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Abstract.  We report the results of numerical simulation of the radi-
ation dynamics in a Raman fibre amplifier taking into account 
quantum fluctuations of the pump fields and Stokes waves. The 
simulation relies on an approach based on solutions of the transport 
equations for complex amplitudes and on the ‘backward’ propaga-
tion method for operators describing quantum fluctuations. It is 
shown that there exists an optimal Raman amplifier length corre-
sponding to the minimum level of fluctuations of the amplified 
Stokes pulse.

Keywords: stimulated Raman scattering, counterpropagating 
waves, transport equations, quantum fluctuations, perturbation 
method.

1. Introduction

The dynamics of fibre lasers and amplifiers has been studied 
for a long time, and in many respects these investigations 
have been stimulated by new experimental results and possi-
bilities provided by fibres and laser systems of new types. An 
important direction has always been the research of the 
dynamics of light in fibre lasers, where SRS or SBS pump 
conversion is used [1]. Unlike lasers based on activated fibres, 
lasing in Raman or SBS lasers is possible even in the absence 
of feedback in the cavity (single-pass lasing), because the SBS 
and SRS gain coefficients are large even at moderate pump 
powers, and fibre loss is negligible. The main dynamic phe-
nomena in Raman or SBS fibre lasers with a linear asymmet-
ric configuration (fibre is excited from one end face) are due 
to relaxation oscillations resulting from the action of a wave 
propagating towards the pump wave during SBS, or a Stokes 
wave copropagating with the pump wave during SRS [2 – 5]. 
Typically, these oscillations occur with a period equal to the 
round-trip time of light in the cavity, the length of which 
either coincides with the fibre length or is shorter due to the 
absorption of the pump. Then their period is determined by 
the time required for the light to pass a certain effective length 
[2]. In this case, the fibre dispersion is usually not taken into 
account, since the pulse durations are sufficiently long.

Significantly, equations describing lasing are partial dif-
ferential equations that cannot be reduced to a system of ordi-
nary differential equations of small dimension. Therefore, 
analytical results can be obtained only with sufficiently rigid 
approximations that are often not justified in experiments [3]. 
For this reason, a numerical experiment plays an important 
role in the analysis of dynamic phenomena [1, 2, 5]. In the 
conventional approach, the equations are supplemented by 
boundary conditions at the end faces of fibre – the so-called 
two-point boundary-value problem, which is integrated using 
quite sophisticated methods. It often uses multiple runs along 
the fibre length to satisfy the boundary conditions. All these 
factors require time-consuming calculations and study of 
convergence of successive approximation procedures.

Raman lasers based on long (tens and hundreds of kilo-
metres) fibres are used in telecommunication systems as dis-
tributed amplifiers [6]. Ring configurations of long fibre lasers 
are of particular interest, because optical gyroscopic devices 
can be designed on their basis. At the same time, a long fibre 
allows one to fabricate a cavity with a large scale factor that 
relates the phase incursion caused by rotation or the fre-
quency difference of counterpropagating waves with the 
angular velocity of rotation [7]: Dw = Dn8pS/(cl), where S is 
the area of the fibre contour; l is the laser wavelength; Dn = 
2pug/L is the frequency spacing between the longitudinal 
modes of the ring cavity; L is the perimeter of the cavity; ug = 
(db/dw)–1 is the group velocity; and b is the propagation con-
stant at the laser frequency. It can be seen that at small group 
velocities the scale factor becomes very large [8].

In conventional ring lasers, due to the amplitude – phase 
lasing conditions, the linear coupling of counterpropagating 
waves leads to frequency locking at small differences in their 
frequencies, which prevents the measurement of low rotation 
velocities when the beat frequency is compared with the width 
of the lock-in zone. The width of this zone is estimated as 
Rc/L, where c/L is the mode spacing and R is the coupling 
coefficient of counterpropagating waves, which is 10–5 – 10–6 
in gas lasers. In optical fibres, due to Rayleigh scattering, this 
coefficient is ~10–4  km–1. However, as already noted, SRS 
lasing is not so sensitive to phase relations for the field in the 
cavity; therefore, one can hope to obtain information about 
the angular velocity of rotation even with such a large back-
scattering coefficient.

Recently, studies on the dynamics of light in long fibre 
lasers have been published, stimulated by the emergence of 
the concept of random feedback in optical fibre [9 – 12], when 
generation can occur almost in a single pass in the absence of 
mirrors under symmetric excitation of fibre [5, 13]. The role of 
Rayleigh scattering and spontaneous Raman scattering is to 
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produce seed fields for SRS, which makes it possible to 
develop various instabilities.

Many problems are related to the study of the dynamics 
of short light pulses in long fibre lasers. A number of papers 
have been recently published, where mode locking was 
obtained in a fibre laser using cavity elements with signifi-
cantly different dispersion. This makes it possible to obtain 
regimes caused by instabilities resembling Faraday (paramet-
ric) instabilities [14, 15]. The propagation modes of short 
(picosecond) light pulses in fibres with dispersion periodically 
varying over length are also interesting for generating entan-
gled soliton-like pulses [16]. It is known that the propagation 
of waves with constant intensity in optical fibres is accompa-
nied by instability in the case of negative group-velocity dis-
persion [1]. However, similar instabilities are observed in the 
case of counterpropagating waves and cross-phase modula-
tion even with a positive dispersion of the group velocity. 
Modulation of fibre dispersion parameters can also lead to 
parametric-type instability [5, 17].

To study the processes occurring in long fibre lasers and 
to construct adequate physical models of these processes, it is 
convenient to consider simplified configurations, which is 
done in this work. In addition, the numerical simulation relies 
on solving the transport equations for the field amplitudes of 
counterpropagating waves by applying grid methods and the 
Courant – Isaacson – Rees algorithm [18], which makes it pos-
sible to study the laser dynamics for a large number of passes 
through fibre without using iterative algorithms [5, 13].

2. Quantum equations for a Raman fibre 
amplifier

2.1. Equations for fields

We will use the expansion of the fields in travelling waves:

( , , , ) ( , ) ( ) ( , ) . .exp i i c cx y z t x y z t z tE e
2
1 EX X0 0y b w= - + ,

( , ) [ ( ) ]exp i iz t z tEX 0 0b w b= -

	 [ ( ) ( ) ]exp i iX z tk k k
k

0 0# b b w w- - -
3

3
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/
	 (1)

	
3
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( ) { ( ) [ ( ) ] }exp
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Here, e is the unit vector of wave polarisation; y(x, y) is the 
mode function [19]; b is the propagation constant of the fun-
damental mode; w0 = w( b0) is the frequency of the carrier field 
at b = b0; 2 /k Lk X0 pb b u= + ; uX is the phase velocity; L is the 
fibre length; h = b - b0; X(h) is the Fourier amplitude of the 
spatial spectrum; X = F, B, Fs, Bs; F and B are the amplitudes 
of the pump waves (the amplitude F corresponds to the waves 
propagating along the z axis, and the amplitude B corre-
sponds to counterpropagating waves); and Fs and Bs are the 
amplitudes of the Stokes waves. For long fibres, integration is 
used instead of summation. After replacing the classical field 
with a quantised one and normalising the amplitudes to the 
field corresponding to one quantum in the volume V that it 
occupies [20], we obtain

( , ) ( , ) ( , )z t V X z t X z tEX
0

0'
e e

w
= +

@t t t7 A ,

where ( , ) ( , )andX z t X z t@t t  are field annihilation and creation 
operators, which, due to expressions (1), are a superposition 
of the creation and annihilation operators of individual longi-
tudinal modes (travelling waves); and e and e0 are the permit-
tivities of the fibre and vacuum, respectively. For these opera-
tors, the ordinary commutation relations 

[ ( , ) ( , )] ( ) ( )X z t X z t t t z zd d= - -
@ l l l lt t

are satisfied.
The equations for the operators of the fields of Stokes and 

pump waves at sufficiently long pulses, for which the disper-
sion can be ignored, are taken from [13] with the correspond-
ing replacement of the amplitudes of the envelope fields with 
the operators:
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where gs is the gain of the Stokes waves; g = gswp/ws; wp and 
ws are the frequencies of the pump wave and the Stokes wave; 
g and gs are the loss coefficients at the frequencies of the pump 
wave and the Stokes wave; ug and ug s are the group velocities 
of the pump wave and the Stokes wave; NX

t  are the sources of 
fluctuations cause by medium losses, mirror losses and 
Raman gain.

2.2. Backpropagation method

The solution of the system of equations (2) – (5) for field oper-
ators is a rather difficult task, because the dimension of the 
space in which the operator acts is very large and is deter-
mined by the number of longitudinal modes and the number 
of quanta in each mode. There is a method based on the rep-
resentation of field operators as the sum of the ‘classical’ and 
quantum parts, with the quantum part being treated as a 
small perturbation [21]. This method has been successfully 
used to study quantum fluctuations during the propagation 
of optical solitons [22 – 24] and to solve similar problems, 
which are reduced to analysis of the propagation of short 
light pulses in nonlinear media with Kerr nonlinearity, disper-
sion, amplification and loss [25, 26]. A characteristic feature 
of these problems is the propagation of pulses (one or several) 
in one direction. This allows one to introduce a coordinate 
system synchronised with the pulse propagation (z, t –
z/ug) and use the z coordinate as an evolutionary variable. 
Because standing waves (or a pair of counterpropagating 
travelling waves coupled through reflections on mirrors) serve 
as longitudinal eigenmodes in a fibre laser with mirrors at the 
end faces, it is convenient to choose time t as an evolutionary 
variable. Moreover, derivatives with respect to z are not 
excluded when replacing time t with the current pulse time, 
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and the boundary conditions are also significant. An addi-
tional complication is the presence of four coupled waves 
whose quantum operators act on different state vectors. 
Therefore, the backpropagation scheme must be modified 
accordingly.

According to the results of Refs [21, 24], it is necessary to 
distinguish in each field operator ( , )X z tt  the classical field 
X(z, t) and the perturbation operator ( , )u z tXt : X X= +t  
( , )u z tXt ; moreover, all quantum properties are described by 

uXt . Under the condition of small perturbations, XdzX*y  >> 
| |u uX XG H@t t , we can go over to the equations for perturbations 
, , ,f b f bs s
t t t t , in which Xt  should be replaced by classical fields 

X. These classical fields obey equations (2) – (5), where opera-
tor symbols are removed and there are no noise sources. 
Boundary conditions can be written separately for linear and 
ring cavities.

2.3. Linear cavity

We assume that a fibre segment of length L is excited on the 
left and on the right and that the waves (Stokes) can be 
reflected on the right and left ends. Then,

(0, ) (0, ), ( , ) ( , )F t R B t B L t R F L ts left s s right s= = ,	 (6)

(0, ) (0, ) ( )F t R B t W tleft left= + ,

( , ) ( , ) ( )B L t R F L t W tright right= + .

	 (7)

Here, Rleft and Rright are power reflectances on the left and 
right ends of fibre, respectively; Wleft and Wright are the pump 
powers; and b and bs are the propagation constants for pump 
waves and Stokes waves.

2.4. Ring cavity

We assume that a fibre segment of length L is rolled into a 
ring and is excited through a WDM coupler by waves propa-
gating clockwise (wave F) and counterclockwise (wave B) in 
the ring. We also assume that the coupler is not ideal, which 
leads to coupling of counterpropagating Stokes waves, and 
there are no reflections at the pump frequency. Then,

(0, ) (0, ) ( , )F t RB t RF L t1s s s= + - ,

( , ) ( , ) (0, )B L t RF L t RB t1s s s=- + - ,	 (8)

(0, ) ( , ) ( ), ( , ) (0, ) ( )F t F L t W t B L t B t W tleft right= + = + .

For the operators , , ,f b f bs s
t t t t , the boundary conditions are the 

same. For these operators we obtain linear equations that can 
be written in compact form:
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Note that due to the boundary conditions between the 
operators ,f bt t  and ,f bs s

t t  there is a linear coupling. The matrix 
Pt  is anti-Hermitian, and the matrix Qt  is antisymmetric.

To fulfil the standard commutation relations for opera-
tors, it is necessary, as usual [20, 21], to introduce a restriction 
on noise sources. Following [21], we easily obtain expressions

( , ), ( , ) ( , , ) ( )N t z N t z M t z z t tX Y X XY1 2 1 2 dd= -
@ l lt t8 B ,

( , ), ( , ) ( , ), ( , ) 0N t z N t z N t z N t zX X X X1 2 1 2= =
@ @l lt t t t8 8B B ,

, ,( , ), ( ) ( , ), ( ) 0N t z N t z N t z N t zX Y X Y1 2 1 2= =
@ @l lt t t t8 8B B ,	 (10)

( , , ) [ ( , ) ( , )] ( )M t z z P t z P t z z z*
X XX1 2 1 2 1 2d=- - -t t ,

, , , ,X Y F B F Bs s= .

In addition to commutators, to calculate quantum fluctua-
tions, one needs to know the correlation functions

,H H( , ) ( , ) ( , ) ( , )N t z N t z N t z N t zX Y X Y1 1 2 2 1 1 2 2G @ Gt t t t ,

,H H( , ) ( , ) ( , ) ( , )N t z N t z N t z N t zX Y X Y1 1 2 2 1 1 2 2G @ @ @Gt t t t ,

which can be determined if there is information about the phys-
ical nature of noises in the problem in question. For example, 
noise sources were calculated for intrapulse SRS in [21].

Quantum-mechanical average values measured at time t = 
T can be tied to a specific point of fibre or averaged over its 
entire length or over a selected segment. In these cases, it will 
be necessary to calculate scalar products of the form

{ | } ( , ) ( , ) ( , ) ( , )du z z T u z T z T u z T
2
1F F FX X X

L

0
= +

@* t t7 Ay ,	(11)

where ( , )z TF  characterises spatial filtering during the mea-
surement, and it is assumed that this function is normalised. 
For example, the operator X of the number of quanta in the 
wave has the form

( , ) ( , ) [ ( , ) ( , ) . .]h cX X X z T X z T X z T u z T*
X= + +
@@t t t .

It follows that we need to set ( , ) ( , )z T X z TF = .
To perform quantum-mechanical averaging, we will use 

coherent states corresponding to the classical states X(z, t) 
shifted by the amplitude of the classical field [24]. Thus, 
we obtain a multimode vacuum state H| 0X , for which 
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0 | ( , ) | 0 0u z tX X XG H=t . At the same time, the quantum-
mechanical average value of the field is equal to its classical 
part, and the average number of quanta is

| ( , ) |dz X z tX

L
2

0
G H=n y .

To significantly simplify the calculations of integrals of 
form (11), we can introduce an adjoint operator [21, 27] using 
the definition

{ } { } { | } { | }F Pu F Qu P F u Q F uA A
+ = +

@ @||u t t u t t t u t t u t ,

where Fu  is the diagonal matrix with main diagonal elements 
,, ,F F F Ff b f bs s

. Then, instead of solving the operator equa-
tion (9) with a stochastic source, it is necessary to solve the 
equation for the matrix Fu :

¶
¶
t
F P F Q F *A A

= +t u t u .	 (12)

Moreover, the initial condition for it is given at t = T, but its 
values should be known starting from t = 0, because they are 
needed to calculate quantum corrections. Therefore, this 
equation must be solved in the opposite direction along t. To 
find expressions for the adjoint operator, one can use integra-
tion by parts. It is easy to obtain that P PA

=t t  with a simulta-
neous replacement of the signs of the derivatives with respect 
to z and Q QA

=-t t , and moreover, one must choose 
(0, ) ( , ) 0T L TF FX X= = . Due to a certain arbitrary choice 

of functions, this is not difficult to do. With this choice of the 
adjoint operator, if F satisfies equation (12), the condition

¶
¶ { ( , ) ( , )} 0t F z t u z t =u u

is met. It yields the expression for the measured averages:
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This gives the relation
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T

0
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Using (13) and (14), one can obtain all the expressions neces-
sary for calculating quantum fluctuations, similar to those 
obtained in [21]:

H
L
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2 2
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Here, the subscripts 1 and 2 in the integrand indicate the 
arguments z1, t1 and z2, t2, and the expressions for F  corre-
spond to normalised classical field amplitudes. For example,

( , )
| ( , ) |

( , )

d
z T

z F z T

F z T
Ff

2
=

y
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3. Integration method

In the general case, there are no analytical solutions to the 
equations for classical fields; therefore, numerical simulation 
was used in the work to calculate both the classical part of the 
field and quantum uncertainties (15). In the calculations, it is 
convenient to use the normalised coordinates Z = z/L and 

/T t Lgu= , as well as to normalise the amplitudes by W . 
Then, the equations contain dimensionless linear gain and 
absorptions: gL, gL and gsL.

Equations (2) – (5) are the transport equations 
¶ ¶ ¶ ¶( / / ) ( , ) ( , )t z U z t V z t! =  (the ‘+’ sign refers to the wave 
propagating in the positive direction, the ‘ – ’ sign refers to the 
wave propagating in the negative direction)], which are con-
veniently integrated numerically using the Courant – 
Isaacson – Rees scheme [18]:

( , ) ( , )U z t U z t Um n m n" = ,

, , /d d d dz z z t t t t zm m n n1 1 s- = - = =- - ,  s ≤ 1,

(1 ) dU U U V tm n m n m n m n1 1s s= - + +!+ . 

4. Results of calculations

In the calculations, we used the following parameters: gs = 
0.6 km–1 W–1, g = 0.055 km–1, gs = 0.046 km–1, L = 22.5 km [13]. 
With such a fibre length and moderate pump intensities not 
exceeding the threshold for the appearance of second-order 
Stokes waves, the gsP/g values of about 100 can be achieved. 
Regimes in which pump radiation is almost completely 
absorbed in fibre can also be obtained and, in addition, the 
specified fibre length corresponds to that used in the experi-
ment [13]. At shorter fibre lengths, the appearance of relax-
ation oscillations [2] requires higher pump intensities. At 
larger fibre lengths, the observed regimes are qualitatively sim-
ilar to those at L = 22.5 km. Because spontaneous Raman scat-
tering is significant only in regions where the Stokes wave 
intensities are small (i.e., at the ends of fibre), its contribution 
was modelled by illumination (with a power of 10–5 W) of the 
corresponding end faces: the left and right end faces of fibre 
were illuminated for the F wave and the B wave, respectively. It 
was verified that variations in the illumination power do not 
affect the system dynamics. It was also found that scattering of 
~10–4 km–1 does not significantly affect the dynamics and the 
impact of scattering is similar to that of illumination. 
Therefore, scattering was not taken into account. At the same 
time, the presence of reflections at the end faces of fibre is 
essential for the dynamics. First, if the pump is not completely 
absorbed along the length of fibre, then there appear a reflected 
pump wave and a corresponding gain in the counterpropagat-
ing wave. Secondly, the intensity of the Stokes wave reflected 
from the end face can exceed the illumination intensity, which 
is significant for the development of relaxation oscillations.

It was assumed that the pump field instantly turns on at 
t = 0. A pump wave propagates along the z axis. At the same 
time, a continuously amplified Stokes wave copropagates 
with the pump wave. A counterpropagating Stokes wave is 
generated in the regions reached by the pump wave. Both 
Stokes waves deplete the pump wave. The transient process 
continues for ~10 passes through the fibre.
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Because the characteristic times and spatial scales of the 
field changes in long fibres (on the order of 1 km or more) 
pumped by the light with a constant intensity at the fibre 
input lie in the ranges of microseconds and hundreds of 
meters, dispersion can be neglected.

4.1. Special case. Raman amplifier

Let us consider a simplified situation when a pump pulse and 
a pulse at the Stokes frequency are launched into a fibre of 
length L. In this case, there are no reflections at the boundar-
ies, and the boundary conditions are as follows:

(0, ) ( ), (0, ) ( )F t W t F t W ts s= = .

The equations for classical fields can be represented as
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the equations for andf fst t  have the form
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and the equations for andF Ff fs
 have the form

f
*
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As the initial conditions for (18), we choose the conditions 
( , ) ( , ), ( , )z T F z T F z TF F sf f= =

s
 and numerically deter-

mine the dependences ( , )z tF f  and ( , )z tF fs
.

Figure 1 shows the spatiotemporal dependences of the 
intensities of the pump wave and the Stokes wave, as well as the 
functions | ( / , / ) |z L tFf

2t  and | ( / , / ) |z L tFf
2t

s
, where t is the dura-

tion of the pump pulse. One can see that the appearance of the 
Stokes pulse leads to depletion of the pump, which is mani-
fested in the occurrence of a dip at the tail of the pump pulse.
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Figure 1.  (a) Pump wave and (b) Stokes wave intensities of the, as well as (c) ( / , / )| |z L tF f
2t  and (d) ( / , / )| |z L tF f

2t
s

 functions vs. time and coordi-
nate at g = 0.6 km–1 W–1, gs = 0.553 km–1 W–1, normalised pump wave and Stokes wave powers W(t/t) = sech(t/t) and Ws(t/t) = 0.1sech(t/t), g = 
0.055 km–1, gs = 0.046 km–1 and L = 22.5 km.



	 L.A. Mel’nikov, Yu.A. Mazhirina1088

Figure 2 shows the time dependences of the level of quan-
tum fluctuations of the pump wave and the Stokes wave with 
respect to the initial level of fluctuations at the input to the 
fibre under the assumption that the fields at the input are in a 
coherent state. One can see that at distances corresponding to 
a transit time of 0.2t, the Stokes wave has a level of quantum 
fluctuations of about 3 dB less than at the input. With a fur-
ther increase in transit time, the level of fluctuations is restored 
and continues to grow, reaching a level 3 dB higher than the 
level of initial fluctuations, at a distance corresponding to a 
transit time of 0.35t. This means that there exists an optimal 
length of the Raman amplifier. The appearance of a mini-
mum level of quantum fluctuations can be explained by the 
fact that the noise level increases in proportion to the number 
of photons. Relative fluctuations decrease with increasing 
number of photons; therefore, when the pump is depleted, the 
level of quantum fluctuations increases, which is shown in 
Fig. 2. With an increase in the number of photons in the 
Stokes wave, the relative fluctuations of the number of quanta 
decrease and then begin to increase due to an increase in the 
level of fluctuations of the pump wave. These results are in 
qualitative agreement with the results of [28], in which quan-
tum fluctuations were calculated by other methods.

5. Conclusions

We have presented the results of numerical simulation of the 
nonlinear dynamics of the light in Raman fiber lasers and dis-
tinctive features of the manifestation of instabilities of Raman 
lasing. The use of techniques used in the theory of transfer in 
numerical simulation has made it possible to propose and 
implement an effective numerical algorithm that allows one 
to trace the dynamics of a laser system at large times, corre-
sponding to tens and hundreds of thousands of passes through 
the cavity.
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Figure 2.  Time dependences of the level of fluctuations á Dn2 ñ/á n ñ of 
( 1 ) pump and ( 2 ) Stokes waves.




