, turning off one of them (at a constant dis-
charge current in the discharge gap), there occurs a twofold 
decrease in the coefficient of unsaturated gain. Measurement 
of the intensity ratio in these two cases makes it possible to 
determine the value of h by using relation (22). To meet the 
conditions for our experiments with LGs with a rectangular 
bias, we used the parameter h » 1.5 or gain a » 5000 ppm in 
normal LG operation.

The ratio of the parameters of mutual saturation and self-
saturation q/b was determined from measurements of the 
modulation components of the RL intensity with the beat fre-
quency. In the beating regime, the intensities of the waves 
emerging from the RL can be represented as

Icw, ccw = I0 [1 + mcw, ccw sin(Dnt + ccw, ccw)], 	 (23)

where I0 is the constant component of the intensity (we neglect 
the difference in the constant components of the CPW inten-
sity); mcw, ccw are the modulation depths; and ccw, ccw are the 
phase shifts of modulation components.

If the strength of the limit cycle Wg significantly exceeds 
the value of the bias, then the modulation depth can be 
expressed as [4, 6]:

( )
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In determining the q/b ratio, we used the method described 
in [9]. Using a retroreflecting mirror installed near the output 
mirror of the RL produced a unidirectional coupling regime. 
In this case, the CCP modulus of one of the waves (for defi-
niteness, the clockwise wave) significantly exceeds the CCP 
modulus of the counterclockwise wave. It is easy to verify that 
the ratio of the modulation depths of SPWs has the form

mccw /mcw = q/b. 	 (25)

In our case, the ratio q/b was ~0.5. In this case, we used a 
3He – 20Ne mixture at a pressure of 4.5 Torr and a ratio of 
partial pressures of helium and neon of 14 : 1. Note that in the 
above-mentioned work [9], approximately the same value of 
q/b was obtained at the same pressure in a mixture with an 
equal content of 20Ne and 22Ne isotopes.

Using the obtained values of the parameters a, b and q/b, 
we can compare the calculated and measured values of the 
strength of the limit cycle of the sensors. The result of this 
comparison is presented in Fig. 5. The significant difference 
between the calculated dependence Wg(h) and the results of 
approximation of the experimentally measured dependences 
DK(W ) at a large excesses of gain over losses is striking. For 

0.3Kh , they practically coincide. At large h, an increase in 
Wg slows down. The dashed line represents the nonlinear 
dependence, with which we tried to approximate the experi-
mental results:

.
A
1 0 9g h

h
W =

+
, 	 (26)

where A = 120 deg s–1. With infinitely large growth, the value 
of Wg tends to a value equal to A/0.9.

Such a significant difference between the measured and 
calculated values of the strength of the limit cycle raises the 
question of the legality of using the system of equations 
(8) – (10) to determine the parameters S+ and S–. Is there a 
relation between their values obtained by approximating the 
DK(W ) dependence and the excess of gain over losses h? Recall 
that the parameters S+ and S– characterise backscattering in 
the RL and should not depend on the excess of h. Our experi-
ments did not find such a relationship. When the parameter h 
changes from 0.3 to 2.0, the relative change in the BS param-

0
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150

0.5 1.0 1.5 h

Wg/deg s–1

Figure 5.  Dependences of the strength of the limit cycle on the excess of 
gain over losses for the Zeeman LG MT-501. The solid line is the calcu-
lation result using relation (14), the dashed line is the calculation result 
taking into account saturation, and the squares are the result of ap-
proximating the experimental dependences DK(W ).
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eters did not exceed 10 % and could be attributed to the 
approximation errors of the DK(W ) dependences.

Parameters S+ and S– can also be determined using rela-
tion (21) for the DK(W ) dependence in an LG without a bias. 
This method is well suited in the case of a significant differ-
ence in the parameters S+ and S–. It is desirable that the S– 
value is more than three to five times higher than the dissipa-
tive BS component S+. In this case, the DK(W ) dependence 
contains a pronounced maximum (Fig. 6), the position of 
which is determined by the strength of the limit cycle Wg. The 
contrast of this dependence also increases with decreasing dis-
charge current, which is accompanied by a decrease in Wg.

If the condition S– / S+ > 5 is fulfilled (note that more than 
half the studied sensors met this condition), no significant dif-
ference was found between the BS parameters for LGs with 
an alternating bias and without a bias.

Another method for estimating the S– parameter was 
implemented in the analysis of the variable components of the 
RL intensity with the beat frequency. It follows from relation 
(24) at S– >> S+ that mcw » mccw = m and the modulation 
depth is described by the relation

m S
2 gW= - . 	 (27)

Based on the results of the modulation depth measure-
ments, we can find the parameter S–. When comparing the 
thus found values of S– and the values of S– obtained by 
approximating the DK(W ) dependences, we did not observe a 
large differences between them (it did not exceed 10 % – 15 %).

Let us summarise an intermediate result of our study. A 
nonlinear dependence of the strength of the RL limit cycle on 
the excess of gain over loss h was found. This casts doubt on 
the appropriateness of applying the system of equations 
(8) – (10) to describe the amplitude – phase characteristics of 
RLs operating at large values of h. Using the value of the 
strength of the limit cycle, obtained taking into account the 
saturation effect, allows one to correctly determine the value 
of nonlinear SF corrections associated with the influence of 
backscattering. To describe the wings of the DK(W ) depen-
dence, it suffices to use the relation obtained for the regime of 
‘quasi-stationary’ (slow) sign switching of a rectangular bias. 
The shape of the wings of the DK(W ) dependence is deter-
mined by four parameters: the dissipative (S+) and conserva-
tive (S–) BS components, the strength of the limit cycle Wg and 
the rectangular bias amplitude W0.

Let us now consider the central part of the DK(W ) depen-
dence (Fig. 7a). Its nonmonotonic behaviour makes it diffi-
cult to introduce nonlinear SF corrections. Such a complex 
form of parametric lock-in zones is almost impossible to 
describe using a convenient and, from a physical point of 
view, correct analytical relationship. The only way out of 
this situation, in our opinion, is related to the introduction 
of ‘dithering noise’ of the frequency bias amplitude. The 
width of the region where parametric resonances appear is 
1 – 1.5 deg s–1. Therefore, the optimal value of the amplitude 
of dithering noise should approximately correspond to this 
value. In our case, we used quasi-noise by introducing an 
amplitude-modulated harmonic signal into the correcting 
solenoid of a Zeeman LG:

W n = W asin(2pf1) sin(2pf2), 	 (28)

where f1 = 200 Hz; f2 = 45 Hz; and W a » 1.2 deg s–1.

With such a dithering noise, the parametric lock-in zones 
disappear (Fig. 7b), and the peak value of the nonlinear cor-
rection DK(W ) decreases by almost two orders of magnitude, 
reaching 30 ppm. The shape of the central part of the DK(W ) 
dependence obtained by introducing the dithering noise is 
well described by the analytical relation, which is the first 
derivative of the Lorentz function:

K
x

Nx
1 4

D =-
+

, 	 (29)

where
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Figure 6.  Dependence DK(W ) for an LG without a bias at S+ = 
0.08 deg s–1, S– = 0.48 deg s–1 and Wg = 38 deg s–1. Squares are the mea-
surement results, and the solid line is the approximation.
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(b) after the introduction of dithering noise. Points are the measurement 
results, and the solid line is the approximation.
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x
a

0

W
W W

=
- 	 (30)

is the dimensionless detuning of the rotation frequency from 
the amplitude of the LG bias, and the parameter N linearly 
depends on the LG lock-in threshold. The shape of this depen-
dence is determined by the dithering noise amplitude W a (W a = 
1.2 deg s–1). The presence of the conservative component S– 
leads to the appearance of a small bias between the asymptotic 
values at low and high rotation velocities: DK(W ® 0) – DK(W 
® ¥). In the above example, this value was ~10 ppm.

The standard deviation of the difference between the mea-
sured and calculated values of the middle part of the DK(W ) 
dependence did not exceed 2 ppm. Thus, the use of analytical 
relations (21) and (29) allows one to correct significantly 
(from hundreds to units of ppm) the value of nonlinear SF 
corrections in the entire working range of rotation velocities 
of LGs with a rectangular bias.

The next section is devoted to the study of the mechanism 
of the formation of dissipative and conservative CCP compo-
nents in the RC. This will help find ways of practical imple-
mentation of the SF correction procedure for a Zeeman LG 
with a rectangular bias.

3. Peculiarities of the formation of conservative 
and dissipative CCP components in a Zeeman LG

The values of the dissipative and conservative CCP compo-
nents are determined by the combination of all BS sources 
located on the surface of the mirrors and falling into the 
working zone of the CPW modes. We will use the simplest 
model of the formation of BS fields and will assume that on 
the surface of each of the RC mirrors there are two point BS 
sources: dissipative and conservative. The complex coupling 
coefficients in the system of equations (8) – (10) are the scalar 
sum of the partial CCPs of individual RC mirrors:

(2 )exp ir r kln n
n

=/ , 	 (31)

where k = 2p/l is the wave number; ln is the longitudinal coor-
dinate of a point BS source on the optical axis of the RC. In 
this case, by partial CCP moduli of the mirrors, rn, are meant 
their dissipative or conservative component. Relation (31) for 
them remains the same in form with only the parameters rn 

and ln changing. A factor of 2 in the exponent means that the 
phase shift for a wave propagating in the opposite direction is 
doubled compared to the case of interference of waves propa-
gating in the forward direction.

If we represent relation (31) in the form of partial CCP 
vectors located on a complex plane, then the arguments 2kln 
are the angles of rotation of the partial CCPs with respect to 
each other. In changing the lengths of the cavity arms (for 
example, under thermal effects), these angles can vary in the 
range 0 – 2p. As a result, the moduli of the total CCP can 
(hypothetically) vary in the range 0 – ån rn.

We now specify our problem and consider the interference 
of BS waves in a four-mirror RC of square shape. It is easy to 
see that in the case of uniform thermal deformations, we 
observe a periodic change in the modulus of the total CCP. In 
terms of a change in the RC perimeter, this period is 2l. 
Moreover, each vector of partial CCPs rotates on the com-
plex plane by 360°.

To control the perimeter and stabilise it, part of the cavity 
mirrors is equipped with piezoelectric correctors (PECs). In 
modern LGs, use is made, as a rule, of a RC with two PECs. 
In this case, there are two layout options for PECs located 
either diagonally in the square or on adjacent cavity mirrors. 
These layout options react differently to uniform thermal 
deformations (for example, to heating) of the RC (Fig. 8). In 
the case of a diagonal arrangement of PECs, the optical 
perimeter turns from a square into a rhombus with the same 
shoulder length, while the total CCP remains unchanged. In 
the case of the second layout, the square optical perimeter 
turns during the heating into a rectangular one. The total 
CCP changes as follows:

2exp expi ir r r k l L r k l l L
4

2
41 2 12 3 12 23

D D
= + - + + -a ak k< <F F

[2 ( )]exp ir k l l l4 12 23 34+ + + . 	 (32)

Here, l12, l23 and l34 are the distances between the scatterers 
before heating the cavity (as we called uniform thermal defor-
mation), and DL is the change in the RC perimeter with the 
stabilisation system switched off.

If we group in relation (32) the first term with the fourth 
one, and the second term with the third one and plot them in 
the form of two vectors on the complex plane (Fig. 8b), then 
when the cavity is heated, the total vector r23 = r2 + r3 describes 
a circle around the total vector r14 = r1 + r4. Therefore, the 
problem is reduced to the interference of two BS sources with 
a variable phase varying in the range from 0 to 2p. The modu-
lus of the total CCP will vary in the range from the sum of the 
moduli of these two vectors to their difference.

An important distinctive feature of the layouts with two 
PECs is the change in the total CCP during the transition to a 
neighbouring longitudinal mode (q so-called jump by l). In 
this case, there are two possible configurations of partial 
CCPs (Figs 8c and 8d). The relations for the total CCPs have 
the form

[2 ( )]exp expi ir r r k l m r k l l2
41 2 12 3 12 23
l

= + - + +a k< F

	 2exp ir k l l l m
44 12 23 34
l

+ + + +a k< F,	 (33)

(2 )exp expi ir r r kl r k l l m2
41 2 12 3 12 23
l

= + + + -a k< F

	 exp ir k l l l m2
44 12 23 34
l

+ + + -a k< F, 	 (34)

where m is an integer.
It can be seen that there are two repeating values of the 

total CCP. At the same time, the layout options for the PECs 
in question have their own characteristics. In the case of the 
diagonal arrangement of the PECs [relation (33)], when the 
perimeter is changed by l, the vectors r1 and r3 remain fixed 
on the complex plane, and the vectors r2 and r4 rotate by 180°. 
For the second layout [relation (34)], the vectors r1 and r2 
remain stationary, and the vectors r3 and r4 [the PECs 
mounted on mirrors ( 1 ) and ( 2 ) are rotated 180°].
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A comparative analysis of the two layout schemes of 
PECs shows that a scheme with a diagonal layout is more 
preferable for the correction procedure implementation. Let 
us consider this scheme in more detail using a Zeeman LG as 
an example.

The main distinguishing feature of a Zeeman LG is a non-
planar RC, whose eigenmodes are circularly polarised. The 

frequency distance between adjacent polarisation modes is c/
(2L), rather than c/L, as in a planar cavity. As a result, we 
obtain four configurations for partial CCPs. Each of the posi-
tions of the PECs corresponds to its own pair of S– and S+ 
values. In the case of a planar RC, there are two configura-
tion options for partial CCPs. Figure 4 shows the results of 
measurements of the wings of the DK(W ) dependence for one 
of the studied Zeeman LGs. For each of these four depen-
dences, a pair of S– and S+ values is presented.

To introduce the correction procedure, it is necessary to 
find out how to control the configuration of partial CCPs. 
This makes it possible to stabilise the DK(W ) dependence for 
the LG. A similar approach to solving this problem was 
implemented by Fedorov et al. [10]. In a four-mirror RC, 
three mirrors were equipped with PECs. The PEC control 
algorithm made it possible not only to stabilise the perimeter 
of the cavity, but also to obtain a CCP configuration corre-
sponding to a minimum S+ value.

The diagonal arrangement of the PECs in a square RC 
allows this problem to be effectively solved. To this end, one 
of the PECs is used to stabilise the LG perimeter, and the 
movements of the other PEC stabilise the configuration of the 
partial CCP vectors of the mirror. This algorithm for control-
ling the configuration of the RC is equivalent to antiphase 
operation of two PECs [11]. This regime of PEC operation is 
shown in Fig. 8e. As the PEC moves, the vectors r2 and r4 
rotate on the complex plane towards each other. The behav-
iour of the conservative CCP component is described by the 
expression

r = r1 + r2exp(2ikDl ) + r3exp(iJ3)

	 + r4exp(– 2ikDl + iJ4), 	 (35)

where Dl is the longitudinal displacement of the PEC; and J3 
and J4 are the phase shifts describing the initial position of the 
vectors of partial conservative BS components of mirrors ( 3 ) 
and ( 4 ) on the complex plane. A similar relation can be writ-
ten for the dissipative component.

As a result, we have periodic dependences of the CCP 
moduli on the parameter   Dl (the period is equal to l). 
Depending on the initial rotation angles on the complex plane 
(J3 and J4), one-humped (with one maximum) or two-humped 
(with two maxima) dependences of the dissipative or conser-
vative BS components are obtained [12].

To control the configuration of the partial CCP vectors, 
one can use the result of measuring the modulation compo-
nent of the RL intensity with the beat frequency. This param-
eter shows an explicit correlation with the magnitude of non-
linear corrections to the SF. Figure 9 demonstrates a nonlin-
ear correction to the SF for a rotation velocity of 18 deg s–1 
and the modulation intensity component during the antiphase 
course of two PECs as a function of the PEC voltage. 

In the above example, we observed a good correlation 
between the nonlinear correction to the SF and the variable 
intensity component. This is due to the fact that in this sensor 
the conservative BS component significantly exceeded the dis-
sipative component (S– /S+ > 7). If the difference is not so 
significant, then such a correlation is not detected. However, 
the magnitude of the variable component of the intensity can 
be used as a reference, making it possible to stabilise the con-
figuration of the partial CCPs. Thus, the values of S– and S+, 
and hence the dependence DK(W ), can be maintained 
unchanged under thermal and mechanical effects of the LG.
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modulus of the total CCP during the antiphase movement of two PECs.
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4. Conclusions

Taking into account the conservative (S–) and dissipative (S+) 
CCP components of the counterpropagating waves allows 
one to obtain analytical relationships that well describe 
(quantitatively and qualitatively) nonlinear SF corrections of 
the LG with a rectangular bias in the entire working range of 
the angular velocities of the LG. In describing the wings of the 
DK(W ) dependence, one can neglect the influence of paramet-
ric effects and use the relations obtained in the weak-coupling 
approximation. In the central part of this dependence, the 
introduction of amplitude noise makes it possible to signifi-
cantly (almost by two orders of magnitude) reduce the nonlin-
ear distortions of the SF and to describe the shape of these 
corrections using the analytical relation.

Along with the S+ and S– parameters, the shape of the 
DK(W ) dependence is also determined by the amplitude of the 
rectangular bias and the strength of the limit cycle Wg of the 
RL. Our experiments showed that the value of Wg nonlinearly 
depends on the excess of gain over losses h. The calculated 
parameter Wg turns out to be several times larger than the 
measured value at h > 1 – 2. This casts doubt on the appropri-
ateness of applying the system of equations (8) – (10) to 
describe the amplitude – phase characteristics of the RL oper-
ating at large values of h. The use of the Wg value obtained 
directly from the measurement results in the analytical DK(W ) 
dependence allows one to correctly describe the magnitude of 
the nonlinear corrections to the SF caused by the BS effects.

The diagonal arrangement of PECs in the RC of square 
cross section makes it possible to effectively control the con-
figuration of partial CCP mirrors. As a reference, one can use 
the amplitude of the variable component of the CPW inten-
sity with the beat frequency, reaching its minimum value 
when moving PECs. According to our estimates, such an 
approach to the corrections of nonlinear corrections in LGs 
with a rectangular bias, caused by the BS effects, will reduce 
them to 1 – 2 ppm.
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Figure 9.  ( 1 ) Nonlinear correction to the SF (W = 18 deg s–1) and ( 2 ) 
variable component of the intensity DI as functions of voltage U at the 
PEC during the antiphase movement of two PECs. Points are the result 
of measurements.


