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Abstract.  A scheme for compensation of nonlinear effects in multi-
channel data transfer systems based on dynamic neural networks is 
proposed. An improved quality of optical signal transfer in this scheme 
in comparison with the signal transfer in a scheme based on a neural 
network using symbols from only one channel is demonstrated.

Keywords: optical fibre, nonlinear effects, neural networks, mathe-
matical simulation, wavelength division multiplexing.

1. Introduction

Nonlinear effects are one of the main factors limiting the 
throughput of modern fibre-optic communication lines. The 
operation of modern multichannel communication systems 
with a multiplexed band suggests an increase in the total sig-
nal power in fibre, due to which the influence of nonlinear 
transfer effects increases [1 – 3]. The operation of optical com-
munication lines in these nonlinear regimes differs signifi-
cantly from the conventional linear regime and calls for new 
approaches and methods for processing received high-power 
signals. To date, the most efficient scheme for compensation 
of nonlinear distortions is the digital back-propagation, 
which models the backward propagation of signals through 
an optical fibre using the split-step Fourier method [4]. How
ever, this method generally calls for fairly high computational 
resources and can be used in only static data transfer systems, 
because its application implies preliminary knowledge of all 
communication line parameters. Among other ways to com-
pensate for nonlinear signal distortions, we can select a set of 
methods based on application of functional Volterra series [5], 
digital methods based on perturbation theory elements [6, 7], 
nonlinear Schrödinger filter and the “reception in general with 
bit-by-bit decision making” algorithm [8], and the optical 
methods with signal phase matching [9]. In the last five years 
machine learning methods have been especially actively util
ised in the field of fibre-optic communication lines [10 – 15]. 
These methods are powerful statistical tools for developing 
adaptive equalisers, capable of compensating for nonlinear 

transfer effects at a relatively low computational complexity. 
These nonlinear equalisers can be based on the support-vec-
tor machine [10], method of k nearest neighbours [11], and 
static [12, 13] and dynamic neural networks [14, 15]. In addi-
tion, due to the possibility of periodic retraining, schemes of 
processing received signals based on machine learning meth-
ods can also be applied in dynamically changing communica-
tion lines.

In this study, the scheme for compensation of nonlinear 
distortions based on dynamic neural networks (NNs) that 
was proposed in [15] is expanded for the case of a communi
cation system with wavelength division multiplexing (WDM). 
The developed scheme, which uses symbols from several fre-
quency channels on the NN input layer, is compared with a 
linear compensator and the previous version of the scheme, 
which utilises symbols from only one channel.

2. Mathematical simulation 

The data transfer system under study is schematically shown 
in Fig. 1. The communication line consists of a transmitter, 
20 spans (100 km each) of a standard single-mode fibre, 
erbium-doped optical amplifiers (inserted after each span), 
and a receiver. 16-QAM-signals with a symbolic rate Rs = 
32  Gbaud, which corresponds to a bit transfer rate of 
128  Gbit s–1 in one polarisation of one channel, are gener-
ated on the transmitter. Pulses are shaped using a raised-
cosine filter with a smoothing coefficient of 0.01. A data 
transfer system with three frequency channels and 32-GHz 
interchannel spacing (corresponding to the symbolic rate) 
was investigated. The centre wavelength of the emitted-signal 
band was taken to be l = 1550 nm. The noise generated by 
the EDFA amplifier (NF = 4.5 dB) was added to the optical 
signal after each span.

The signal propagation through an optical fibre is des
cribed by the nonlinear Schrödinger equation [1]
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where A(z, t) is a slowly varying envelope of optical signal, 
a  = 0.2 dB km–1 is the fibre loss, b2 = – 25 ps2 km–1 is the chro-
matic dispersion, and g = 1.4 W–1 km–1 is the fibre nonlinear 
parameter. This equation was solved numerically using the 
symmetric split-step Fourier method at a sampling rate of 16 
samples per symbol.

Having passed through a channel, optical signals arrived 
at a receiver, in which ideal compensation of chromatic dis-
persion was performed after separating frequency channels. 
A linear compensation scheme and schemes based on dynamic 
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neural networks, using all frequency channels or only the cen-
tral channel, were applied to compensate for nonlinear distor-
tions. The target function of the methods under consideration 
is the bit error rate (BER).

3. Scheme for compensation of nonlinear effects 
based on dynamic neural networks

The architecture of the proposed neural network is presented 
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Figure 1.  Schematic of the communication line under study: ( Tx ) transmitter for one channel; ( MUX ) WDM multiplexer; ( EDFA ) erbium-doped 
fibre amplifier; ( DEMUX ) WDM demultiplexer; ( Rx ) receiver for one channel; ( BPF ) bandpass filtering; ( NLE ) nonlinear effect compensation.
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Figure 2.  Architecture of a dynamic neural network.
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in Fig. 2. Here, in contrast to the scheme considered in [15], 
symbols from all frequency channels are applied at the neural 
network input. To take into account the channel memory eff
ect, delay units are used in the neural network scheme, due to 
which both previous and subsequent symbols can be used at 
the NN input. This neural network is referred to as dynamic. 

Since the object of our study was neural networks dealing 
with real numbers, complex symbols arriving at the input were 
separated into real (Re) and imaginary (Im) parts. The num-
ber of neurons on the NN input layer is 3 ́  2 ́  (2 ́  Ndel + 1), 
where Ndel is the number of neighbouring symbols used in 
each direction. The factor of 3 corresponds to the number of 
channels applied at the NN input. The network contains also 
two hidden layers and an output layer with two neurons, cor-
responding to the real and imaginary parts of a symbol pro-
cessed. Hyperbolic tangent was used as an activation function 
on hidden layers, while a linear transfer function was applied 
at the output layer. The network weights were determined 
using the adaptive moment estimation (Adam) optimisation 
algorithm on a training set of transmitted and received sym-
bols. The trained neural network was tested on a test set in 
order to process received symbols. To calculate the BER val
ue, we carried out 10 runs with 218 symbols in each; 216 sym-
bols were used for learning, and others served to calculate 
BER.

4. Results of application of the scheme  
for compensation of nonlinear effects  
based on dynamic neural networks

First we considered an NN where symbols from only one 
channel are applied at the input. The influence of the number 
of delay units on the efficiency of nonlinear distortions com-
pensation was investigated for such NNs with different archi-
tectures. Figure 3 shows the dependences of the BER on the 
number of neighbouring symbols applied at the NN input in 
each direction for networks with 64 and 192 neurons on each 
of the hidden layers.

It can be seen that the optimal number of neighbouring 
symbols in use increases with increasing number of neurons 

on hidden layers. A further rise in the number of neighbour-
ing symbols leads to gradual deterioration of BER.

To estimate the efficiency of the proposed multichannel 
method for compensating nonlinear effects, it was compared 
with the linear compensation algorithm and with the scheme 
based on a neural network using information from only the 
central channel. Figure 4 shows the dependences of BER on 
the initial signal power for different schemes for compensat-
ing nonlinear distortions: a linear compensation scheme bas
ed on the least mean square (LMS) algorithm, which recon-
structs only the phase of received signal; a neural network 
having two hidden layers (with 64 neurons in each), where 
symbols from only the central channel are used to predict the 
input symbol; and a dynamic neural network, which uses inf
ormation from all frequency channels and also has 64 neu-
rons on each hidden layer. Neural networks with Ndel = 10 
were considered.

It can be seen in Fig. 4 that the schemes based on dynamic 
neural networks excel the linear compensator in terms of the 
bit error rate. However, the use of information from all three 
channels only slightly improves BER in comparison with the 
single-channel NN. The reason is that an NN with 64 neurons 
on hidden layers can efficiently process only 10 neighbouring 
symbols in each direction (see Fig. 3). A ‘single-channel’ NN 
already uses this optimal number of neighbouring pulses; the
refore, the proposed multichannel scheme, where 42 addi-
tional symbols from neighbouring channels (21 symbols from 
each channel) are applied at the input, do not allow one to 
process them efficiently and use for compensation of inter-
channel nonlinear effects, which would make it possible to 
reduce additionally the BER value. Thus, the use of informa-
tion from all frequency channels does not improve the data 
transfer quality for these NN architectures.

The next object of our study was neural networks with 192 
neurons on each hidden layer and the number Ndel of neigh-
bouring symbols used in each direction equal to 30. Figure 5 
shows the dependences of BER on the initial signal power for 
a linear compensator and for schemes based on dynamic neu-

Number of neurons
on each hidden layer

64
192

BER

0.0018

0.0016

0.0014

0 10 20 30 40 50 60 Ndel

Figure 3.  Dependences of BER on the number of neighbouring sym-
bols in use.
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Figure 4.  Dependences of BER on the initial signal power for different 
schemes of nonlinear distortion compensation based on an NN with 64 
neurons on hidden layers.
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ral networks using all frequency channels or only the central 
one.

Here, the use of data from all channels also improves only 
slightly the BER value in comparison with a single-channel 
NN. Nevertheless, the gain in BER in this case is somewhat 
larger than for an NN with 64 neurons on each hidden layer. 
However, if we consider a neural network using 20 neigh-
bouring symbols in each direction from the central channel, 
10 neighbouring symbols from the first channel, and 10 neigh-
bouring symbols from the third channel [NN, 3 channels 
(20 + 10 ́  3)], the nonlinearity compensation efficiency will 
increase, and the BER will decrease by 65 % in comparison 
with the linear compensation scheme and by 31 % as com-
pared with the single-channel NN. This can be explained by 
the fact that the number of symbols applied at the NN input 
is close to optimal. Therefore, the scheme under considerat
ion can use efficiently symbols from neighbouring frequency 
channels to compensate for the phase cross modulation and 
four-wave mixing effects, which positively affects the signal 
reconstruction quality. A further increase in the number of 
neurons on hidden layers is expected to provide even higher 
gain (when using symbols from all frequency channels) in 
comparison with a single-channel neural network.

5. Conclusions

A new scheme for processing optical signals in a communica-
tion system receiver is proposed. The scheme is based on 
dynamic neural networks and uses symbols from several fre-
quency channels to compensate for nonlinear distortions. The 
influence of the NN architecture on the signal processing effi-
ciency was investigated for this scheme. Different methods for 
compensating nonlinearity were compared in terms of the 
data transfer quality. It was shown that the proposed scheme 
is superior over the single-channel neural network (with the 
hidden-layer architecture preserved).

Acknowledgements.  This work was supported by the Russian 
Science Foundation (Project No. 17-72-30006). O.S. Sidelni
kov’s work was performed within a government contract with 

the Ministry of Science and Higher Education of the Russian 
Federation (Project No. 1.6366.2017/8.9).

References
  1.	 Agrawal G.P. Nonlinear Fiber Optics (Boston: Academic Press, 

2013).
  2.	 Temprana E. et al. Science, 348, 1445 (2015).
  3.	 Zhitelev A.E. et al. Quantum Electron., 47, 1135 (2017) [ Kvantovaya 

Elektron., 47, 1135 (2017)].
  4.	 Ip E. J. Lightwave Technol., 28, 6 (2010).
  5.	 Liu L. et al. J. Lightwave Technol., 30, 310 (2012).
  6.	 Sorokina M. et al. Opt. Express, 24, 30433 (2016).
  7.	 Redyuk A.A. et al. Prikl. Foton., 5, 265 (2018).
  8.	 Burdin V.A. et al. Quantum Electron., 47, 1144 (2017) [ Kvantovaya 

Elektron., 47, 1144 (2017)].
  9.	 Ellis A.D. et al. Opt. Express, 23, 20381 (2015).
10.	 Li M. et al. IEEE Photonics J., 5, 6 (2013).
11.	 Wang D. et al. IEEE Photonics Technol. Lett., 28, 19 (2016).
12.	 Jarajreh M. et al. IEEE Photonics Technol. Lett., 27, 4 (2015).
13.	 Giacoumidis E. et al. Opt. Lett., 40, 21 (2015).
14.	 Sidelnikov O.S. et al. Quantum Electron., 47, 1147 (2017) [ Kvantovaya 

Elektron., 47, 1147 (2017)].
15.	 Sidelnikov O. et al. Opt. Express, 26, 25 (2018).

LMS
NN, 1 channel
NN, 3 channels (30´3)
NN, 3 channels (20 + 10´3)

10–1

10–2

10–3

B
E

R

–10 –8 –6 –4 –2 0 2 4
Input power/dBm

Figure 5.  Dependences of BER on the initial signal power for different 
schemes of nonlinear distortion compensation based on an NN with 
192 neurons on hidden layers.


