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Abstract.  A set of deep neural network models for rheumatoid 
arthritis (RA) classification using a highway network, a convolu-
tional neural network and a residual network is proposed based on 
the data of diffuse optical tomography (DOT) utilising near-infra-
red light, which ensures early diagnosis of pathophysiological 
changes resulting from inflammation. A numerical model of the fin-
ger is used to generate images to overcome the inherent problem of 
insufficient clinical DOT images available. The proposed deep neu-
ral network models are applied to automatically classify simulated 
DOT images of inflamed and non-inflamed joints and transfer lear
ning is also used to improve the performance of the classification. 
The results demonstrate that all three deep neural network methods 
improve the diagnostic accuracy as compared to the widely applied 
support vector machine (SVM), especially for high inter-subject 
variability databases. In cases of distinct modelled severity of dis-
ease, residual network achieved the highest accuracy (> 99 %), and 
both of highway and convolutional neural networks reached 99 %, 
respectively. However, as the severity of the modelled disease is 
reduced, this accuracy is reduced to 75.2 % for residual networks. 
The results indicate that transfer learning can improve the perfor-
mance of deep neural network methods on RA classification from 
DOT data and highlight their potential as a computer aided tool in 
DOT diagnostic systems.

Keywords: rheumatoid arthritis diagnosis, diffuse optical tomogra-
phy, finger joints, deep neural networks, medical image classifica-
tion.

1. Introduction

Rheumatoid arthritis (RA) is a chronic condition associated 
with significant pain and disability [1], which is the most com-
mon type of inflammatory arthritis and affects between 0.5 % 
to 1 % of the world’s population [2]. Joints most commonly 
affected by RA are the wrists, metatarsophalangeal and prox-
imal interphalangeal (PIP) joints [1]. The first three to four 

months of symptoms provide a window of therapeutic oppor-
tunity [3], during which aggressive therapy leads to improved 
long-term patient outcome [4]. Development of medical imag-
ing technologies in recent decades has allowed a more accurate 
detection of inflammation in patients with RA at early stages 
of disease progression, for example, with ultrasound [5, 6], or 
magnetic resonance imaging (MRI) [7, 8]; however, the need 
for experienced staff to operate both these modalities has led 
to high cost and limited availability. Therefore, the need for 
low cost, non-invasive and objective evaluation methodolo-
gies which can be operated by non-clinical staff is desired, 
making diffuse optical tomography (DOT) an attractive pro
position for diagnosis and longitudinal monitoring of patients 
with RA.

DOT is an imaging technique where near-infrared (NIR) 
light is injected and detected at multiple locations on the 
boundary of biological tissue, to allow recovery of the under-
lying distribution of optical properties [9]. Recently, DOT 
systems have shown progress in many applications, including 
breast cancer detection, functional brain imaging and arthritic 
joint diagnosis [10 – 12]. Hielscher et al. [12] presented a single 
wavelength, frequency-domain DOT system capable of recov-
ering absorption and scattering maps in finger joints. From 
analysis of basic statistical features from these images, both 
sensitivities and specificities of up to 85 % were demonstrated 
for classifying inflamed joints of RA patients. Montejo et al. 
[13] further introduced approaches for extracting more com-
plex heuristic features from DOT images of PIP joints and a 
method for using such derived features to diagnose RA. They 
also presented a comprehensive analysis of techniques for 
classification of these extracted features from the DOT image, 
including k-nearest-neighbours, linear and quadratic discrim-
inant analysis, self-organising maps, and support vector 
machine (SVM) [14]. More recently, Lighter et al. [15] intro-
duced a multispectral continuous wave (CW) DOT system to 
detect pathophysiological changes in inflamed RA finger 
joints. Recovered maps of oxygen saturation, total haemoglo-
bin, water and scattering amplitude in healthy subjects were 
reported, with significantly greater inter-subject variability as 
compared to the variability observed within fingers from the 
same subject. Previously, studies of RA classification using 
single wavelength CW data have shown a weak discrimina-
tion using statistical features as extracted by Montejo et al. 
[12], where it has been shown that the accuracy of classifica-
tion with CW-DOT images was not high (64 % sensitivity and 
55 % specificity). The challenge faced is to discriminate 
between inflamed and non-inflamed cases, which can be due 
to noise, high inter-subject variability [15] and the ill-posed 
and underdetermined nature of the imaging as associated with 
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single wavelength CW-DOT. Basic statistical features the
refore are not sufficient for discriminating inflamed and non-
inflamed conditions [12], and hence new methods for fea-
ture extraction from DOT RA images to allow disease classi-
fication are necessary, which is the topic of this presented 
work.

In recent years, deep neural network (DNN) approaches 
[16, 17], deep belief networks [18], and recurrent neural net-
works [19 – 22] have been successfully applied to the fields of 
image classification, speech recognition, visual tracking [23] 
and natural language processing [24]. In the domain of image 
classification, AlexNet [16], VGGNet [25] and GoogLeNet 
[26] are a few representative examples. These DNN models 
have shown great accomplishments in image classification 
tasks; however, they are all trained on a large set of labelled 
data. Although the medical image datasets are usually much 
smaller than the typical databases widely used, attempts have 
been made in the medical imaging domain as inspired by the 
success of DNN models in image classification. For example, 
to obtain a better representation of input data, patch-based 
deep neural network models have been proposed for breast 
cancer classification [27, 28], in which an AlexNet-based vari-
ant was used to extract the features and classify breast cancer 
histopathological images as either benign or malignant.

Tajbakhsh et al. [29] has investigated the performance of 
convolutional neural network (CNN) models in four distinct 
medical imaging applications, within three specialties (radiol-
ogy, cardiology, and gastroenterology) involving transfer 
learning for classification, detection and segmentation. They 
found that a pre-trained CNN with adequate fine-tuning out-
performed or performed as well as a CNN trained from 
scratch, and fine-tuned CNNs were more robust to the size of 
training sets than CNNs trained from scratch.

While there exist some efforts for computer-aided diagno-
sis of RA and some DNN models for medical image classifi-
cation, little or no exploration into the application of DNN 
models with DOT images for diagnosis of RA has been car-
ried out. In this work, we apply three deep learning methods, 
i.e. highway network [30], residual networks (ResNet) [31] 
and CNN, to achieve RA classification by using DOT images. 
Specifically, the basic concepts and the architectures of the 
three deep learning methods are presented. Also, the advan-
tages and limitations of different methods are evaluated and 
analysed. The novelty and main contributions of this work 
include three points: 1) it is the first one that adopts and cus-
tomises the deep neural networks to achieve the classification 
of RA using DOT images; 2) it applies the transfer learning to 
improve the performance of the models when the clinical data 
are not sufficient; and 3) to overcome the shortage of clinical 
images at the first stage of DOT imaging system, we propose 
a numerical model of the finger exhibiting inflammation to 
generate simulation data for the research on RA classifica-
tion. This work has verified the possibility of adopting deep 
neural networks to achieve RA classification by using DOT 
images. The promising performance of the proposed methods 
demonstrates these deep models can contribute a lot to devel-
oping computer-aided systems for the clinical diagnosis of 
RA.

The remainder of this paper is organised as follows: Sec
tion 2 introduces the basic concepts of three deep neural net-
works and presents the developed models for RA classifi
cation. Section 3 introduces the utilised DOT images, while 
results are reported in Section 4 and Section 5 concludes this 
paper.

2. Methods

In this section, we introduce the concepts of three DNN app
roaches, which have achieved great success in image recog
nition, each of which shows distinctive advantages and lim
itations in different image classification tasks. Furthermore, 
the design of the DNN models based on these three approa
ches for RA classification and the details of how to use trans-
fer learning to improve the classification accuracy are pre-
sented.

2.1. Highway network

Highway networks [30], inspired by long short-term memory 
(LSTM) recurrent neural networks, are methods for con-
structing feedforward networks with hundreds or thousands 
of layers. They are trained directly using stochastic gradient 
descent with a variety of activation functions and learned gat-
ing mechanisms to regulate information flow. The gating mech
anisms allow neural networks to have paths for information 
to follow across different layers on information highways. 
The building block of the highway network is shown in Fig. 1. 
For a highway network, we define ai (l ) as the output of the ith 
unit (i Î {1, 2,..., N}) in the lth hidden layer (l Î {1, 2,..., L – 2}) 
such that,

ai (l ) = H(netHi    (l ))T(netTi  (l )) + ai (l – 1)C(netCi (l )),	 (1)

where N is the layer size, L is the total layer of a highway 
based model, H is a nonlinear transform followed by a non-
linear activation function, T is the transform gate and C is the 
carry gate. The two gates express how much of the output is 
produced by transforming the input and carrying it, respec-
tively; netHi    (l ), netTi  (l ) and netCi (l ) are the total inputs of the 
nonlinear transform (H), transform gate (T) and carry gate 
(C) of the ith unit in the lth layer. They can compute as fol-
lows:

a(l – 1) a(l )

wH(l – 1)

wT(l – 1)

wC(l – 1)

a(l – 1)

H

T

C

Figure 1.  Building block of the highway network: H is a nonlinear 
transform and two additional nonlinear transforms ( T and C ) corre-
sponding to the transform gate and the carry gate, respectively, and a(l ) 
is the output of the lth layer.
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netHi    (l ) = å[wH
ij  (l – 1)aj (l – 1)],	 (2)

netTi  (l ) = å[wT
ij  (l – 1)aj (l – 1)],	 (3)

netCi (l ) = å[wC
ij  (l – 1)aj (l – 1)].	 (4)

A customised highway-based feedforward network for RA 
classification is applied in this work, which consists of L – 2 
hidden layers (highway layers), an input layer and an output 
layer. The architecture of the proposed network for RA is 
shown in Fig. 2. Given a training set as X = {x(1), x(2),..., x(M )} 
and a testing image set as T = {t(1), t(2),..., t(K)}, we use the 
training set to optimise the weights of the model and then use 
the trained weights to test the samples in the testing set.

In this work, the network parameters are experimentally 
set as L = 20 and N = 150. An input layer and a single softmax 
(n-normalised vector which is normalised into a probability 
distribution) output layer are included, meaning there are 18 
highway layers in the proposed model. The training and the 
testing procedure is shown in Algorithm 1.

2.2. Convolutional neural networks (CNNs)

CNNs [32] are biologically-inspired variants of fully connec
ted networks, designed to recognise visual patterns directly 
from 2D raw images. This is achieved with local connections 
and tied weights followed by some form of pooling which 
results in translation and shift of invariant features. CNNs are 
easier to train since they have much fewer parameters than 
fully connected networks with the same number of hidden 
units. Furthermore, images have a strong 2D local structure: 
Pixels that are spatially nearby are highly correlated, whilst 
the topology of the input is entirely ignored in fully connected 
networks. The extraction of local features is well considered 
by CNNs by restricting the receptive fields of hidden units to 
be local.

A CNN consists of a number of convolutional and pool-
ing layers optionally followed by fully connected layers, with 
the convolutional layer consisting of several learnable filters 
for feature extraction. Each filter is convolved with the input 
data volume resulting in a 2D feature map that gives the res
ponses of that filter at each spatial position. All of the feature 
maps are then stacked along the depth dimension to produce 
the output volume of the convolutional layer. An example of 
how a filter in a convolutional layer is used to process the 
input is shown in Fig. 3a. The pooling layer is used to reduce 
the spatial size of the representation, thus reduce the number 
of parameters and computation in the network. It operates 
independently on every depth slice of the input and resizes 
this slice spatially, using the MAX (for maximum) or AVG 
(for average) operation. An example of a pooling operation is 
shown in Fig. 3b. The fully connected layer consists of neu-
rons that have full connections to all activations in the previ-
ous layer and output activations computed with a matrix mul-
tiplication followed by a bias offset.

Algorithm 1. The training and testing procedure of the highway network 
for our RA classification.

Input: 

Training data set: X = {x(1), x(2),..., x(M)}.

Testing dataset: T = {t(1), t(2),..., t(K )}.

Iteration number: It.

 

Output: 

Prediction for each testing image: P = {p(1), p(2),..., p(K )}.

 

// Initialisation 

1. Initialise {w(l )T, w(l )H, w(l )C}
( )
i
L
1
2

=
-
, wi and wo.

 

// Highway network training 

2. For each t Î [1, It] do

3. Reshape each training image into a vector. 

4. Do forward propagation for training images. 

5. Update {w(l )T, w(l )H, w(l )C}
( )
i
L
1
2

=
-
, wi and wo.

6. End for. 

7. Reshape each testing image into a vector. 

8. Do forward propagation for the testing image to compute the 

output of the network: P = {p(1), p(2),..., p(K )}.

9. Return the predictions of the testing images:  

P = {p(1), p(2),..., p(K )}.

... ...

a(l – 1) a(l )

a(l ) a(l  – 1) a(l  + 1) a(L – 1)a(l )

Input layer Output layer

wi wo

wH(l – 1)

wT(l – 1)

wC(l – 1)

wH(l )

wT(l )

wC(l )

H H

T

C

T

C

Figure 2.  Proposed architecture of the highway network for RA classification. A highway based feedforward network is stacked with 18 hidden 
layers and 150 units in each layer; wi is the weight of the input layer and wo denotes the weight of the output layer.
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A customised convolutional network [32] is employed to 
achieve the RA classification. The architecture of the custom-
ised convolutional network is shown in Fig. 4. It comprises of 
nine layers, including the input layer. The second layer is a 
convolutional layer consisting of 32 filters with a size of 3 ́  3 
to produce 32 feature maps. The third layer is the same as the 
second layer, followed by a max pooling layer (size of 2 ́  2, 

stride of 2) for the fourth layer which down samples every 
depth slice by 2 along both width and height, discarding 75 % 
of the activations. The fifth and the sixth layers are both con-
volutional layers, consisting of 64 filters with the filter size of 
3 ́  3 to produce 64 feature maps. The seventh layer is a max-
pooling layer with the same setting as the fourth layer. The 
last two layers are both fully connected layers with 512 and 2 
output units, respectively. The activation function of all the 
convolutional layers and the seventh layer is a function of the 
rectified linear units (ReLu) [33], and the activation function 
of the last layer is a softmax function. When an image is loaded 
into this CNN, it will classify the input image as one of two 
classes, i. e. either inflamed or non-inflamed. The training and 
the testing procedure of CNN is shown in Algorithm 2.

2.3. Residual network (ResNet)

ResNet [31] adopts residual learning to address the degra-
dation problem that the accuracy gets saturated and then 
degrades rapidly if the depth of a network increases. 
Instead of aiming that each few stacked layers directly fit a 
desired underlying mapping, residual learning explicitly 
allows these layers to fit a residual map instead. Although 
both forms are able to approximate the desired functions 
with the universal approximation theorem [34], the learn-
ing in residual mapping is much easier if the desired func-
tion is closer to an identity mapping than to a zero map-
ping. As introduced in [31], if the added layers can be con-
structed as identity mappings, a deeper model should have 
a training error no greater than its shallower counterpart. 
From this point of view, the residual learning allows the 
very deep networks to potentially avoid the degradation 
problem, and hence has achieved state-of-the-art perfor-
mance on a number of visual tasks [31].

The basic building block of ResNet is shown in Fig. 5, 
from which we can see that the input x is firstly transformed 
by a residual mapping with two layers, then the sum of the input 
and the result of the residual mapping is taken as the output. 
Formally, the residual building block can be defined as

x11

y11 = f (w11x11 + w12x12 + w21x21 + w22x22)

y12 = f (w11x12 + w12x13 + w21x22 + w22x23)

y33 = f (w11x33 + w12x34 + w21x43 + w22x44)

...

x11 x12 w11 w12

w21 w22

x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43

y11 y12 ...

... ... ...

... ... y33

x44

Input Filter

Output

a

...

Input

Output

Pooling

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

y11 y12

y21 y22

max(x11,x12,x21,x22)
mean(x11,x12,x21,x22)

max(x33,x34,x43,x44)
mean(x33,x34,x43,x44)

{

{

y11 = 

y22 = 

b

Figure 3.  Example of ( a ) a convolutional operation and ( b ) a pooling 
operation: f is the activation function.

Algorithm 2. The training and testing procedure of the CNN for our 
RA classification.

Input: 

Training dataset: X = {x(1), x(2),..., x(M)}.

Testing dataset: T = {t(1), t(2),..., t(K )}.

Iteration number: It.

 

Output: 

Prediction for each testing image: P = {p(1), p(2),..., p(K )}.

 

// Initialisation 

1. Initialise the weights of filters and the fully-connected layers. 

 

// Training the CNN 

2. For each t Î [1, It] do

3. Do forward propagation for training images. 

4. Update the weights in all the filters and fully connected layers. 

5. End for. 

6. Do forward propagation for testing image to compute the output of 

the network: P = {p(1), p(2),..., p(K )}.

7. Return the predictions of the testing images:  

P = {p(1), p(2),..., p(K )}.

Image 3´3 convolution
32 filters

3´3 convolution
32 filters

3´3 convolution
64 filters

3´3 convolution
64 filters

Maximal pooling

Maximal pooling fc 512 fc 2

Figure 4.  Architecture of the convolutional neural networks for RA 
classification. The max-pooling operator has a size of 2 ́  2, and fc 512 
and fc 2 layers denote fully connected layers with 512 output units and 
2 output units, respectively.
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y = F (x) + x,	 (5)

where x and y are the input and output vectors of the layers 
considered, and the function F (x) denotes the residual map-
ping. As there are two layers in Fig. 5, the calculation of the 
residual mapping is referred to F (x) = w(2)s(w(1)x) in which 
s denotes the function of the rectified linear units (ReLu) [33], 
w(1) and w(2) are the weight matrices of the first and the sec-
ond layers, and the biases are omitted for simplifying nota-
tions. Finally, the second nonlinear mapping s is conducted 
on the addition y to be the output of the building block.

As can be seen the dimensions of x and F  must be equal 
in Eqn (5). If this is not the case, a linear projection P can be 
performed on x to match the dimension as

y = F (x) + Px.	 (6)

Furthermore, the above formulations are about fully connec
ted layers for simplicity; they are also applicable to convolu-
tional layers.

In our work, by stacking the residual learning building 
blocks, a deep residual network can be constructed to extract 
the discriminative features from the raw images. The architec-

ture of ResNet for our task is shown in Fig. 6. Specifically, 
inspired by the philosophy of VGGnets, ResNet is constru
cted with convolutional layers that mostly have 3 ́  3 filters 
and following two simple design rules: 1) for the same output 
feature map size, the layers have the same number of filters; 
and 2) if the feature map size is halved, the number of filters is 
doubled to preserve the time complexity per layer. The down 
sampling is performed directly by convolutional layers that 
have a stride of 2. The network ends with a global average 
pooling layer and a g-way fully connected layer with softmax, 
where g denotes the number of image classes in the visual task 
to classify the image into either inflamed or non-inflamed. 
The training and the testing procedure of ResNet is shown in 
Algorithm 3.

2.4. Transfer learning

In the machine learning domain, transfer learning is the abil-
ity of a system to recognise and apply knowledge and skills 
learned in previous tasks to new tasks. It explores how models 
would learn from one task and apply these learning skills to 
other similar task. In recent decades, researchers have applied 

Weight layer

Weight layer

Input: x

Output: F (x) + x

ReLu

ReLu

F (x)

Figure 5.  Building block of ResNet [31]. The operation inside the dash 
box represents the residual mapping process.
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Figure 6.  Architecture of the residual network with 20 layers designed for RA classification. The dotted shortcuts increase dimensions. The input 
image data flow through a number of residual network blocks, then are operated with an average pooling ( pool size of 2 ́  2 ) and fully connected 
to the output layer with softmax activation function.

Algorithm 3. The training and testing procedure of ResNet for our RA 
classification.

Input: 

Training dataset: X = {x(1), x(2),..., x(M)}.

Testing dataset: T = {t(1), t(2),..., t(K )}.

Iteration number: It.

 

Output: 

Prediction for each testing image: P = {p(1), p(2),..., p(K )}.

 

// Initialisation 

1. Initialise the weights of filters and the fully connected layers. 

 

// Training ResNet 

2. For each t Î [1, It] do

3. Do forward propagation for training images. 

4. Update the weights in all the filters and fully connected layers. 

5. End for. 

6. Do forward propagation for testing image to compute the 

output of the network: P = {p(1), p(2),..., p(K )}.

7. Return the predictions of the testing images:  

P = {p(1), p(2),..., p(K )}.
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techniques for transfer learning in text classification [35 – 37], 
face recognition [38, 39], speech recognition [40, 41] and rein-
forcement learning [42].

In medical diagnostic tasks, obtaining medical image sam-
ples is expensive and time consuming, especially when accu-
rate ground truth labels for images are required. Generating 
simulated images which are similar to the clinical data and 
using transfer learning may be a good way to improve the per
formance of a deep learning model. To do so, simulation data 
can be generated and used to pre-train the DNNs, i. e., high-
way, ResNet and CNN and the network parameters can be 
fine-tuned with real-world clinical data. If the generated ima
ges and the real-world clinical images share some similar fea-
tures, the DNNs are potentially able to apply the knowledge 
learned from the simulation data to improve their perfor-
mance on real-world clinical data.

2.5. Comparing with traditional machine learning algorithms

There are many traditional machine learning algorithms that 
have been used in the medical image classification. For instance, 
support vector machine (SVM) [43], decision tree (DT) [44] and 
random forest classifier (RFC) [45]. SVM constructs a hyper-
plane in high-dimensional space to separate different classes. 
The core idea of SVM is to find a maximum marginal hyper-
plane that divides the data samples into correct classes. DT is a 
non-parametric supervised learning method. Its goal is to create 
a model that predicts the value of a target variable by learning 
simple decision rules inferred from the data features. RFC is a 
meta-estimator that fits several decision tree classifiers on vari-
ous sub-samples of the dataset and uses averaging to improve the 
predictive accuracy and control over-fitting. However, these tra-
ditional methods require human expertise for feature extraction 
to achieve high accuracy on medical image classification tasks. 
Alternatively, deep neural networks can achieve great power and 
flexibility automatically by learning to represent the medical 
images as a nested hierarchy of concepts.

3. Clinical finger images

Between March and August in 2018, a controlled pilot study 
was carried out, in which patients were recruited through the 
outpatient clinic in the University of Birmingham Research 

Laboratories, Queen Elizabeth Hospital, Birmingham. Ethical 
approval was obtained as part of the University Hospitals 
Birmingham “Prediction of outcomes in patients with inflam-
matory arthritis” (RRK4678) research study, with all subjects 
providing written informed consent prior to participating. 
Specifications and acquisition protocols of the multispectral, 
non-contact DOT system have been outlined previously [15].

2nd PIP 3rd PIP 4th PIP 2nd PIP 3rd PIP 4th PIP
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Figure 7.  Central transverse slices of reconstructed images of pathophysiologic parameters from three PIP joints of two healthy participants.
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In brief, patients placed their hands on the platform of the sys
tem, which collected optical transmission images of the finger 
using an air-cooled, charged couple device camera, whilst broad-
band, point source light was injected into the opposing side of the 
joint. Images were collected at 14 source positions in a straight line 
along the sagittal direction of the finger, repeated at five wave-
lengths (650, 710, 730, 830, 930 nm) by spectral decoupling using a 
filter wheel preceding the camera objective lens. 3D tomographic 
maps of oxygen saturation (StO2), total haemoglobin (tHb), water 
concentration (H2O), scatter power (SP) and scatter amplitude 
(SA) were recovered in finger joints using NIRFAST [46].

In this work, data are collected from 13 healthy and RA 
volunteers. Imaged joints included the II, III, IV and for some 
later participants the V PIP joints, on each hand, giving a total 
of 88 finger joints. A typical example of healthy PIP joint for 
the transverse is displayed in Fig. 7, where the 2D slices were 
taken along the central transverse plane of the joint, which 
shows the reconstructed image maps corresponding to the cli
nically relevant parameters StO2, tHb, SP, SA and H2O. In an 
inflamed joint of a patient with RA, known pathophysiologi-
cal changes include lower StO2 (hypoxia) [47] and higher tHb 
(synovial angiogenesis) [48], as compared to healthy joints. 
Therefore, StO2 and tHb images were used to diagnose the 
inflamed and non-inflamed fingers in this work.

It is challenging to classify the images of StO2 and tHb 
since there exists a high inter subject variability, which is con-
sistent with the results as published by Lighter et al. [15]. To 
illustrate the variance in these imaged features for the healthy 
and diseased subject data, plots of the recovered StO2 and 
tHb distributions for all of the imaged 88 fingers are shown in 
Fig. 8. High inter-subject variability will lead to weak discri
mination of inflamed and non-inflamed subjects and Fig. 9 
shows an example of normalised diseased StO2 and tHb ima
ges to illustrate this weak discrimination. All the images sho
wn in Fig. 9 are a centred 2D slice from each PIP joints, and 
self-normalised by the maximum value for each image.

4. Simulation experiments

In an inflamed joint the multispectral CW DOT-based imag-
ing system outlined above aims to recover optical parameters 
as spatial maps for each finger which are the input of the out-
lined classification methods. The process of collecting labelled 
clinical data is time-consuming; therefore, to investigate the 
behaviour of the DNN models a set of data from simulated 
models have been generated, which includes both the healthy 
and diseased finger samples from the experiment. Additiona
lly, the experiments on simulated data were specifically con-
ducted to investigate the behaviour of the DNN algorithms 
since the discrimination level of the simulated data can be 
controlled and exact classification is known. Without this meth
odology, DNN will not be possible due to the shortage and 
otherwise unavailable data.

4.1. Simulation finger joint image

In order to generate a set of simulated data for this work, a 
two-dimensional model of a finger joint, as shown in Fig. 10, 
was created consisting of skin, bone, joint and muscle, with 
the estimates of StO2, tHb and H2O of different finger tissues 
based on literature values [49, 50] as shown in Table 1. These 
values were assigned to a finite element model mesh with 2747 
nodes and 5280 linear tetrahedral elements. An array of 8 
sources below the finger joint and 8 detectors on the top of the 
finger joint, evenly spaced with 2.86 mm separation, was ass
igned to this model. For each model, a set of value for both 
StO2 and tHb has been defined for the joint space, depending 
on whether the tissue was healthy (non-inflamed) or diseased 
(inflamed) to reflect these distinctions. Data was generated 
for each simulated finger model, with 1 % Gaussian noise 
added from which images of StO2 and tHb were reconstructed 
using an iterative Levenberg – Marquardt procedure. All sim-
ulations were carried out using open source finite element met
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Figure 9.  Clinical images to illustrate weak discrimination. The first two columns are normalised healthy StO2 and tHb images, each row of them 
sampled from the same finger, and the last two columns are normalised diseased StO2 and tHb images, each row of them sampled from the same 
finger as well.
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hod package (NIRFAST) for modelling light propagation [46]. 
The procedure of generating an StO2 image and a tHb image 
is shown in Algorithm 4.

4.2. Simulation database

Four different simulation databases were generated for the 
experiment, each of which contained 800 simulated healthy 
fingers and 800 diseased fingers with two images (StO2 image 
and tHb image) for each. Therefore, overall 1600 StO2 images 

Algorithm 4. The procedure of generating StO2 and tHb images.

Input: 

Value of StO2.

Value of  tHb. 

Noise level. 

 

Output: 

One StO2 image and one tHb image.

 

// For each healthy finger to generate an image: 

1. Generate a physically realistic model (2D) based on the 

StO2 value, tHb value and other parameters in Table 1.

2. Add the Gaussian noise percentage to the model. 

3. Reconstruct the image from the model. 

4. Return one StO2 image and one tHb image.
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Figure 11.  Four data distributions of physiological parameters assigned to the joint space denoted by Def for simulation: ( 1 ) healthy and ( 2 ) dis-
eased fingers; x is the overlapping coefficient.

Table  1.  Parameters for different finger tissues.

Finger tissue StO2 tHb/mM L–1 Water

Skin 0.75 0.06 0.50

Muscle 0.80 0.10 0.50

Bone 0.80 0.08 0.40

Joint Def Def 0.50

Note: StO2 and water are measured in fractions. For the joint, StO2 and 
tHb were defined based on the levels of hypoxia and angiogenesis bet
ween healthy and diseased joints, denoted by Def. For different finger 
tissue, SA was calculated based on the data from [51].
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Figure 10.  Two dimensional model of a finger.
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and 1600 tHb images are included in each simulation data-
base. Figure 11 shows the distribution of StO2 and tHb values 
for each simulation database, from which images of StO2 and 
tHb are reconstructed. All the reconstructed images are nor-
malised by

zi = (xi – minP)/(maxP – minP),

where zi is the normalised image from the image xi, and maxP 
and minP is the max and min values of the database P. The 
four simulation databases were controlled at different levels 
of statistical discrimination by overlapping coefficient; the 
overlapping coefficient is defined as the measure of agreement 
between probability distributions and point estimation of the 
overlap of two normal densities. The greater the value of the 
overlapping coefficient, the greater the inseparability of the 
healthy finger and the diseased finger. The mean value of 
StO2 for healthy joints is higher than that for diseased joints, 
and the mean value of tHb for healthy joints is lower than 
that for diseased joints. Database 1 (hdls) and database 2 
(hdhs) have the same mean value of StO2 and tHb, while 
database 1 has a lower standard deviation than database 2. 
Database 3 (ldls) and database 4 (ldhs) have the same mean 
value of StO2 and tHb, while database 3 has lower standard 
deviation than data database 4. Compared to database 1 
and database 2, the difference between the mean value of 
healthy values and diseased values are diminished for data-
base 3 and database 4. In addition, the four simulation data-
bases are controlled at different levels of difficulty by the 
overlapping coefficient (a higher overlapping coefficient will 
lead to a weaker discrimination) as it is not clear at this stage 
how different these populations (i. e. healthy and diseased) 
will be in large studies and the efficacious of the DNN mod-
els for different population distributions need to be investi-
gated. The details of the settings for the four databases are 
listed in Table 2 and shown in Fig. 11.

There are two challenges for the classification task based 
on these four defined simulation databases.

1. Weak discrimination: All four different databases are 
based on overlapping tissue parameters, which leads to weak 

discrimination between healthy and diseased fingers. The det
ails have been shown in Fig. 11, for example, where there is 
37 % overlap for StO2 and 40 % overlap for tHb values bet
ween healthy and diseased joints. This implies that there exists 
StO2 and tHb images exhibiting the same distribution but they 
belong to the different classes (healthy and diseased).

2. Noise: All of the simulations have 1 % Gaussian noise 
which is used to reconstruct images to allow for a more realis-
tic experimental scenario, with an example shown in Fig. 12. 
It is evident that there will exist image artefacts in both heal
thy and diseased joints, which will lead to weak discrimina-
tion between healthy and diseased fingers.

4.3. Results and analysis

In the first experiment, a new image is generated for each fin-
ger by simply connecting (adding) the StO2 and tHb image 
which are treated as a new ‘optical index’ parameter. The inf
luence on RA classification is then investigated by using dif-
ferent images, such as only the StO2 or tHb or StO2 + tHb 
images as inputs of the neural networks. The results are pre-
sented as the mean accuracy and the standard deviation of 
5-fold cross-validation, with Table 3 showing the results of 
highway, ResNet, CNN, as well as the results using SVM [43], 
DT [44] and RFC [45], which are taken as the baseline (a 
multi-class linear SVM method with the one-versus-all strat-

Table  2.  Settings for the four databases.

Database
Healthy 
joints  
(StO2)

Diseased 
joints  
(StO2)

Healthy 
joints  
(tHb)

Diseased 
joints  
(tHb)

1 (hdls) 0.70 ± 0.10 0.40 ± 0.10 0.04 ± 0.01 0.08 ± 0.01

2 (hdhs) 0.70 ± 0.17 0.40 ± 0.17 0.04 ± 0.023 0.08 ± 0.023

3 (ldls) 0.60 ± 0.10 0.50 ± 0.10 0.05 ± 0.01 0.07 ± 0.01

4 (ldhs) 0.60 ± 0.17 0.50 ± 0.17 0.05 ± 0.023 0.07 ± 0.023

Notе: hd and ld denote a high difference and a low difference between 
mean values for healthy and diseased joints ( both StO2 and tHb mean val
ues ); hs and ls denote a high standard deviation and a low standard dev
iation for healthy and diseased joints ( both StO2 and tHb mean values).

1.0

0.8

0.6

0.4

0.2

0

N
o

rm
al

is
ed

 S
tO

2,
 t

H
b

Figure 12.  Example images chosen from simulation database 1 ( hdls ) to demonstrate the image artefacts. The first two columns are normalised 
healthy StO2 and tHb images, each row of them sampled from the same finger, and the last two columns are normalised diseased StO2 and tHb im-
ages, each row of them sampled from the same finger as well.
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egy of the penalty parameter of 1.0 and a RFC method with 
10 trees are tested).

The results show that all four methods perform well on 
the images from database 1. Specifically, they all achieve a 
mean classification accuracy higher than 95 %. ResNet 
obtains the highest mean accuracy of 98.6 % on StO2 images, 
and it also obtains the highest mean accuracy of 98.9 % on 
tHb images, and highway and ResNet performs best on 
StO2 + tHb images with the mean accuracy of 99.3 %. For 
all six algorithms, as the overlap of the simulated healthy 
and diseased classes increased, the performance of all 
methods decrease, especially for the SVM and DT meth-
ods. In terms of algorithms, the ResNet method outper-
forms the other three methods on the images from all four 
different databases. The performance gap between ResNet 
and the other three methods increases along with the 
increase in the overlap between the samples of the healthy 
and diseased classes. The three deep neural network mod-
els, highway, ResNet and CNN, obtain the best results on 
StO2 + tHb images, and better results on tHb images as 
compared to StO2 images.

In the second experiment, the impact of transfer learning 
is investigated using the four databases which have different 
overlaps for the deep neural networks. Specifically, the weight 
parameters trained on the database 1 are used to initialise the 

parameters of the networks for classification tasks on the 
other three databases (databases 2 – 4).

The 5-fold cross validation method is employed to obtain 
the statistical results, as summarised in Table 4. The results 
show that all the three deep neural network models have a 
better performance when use is made of transfer learning. For 
example, ResNet obtains the highest mean accuracy of 90.4 % 
on StO2 images on database 2, and it is also performs best on 
tHb and StO2 + tHb images with the mean accuracy of 90.1 % 
and 92.8 %. It is shown that transfer learning can help imp
rove the performance on DOT images. This highlights the 
benefit of using transfer learning through different simulation 
for the prediction of class when there is a lack of experimental 
data.

5. Conclusions

Achieving a high diagnostic accuracy of inflammation in rheu-
matoid arthritis does not only rely on the separate-ability of 
data (low variation within each class and a large discrepancy 
between the two classes), but also on an accurate and objec-
tive classification algorithm. In this paper, a method for gen-
erating simulated healthy and diseased DOT images of finger 
joints are presented, with three DNN models for classifica-
tion. The goal is then to classify each PIP joint as an inflamed 
or non-inflamed with RA based on the analysis of the image 
features which are extracted by DNN models automatically. 
Specifically, three state-of-the-art DNN models have been 
investigated, including highway networks, CNN and ResNet, 
to extract discriminative features from DOT images to imp
rove the diagnostic accuracy. To help understand the classifi-
cation algorithms, four databases are defined which are con-
trolled in terms of overlapping coefficients for StO2 and tHb. 
The DNN models were then investigated on their efficacy to 
improve the diagnostic accuracy in studies including patients 
with arthritis.

It was first demonstrated through patient and healthy human 
subject data that the images recovered for StO2 and tHb from 
inflamed and non-inflamed finger joints demonstrate a high 
inter-subject variability. The underlying challenge is that (1) 
the healthy and diseased finger DOT images share similar 
patterns which would lead to weak discrimination of healthy 
and diseased fingers, (2) the degree of the overlap between 

Table  4.  Comparison of the mean accuracy (%) and standard deviation 
with all the three deep learning methods with transfer learning.

Database Input image Highway ResNet CNN

2

StO2 88.6 ± 1.0 90.4 ± 1.5 88.1 ± 2.3

tHb 88.6 ± 1.1 90.1 ± 1.7 88.5 ± 1.3

StO2 + tHb 91.9 ± 1.4† 92.8 ± 0.9† 90.7 ± 1.5

3

StO2 82.6 ± 1.1 88.1 ± 3.4 81.8 ± 2.6

tHb 87.9 ± 1.9 88.6 ± 1.4 86.5 ± 1.4

StO2 + tHb 87.6 ± 1.5 90.3 ± 2.5 87.8 ± 1.8

4

StO2 69.3 ± 1.4 74.8 ± 2.5† 69.4 ± 2.9

tHb 73.2 ± 1.7† 75.9 ± 4.8 74.1 ± 2.1†

StO2 + tHb 73.9 ± 1.4 77.3 ± 4.5 75.8 ± 1.9†

Note: The ‘†’ indicates that the accuracy of the method is significantly 
different from the accuracy in Table 3 at a 0.05 level by the Wilcoxon’s 
rank sum test.

Table  3.  Comparison of the mean accuracy (%) and standard deviation with all the three deep learning methods and SVM, DT and RFC.

Database Input image Highway ResNet CNN SVM DT RFC

1

StO2 97.6 ± 1.8 98.6 ± 0.6 95.3 ± 1.9† 96.8 ± 1.4† 90.6 ± 1.5† 92.9 ± 1.8†

tHb 98.8 ± 0.5 98.9 ± 0.6 98.7 ± 0.8 97.9 ± 0.7 96.3 ± 1.0† 97.3 ± 1.4

StO2 + tHb 99.3 ± 0.5 99.3 ± 0.4 99.1 ± 0.7 98.0 ± 0.8† 97.1 ± 0.8† 98.3 ± 1.0

2

StO2 88.3 ± 1.8 88.8 ± 1.9 87.8 ± 2.3 79.1 ± 10.7† 79.3 ± 2.6† 84.6 ± 2.7

tHb 88.4 ± 0.8 89.1 ± 1.8 88.4 ± 1.6 72.9 ± 17.9† 77.7 ± 1.7† 83.3 ± 1.3†

StO2 + tHb 89.4 ± 1.6 90.2 ± 1.4 89.0 ± 1.6 79.4 ± 14.4† 80.6 ± 1.4† 87.3 ± 1.6†

3

StO2 80.1 ± 6.0† 86.3 ± 3.2 78.8 ± 5.1† 77.3 ± 5.5† 66.9 ± 3.3† 72.2 ± 4.1†

tHb 86.3 ± 1.8 87.0 ± 4.4 86.3 ± 2.0 83.4 ± 1.2 75.9 ± 2.7† 82.1 ± 1.8

StO2 + tHb 86.8 ± 2.0 88.4 ± 2.0 86.6 ± 1.9 75.9 ± 13.7† 77.1 ± 1.4† 82.1 ± 2.0†

4

StO2 68.6 ± 2.6 70.1 ± 3.3 68.6 ± 2.7 54.2 ± 3.6† 57.4 ± 2.7† 61.6 ± 1.4†

tHb 70.5 ± 1.5 73.8 ± 5.3 70.4 ± 2.7 59.8 ± 5.1† 57.6 ± 2.8† 64.8 ± 2.1†

StO2 + tHb 71.4 ± 2.7 75.2 ± 8.8 71.6 ± 1.7 55.0 ± 8.6† 57.1 ± 3.6† 65.1 ± 1.7†

Note: The ‘†’ indicates that the accuracy of the method is significantly different from the accuracy of ResNet at a 0.05 level by the Wilcoxon’s rank 
sum test.
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different subjects are unknown in a clinical setting, and (3) 
not enough clinical data exists for a detailed evaluation of 
DNN based algorithms. Therefore, a model of a finger joint 
has been utilised to generate databases which have allowed the 
investigation of the influence of weak discrimination when 
using computer aided diagnostic methods.

Some researchers have used the traditional methods, e. g., 
SVM, random forest regressor for recognition of the spatial 
frequency domain imaging data [52, 53]. Also, the SVM met
hod is applied to understand finger DOT images [14]. In this 
work, we aim to apply deep learning methods to help diag-
nose finger DOT images. Furthermore, raw DOT images are 
hard to interpret and so we developed the simulated model to 
control the difficulty levels of the RA classification tasks to 
investigate the capability of the tested methods. It helps us to 
understand what algorithms work better than others in differ-
ent conditions. In the simulation experiments, it shows that 
all the three DNN models, SVM and RFC are performing 
better on StO2 + tHb images as compared to StO2 images or 
tHb images individually. It indicates that both the measure-
ments of oxygen saturation (to indicate hypoxia) and blood 
content (vascularity) can provide discrimination information, 
and combining them would give better performance for det
ecting RA. Although using other recoverable measurements 
such as water content and scattering should be subject of fut
ure studies, the experimental results also show that all the 
three DNN models outperform the traditional machine learn-
ing methods (SVM, DT and RFC). With the increase of the 
overlap in the distribution of StO2 and tHb, the accuracy of 
the DNN models become higher than traditional machine 
learning methods which indicates that the DNN based mod-
els are more robust than the traditional machine learning met
hods. Lastly, transfer learning has been used to improve the 
classification accuracy with the results showing that transfer 
learning can improve classification accuracy, which should 
be used in future with clinical data to demonstrate direct 
applicability.

To conclude, the classification results of three different 
DNN models have been presented, demonstrating their capa-
bility for the diagnosis of inflamed and non-inflamed finger 
joints for the detection of rheumatoid arthritis. The analysis 
of the presented results indicate that DNN models are robust 
with direct applications in DOT even when the recovered 
optical maps show large overlap between two different func-
tional states and are typically less differentiated for different 
classes. These results underscore the potential for DNN mod-
els to be used as a computer aided tool in DOT diagnostic 
systems, and warrants larger prospective trials to conclusively 
demonstrate the ultimate clinical utility of this approach.

Acknowledgements.  This work is supported by the National 
Natural Science Foundation of China (Grant Nos 61772353 
and 61332002), the Foundation for Youth Science and Tech
nology Innovation Research Team of Sichuan Province (Grant 
No. 2016TD0018), the Fok Ying Tung Education Foundation 
(Grant No. 151068) and by EPSRC through a studentship 
from the Sci-Phy-4-Health Centre for Doctoral Training (EP/
L016346/1).

References
  1.	 Majithia V., Geraci S.A. Am. J. Med., 120 (11), 936 (2007).

  2.	 Helmick C.G., Felson D.T., Lawrence R.C., Gabriel S., Hirsch R., 
Kwoh C.K., Liang M.H., Kremers H.M., Mayes M.D., Merkel P.A., 
Pillemer S.R., Reveille J.D., Stone J.H., Workgrp N.A.D. Arthritis 
Rheum., 58 (1), 15 (2008).

  3.	 Nell V.P.K., Machold K.P., Eberl G., Stamm T.A., Uffmann M., 
Smolen J.S. Rheumatology, 43 (7), 906 (2004).

  4.	 Landewe R.B.M., Boers M., Verhoeven A.C., Westhovens R., van 
de Laar M.A.F.J., Markusse H.M., van Denderen J.C., Westedt M.L., 
Peeters A.J., Dijkmans B.A.C., Jacobs P., Boonen A., van der 
Heijde D.M.F.M., van der Linden S. Arthritis Rheum., 46 (2), 347 
(2002).

  5.	 Scheel A.K., Hermann K.G.A., Ohrndorf S., Werner C., Schirmer C., 
Detert J., Bollow M., Hamm B., Muller G.A., Burmester G.R., 
Backhaus M. Ann. Rheum. Dis., 65 (5), 595 (2006).

  6.	 Wakefield R.J., O'Connor P.J., Conaghan P.G., McGonagle D., 
Hensor E.M.A., Gibbon W.W., Brown C., Emery P. Arthrit. Rheum. 
Arthr., 57 (7), 1158 (2007).

  7.	 Klarlund M., Ostergaard M., Jensen K.E., Madsen J.L., Skjodt H., 
Lorenzen I., Grp T. Ann. Rheum. Dis., 59 (7), 521 (2000).

  8.	 Haavardsholm E.A., Boyesen P., Ostergaard M., Schildvold A., 
Kvien T.K. Ann. Rheum. Dis., 67 (6), 794 (2008).

  9.	 Durduran T., Choe R., Baker W.B., Yodh A.G. Rep. Prog. Phys., 
73 (7), 076701 (2010).

10.	 Tromberg B.J., Pogue B.W., Paulsen K.D., Yodh A.G., Boas D.A.,  
Cerussi A.E. Med. Phys., 35 (6), 2443 (2008).

11.	 Giacometti P., Diamond S.G. Bioanalysis Adv. Mat., 3, 57 (2013).
12.	 Hielscher A.H., Kim H.K., Montejo L.D., Blaschke S., Netz U.J., 

Zwaka P.A., Illing G., Muller G.A., Beuthan J. IEEE Trans. Med. 
Imaging, 30 (10), 1725 (2011).

13.	 Montejo L.D., Jia J.F., Kim H.K., Netz U.J., Blaschke S., Muller G.A., 
Hielscher A.H. J. Biomed. Opt., 18 (7), 076001 (2013).

14.	 Montejo L.D., Jia J.F., Kim H.K., Netz U.J., Blaschke S., Muller G.A., 
Hielscher A.H. J. Biomed. Opt., 18 (7), 076002 (2013).

15.	 Lighter D., Hughes J., Styles I., Filer A., Dehghani H. Biomed. Opt. 
Express, 9 (4), 1445 (2018).

16.	 Krizhevsky A., Sutskever I., Hinton G.E. Commun. ACM, 60 (6), 84 
(2017).

17.	 Chen Y.Y., Zhang L., Yi Z. Inform. Sci., 424, 27 (2018).
18.	 Mohamed A.R., Dahl G.E., Hinton G. IEEE Trans. Audio Speech, 

20 (1), 14 (2012).
19.	 Zhang L., Yi Z. Chaos Soliton Fract., 33 (3), 979 (2007).
20.	 Zhang L., Yi Z. IEEE Trans. Neural Networks, 22 (7), 1021 

(2011).
21.	 Zhang L., Yi Z., Amari S. IEEE Trans. Neur. Net. Lear., 29 (11), 

5242 (2018).
22.	 Zhang L., Yi Z., Yu J.L. IEEE Trans. Neural Networks, 19 (1), 158 

(2008).
23.	 Wang L.T., Zhang L., Yi Z. IEEE Trans Cybernetics, 47 (10), 3172 

(2017).
24.	 LeCun Y., Bengio Y., Hinton G. Nature, 521 (7553), 436 (2015).
25.	 Simonyan K., Zisserman A. arXiv preprint arXiv:1409.1556 

(2014).
26.	 Szegedy C., Liu W., Jia Y.Q., Sermanet P., Reed S., Anguelov D., 

Erhan D., Vanhoucke V., Rabinovich A. Proc. IEEE CVPR 
(Boston, 2015) pp 1 – 9.

27.	 Spanhol F.A., Oliveira L.S., Petitjean C., Heutte L. Proc. IEEE 
IJCNN (Vancouver, 2016) pp 2560 – 2567.

28.	 Spanhol F.A., Cavalin P.R., Oliveira L.S., Petitjean C., Heutte L. 
Proc. 2017 IEEE Int. Conf. Trans. Syst. Man. Cyb. (Banff, 2017) 
p. 1868.

29.	 Tajbakhsh N., Shin J.Y., Gurudu S.R., Hurst R.T., Kendall C.B., 
Gotway M.B., Liang J.M. IEEE Trans. Med. Imaging, 35 (5), 
1299 (2016).

30.	 Srivastava R.K., Greff K., Schmidhuber J. arXiv preprint 
arXiv:1505.00387 (2015).

31.	 He K.M., Zhang X.Y., Ren S.Q., Sun J. Proc. IEEE CVPR (Las 
Vegas, 2016) 770 – 778.

32.	 Lecun Y., Bottou L., Bengio Y., Haffner P. Proc. IEEE, 86 (11), 
2278 (1998).

33.	 Nair V., Hinton G.E. Proc. 27th Int. Conf. on Machine Learning 
(ICML-10) (Haifa, 2010) pp 807 – 814.

34.	 Hornik K. Neural Networks, 4 (2), 251 (1991).



	 Yangqin Feng, D. Lighter, Lei Zhang, Yan Wang, H. Dehghani32

35.	 Quattoni A., Collins M., Darrell T. Proc. IEEE CVPR (Anchorage, 
2008) pp 2300–2307.

36.	 Oquab M., Bottou L., Laptev I., Sivic J. Proc. IEEE CVPR 
(Columbus, 2014) pp 1717 – 1724.

37.	 Zhu Y., Chen Y., Lu Z., Pan S.J., Xue G.R., Yu Y., Yang Q. Proc. 
25th Conf. on Artificial Intelligence (San Francisco, 2011) p. 4057.

38.	 Ahmed A., Yu K., Xu W., Gong Y.H., Xing E. Lect. Notes Comput. 
Sci., 5304, 69 (2008).

39.	 Cao X.D., Wipf D., Wen F., Duan G.Q., Sun J. Proc. IEEE ICCV 
(Sydney, 2013) pp 3208 – 3215.

40.	 Deng J., Zhang Z.X., Marchi E., Schuller B. Proc. IEEE ACII 
(Geneva, 2013) pp 511 – 516.

41.	 Huang J.T., Li J.Y., Yu D., Deng L., Gong Y.F. Proc. IEEE ICA 
SSP (Vancouver, 2013) pp 7304 – 7308.

42.	 Taylor M.E., Stone P. J. Mach. Learn. Res., 10, 1633 (2009).
43.	 Vapnik V.N., Vapnik V. Statistical Learning Theory (New York: 

Wiley, 1998).
44.	 Safavian S.R., Landgrebe D. IEEE Trans. Syst. Man Cyb., 21 (3), 

660 (1991).
45.	 Breiman L. Mach. Learn., 45 (1), 5 (2001).
46.	 Dehghani H., Eames M.E., Yalavarthy P.K., Davis S.C., Srinivasan S., 

Carpenter C.M., Pogue B.W., Paulsen K.D. Commun. Numer. Meth. 
Eng., 25 (6), 711 (2009).

47.	 Ng C.T., Biniecka M., Kennedy A., McCormick J., FitzGerald O., 
Bresnihan B., Buggy D., Taylor C.T., O'Sullivan J., Fearon U., 
Veale D.J. Ann. Rheum. Dis., 69 (7), 1389 (2010).

48.	 Falchuk K.H., Goetzl E.J., Kulka J.P. Am. J. Med., 49 (2), 223 
(1970).

49.	 Ash H.E., Unsworth A. Proc. Instn. Mech Engrs, 211H (5), 377 
(1997).

50.	 Yuan Z., Zhang Q.Z., Sobel E.S., Jiang H.B. Biomed. Opt. Express, 
1 (1), 74 (2010).

51.	 Klose A.D., Hielscher A.H. Med. Phys., 26 (8), 1698 (1999).
52.	 Rowland R., Ponticorvo A., Baldado M., Kennedy G.T., 

Burmeister D.M., Christy R.J., Bernal N.P., Durkin A.J.  
J. Biomed. Opt., 24 (5), 056007 (2019).

53.	 Panigrahi S., Gioux S. J. Biomed. Opt., 24 (7), 071606 (2019).


