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Abstract.  A method for realising a universal system of quantum 
gates based on asynchronous excitations of two-level atoms in opti-
cal cavities is proposed. The entangling operator of the CSign type 
is implemented without beam splitters, approximately, using the 
incommensurability of the Rabi oscillation periods in a cavity with 
single and double excitations.

Keywords: quantum gate, two-level atom, optical cavity, asynchro-
nous excitation. 

1. Introduction

Quantum computing is based on the invasion of quantum 
theory into the field of complex processes, where the opera-
tion of its fundamental laws is not yet studied. Therefore, the 
design of the simplest schemes of such computations, in which 
quantum laws would manifest themselves as clearly as possi-
ble, is an urgent problem. The dark area here is decoherence, 
which arises from the interaction of charges and the field, the 
quanta of which strongly couple the quantum computer to 
the environment. This makes it necessary to account for pho-
tons and control them, or even explicitly use photons in quan-
tum protocols. 

Photons as information carriers make it possible to use 
linear optical devices to realise one-qubit gates, but the design 
of entangling operations is difficult to implement, since pho-
tons do not directly interact with each other. There is a popu-
lar KLM scheme [1], where measurements are used as an 
ersatz interaction and its improved version [2, 3] with telepor-
tation, which significantly increases efficiency, as well as a 
number of options of this scheme for atoms (see, e.g., [4]). 
However, the use of classical probabilistic schemes in experi-
ment imposes increased requirements on the efficiency, at 
least theoretically possible, of quantum gates on single parti-
cles. The use of classical probability obscures the main ques-
tion for a quantum computer: how does coherence manifest 
itself in complex systems of different particles? 

The most ab initio methods are more suitable here, the 
main of which implies considering an optical cavity with sev-
eral atoms, whose interaction with a single-mode field is 

clearly described ab initio (for the capabilities of this type of 
devices, see, e.g., [5]). For example, the CNOT gate was 
implemented using the external (vibrational) degrees of free-
dom of an atom [6]. However, the essence of quantum com-
puting is not in the coherent behaviour of an individual qubit, 
but in scaling a Feynman quantum processor that implements 
the theoretical capabilities of unitary dynamics in the entire 
Hilbert state space and gives, e.g., Grover’s algorithm [7] on 
the same hardware as Shor’s algorithm [8]. Exploiting exter-
nal factors to demonstrate the dynamics of the interaction of 
individual atoms and the field is useful exactly for individual 
atoms, but the inevitably introduced noises will certainly 
affect scaling. 

In this regard, schemes for implementing gates using min-
imal means, which are well described ab initio, are of value. 
One of such schemes was proposed by H. Azuma in Ref. [9], 
where a qubit is constructed from a pair of optical paths 
where a single photon is running. In this precisely reproduc-
ible scheme, the interaction of photons with atoms is used 
only for the entangling transformation CSign: | x, y ñ ®
(–1)xy | x, y ñ, which requires two optical cavities; two beam 
splitters and phase shifters are also needed. 

In this paper, we propose a simplified version of the 
Azuma scheme, in which only one cavity is used, and the 
beam splitters are replaced by a time shift for the photons 
entering it. We will have asynchronous states of atoms with 
Rabi oscillations as logical qubits. This scheme can be modi-
fied for purely photonic carriers with a time shift that deter-
mines the value of the qubit. However, atoms as carriers of 
information have the advantage of being much easier to con-
trol, as well as the photons emitted by atoms. The advantage 
of the proposed scheme is its simplicity. The drawback is sim-
ilar to that of [9], namely, the influence of the triggering time 
error of the Pockels cell or its analogue, which must be made 
significantly less than the period of the atom Rabi oscillation 
in the cavity. 

For technical reasons, we will implement the coCSign 
gate: ,x y| , ( 1) |x y ( )x y1" -

5 , which changes sign for a single 
state | 0, 1 ñ and is kindred to the CSign gate proposed in [9]. 
There is no difference, since CSign = ( ) ( )coCSignx xx xs s , 
where sx is the Pauli matrix, and single-qubit gates are realised 
by linear optical devices 

2. Calculation of phase shifts 

The key element of the considered scheme is an optical cavity 
with one two-level atom having an energy gap ћw between the 
ground, | 0 ñ, and excited, | 1 ñ, energy levels, where w coincides 
with the frequency of a photon of a certain mode, confined in 
the cavity. The atom-field coupling constant g is assumed to 
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be small, g/(ћw)<<  1 (in practice, this ratio should not exceed 
10–3), for the possibility of using RWA approximation, in 
which the Jaynes – Cummings Hamiltonian of the atom-field 
system has the form [10]

HJC = H0 + Hint,

, ( )H a a H g a aint0 ' 'w ws s s s= + = +
@ @ @ @ ,	 (1)

where a and a @  are the operators of annihilation and creation 
of a photon; and s and s@  are the operators of deexcitation 
and excitation of the atom. Let us write the basic states of the 
field and atom in the form | n ñph| m ñat, where n = 0, 1, 2, ... is 
the number of photons in the cavity, and m = 0, 1 is the num-
ber of atomic excitations. We will consider n = 0, 1, 2. During 
the execution of the coCSign gate, the Hamiltonian changes, 
namely, Hint is complemented with the term Hjump = 
( )a a a ai j j in +

@ @  (n being the parameter describing the photon 
transition intensity), which determines the transfer of a pho-
ton from the ith cavity to the jth one and back. However, the 
energy H0 of independent atoms and the field will not change 
(the Jaynes – Cummings – Hubbard model, JCH). Therefore, 
the phase gain associated with H0 is common to all states and 
can be disregarded. We will calculate the phase gain relative 
to either the identity operator I or sx, since all the operations 
considered below are reduced to either the first case, or to the 
second one with a phase change, so that the phase gain when 
using, e.g., the operator  – isx is –p/2. 

Let / , /g g 21 2' 'p pt t= =  be periods of Rabi oscilla-
tions for the total energies ћw and 2ћw, respectively. Operators  
Ut = exp[–(i/ћ)Ht], induced by evolution at times of impor-
tance, will depend on the total energy of the cavity. If it is 
equal to ћw, then in the basis | f0 ñ = 1 0 0 1| | , | | |ph at ph at1f =  
we have 

Ut1/2 = –isx, Ut1 = –I, U2t1 = I.	 (2)

For the total energy of the cavity 2ћw, we obtain similar rela-
tions with t1 replaced with t2. 

When a photon moves from the jth cavity to the ith one 
and back, which is achieved by the simultaneous switching on 
of Pockels cells or similar devices in these cavities, the Hjump 
addition to the Hint interaction is implemented, which, in the 
absence of atoms in the cavities, leads to exactly the same 
dynamics as Rabi oscillations, but with a period tjump = pћ /n. 
Let us assume that n >>  g, then it is possible to move a photon 
from cavity to cavity so that the atom does not affect this 
process at all, and the phase gain can be calculated using for-
mulas analogous to Eqn (2). As noted in Ref. [9], this condi-
tion is difficult to fulfill in the experiment; however, there are 
reasons to consider it as a technical obstacle. If the above con-
dition is fulfilled, the phase gain with the operator sx applied 
to the photons in two cavities will be –p /2, as for a half of the 
Rabi oscillation. 

Due to the incommensurability of the Rabi oscillation 
periods t1 and t2 we can choose such natural numbers n1 and 
n2, for which the approximate equality

2 2n n
22 2 1 1
1.t t t

+ 	 (3)

is valid with high precision. This equality will be the basis for 
the nonlinear phase shift required for the coCSing implemen-
tation. 

3. Implementation of coCSign 

The qubit state | 0 ñ is realised in our model as the state of the 
optical cavity | 0 ñph| 1 ñat, and the qubit state | 1 ñ as | 1 ñph| 0 ñat. 
Thus, the state | 01 ñ, whose phase is to be inverted, has the 
form | 01 ñph| 10 ñat, where the first photon qubit belongs to the 
x cavity and the second one to the y cavity. Note that after the 
time t1/2, the states 0 and 1 change places as the phase gain 
becomes equal to –p /2. 

The sequence of operations implementing coCSign is 
shown in Fig. 1, and the cavities involved are shown in Fig. 2. 
First, we organise a short exchange of photons between the 
auxiliary cavity and cavity x, then, with a delay of t1/2, a sim-
ilar exchange with the cavity y. Then, after the time 2n2t2, we 
again organise a short exchange of photons between the aux-
iliary cavity and cavity x, then, after time t1/2, a similar 
exchange with the cavity y. From our choice of the photon 
exchange times, it follows that at these moments of time in the 
cavities participating in the operations there will be either one 
photon or none; therefore, the switching on of Pockels cells 
during a small time interval dt = pћ /(2n) << t1 will lead pre-
cisely to the transfer of photons.

Figure 1 shows that the evolution of the state incorporates 
three long time intervals (interaction of atoms and photons in 
cavities) and four short intervals (photon jumps from cavity 
to cavity). Let us consider in detail the phase change for the 
state | 00 ñ.

Interval 1 (short). Nothing happens because there is no 
photon in the cavity x and in the auxiliary cavity.

Interval 2 (long). Joint evolution of two cavities, each of 
which contains an atom and a photon; phase gain is  –p /2 – 
p /2.

dt dt dt dt

1 2 3 4 5 6 7

t1/2 t1/2
2n2t2

x

y

Figure 1.  The sequence of operations for the implementation of the 
coCSign gate on asynchronous atomic excitations in optical cavities, 
divided into seven sections in time. Photon transition time dt = tjump /2 
<<  t1(2). After the triggering of the shown circuit, it is necessary to wait 
for a time t1/2.

Delay by t1/2 

x y

Figure 2.  Three cavities, x, y and an auxiliary one, in the implementa-
tion of the coCSign gate.
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Interval 3 (short). The photon in the cavity y is transferred 
into the auxiliary cavity; phase gain is –p /2. 

Interval 4 (long). Evolution of two cavities with energy ћw 
in each of them; phase gain is –p /2 – p /2. 

Interval 5 (short). Nothing happens because there is no 
photon in the involved cavities. 

Interval 6 (long). Joint evolution of two cavities, each con-
taining an atom and a photon; phase gain is –p /2 – p /2. 

Interval 7 (short). The photon from the auxiliary cavity is 
transferred to the cavity y; phase gain –p /2. 

As a result, the total phase gain is –8p /2, which is equiva-
lent to zero. In this case, the state | 00 ñ turns into | 11 ñ; after 
waiting for time t1/2 it returns into | 00 ñ with a phase gain p, 
but this gain is common for all initial states and, therefore, 
can be ignored. 

Further, following the same scheme, we consider transi-
tion | 01 ñ ® | 10 ñ with phase gain –p , which is due to the fulfill-
ment of Eqn (3), transition | 11 ñ ® | 00 ñ with phase gain 0, and 
transition | 10 ñ ® | 01 ñ with phase gain 0. After waiting for a 
time t1/2, all states take their initial form with a common 
phase factor p. 

4. Physical limitations of the coCSign gate 
quality 

The advantage of the considered coCSign gate scheme is that, 
unlike, e.g., the KLM scheme [1], it is fully implemented using 
the standard JCH model and, in the ideal case, does not 
require any operations beyond the limits of the model valid-
ity. From calculations presented in Ref. [11] it follows that to 
achieve a satisfactory error in such entangling gates based on 
nonlinearity in cavities, it is sufficient to take the number of 
incommensurate periods n1 and n2, not exceeding a few tens, 
which corresponds to the number of observed Rabi oscilla-
tions in optical cavities. 

However, the JCH scheme itself has limitations imposed 
on its parameters, so that an arbitrary choice of their values 
can go beyond the limits of the scheme applicability. In [9], 
one of such limitations, which follows from experiments, is 
noted, namely, the limitation of the Pockels cell response rate. 
However, this limitation is not the only one. 

The coefficient of the atom – field coupling in the cavity 
has the form 

d/ ( )g V E x'w= ,	 (4)

where V is the effective volume of the cavity; d is the dipole 
moment of the transition between the ground and excited 
states; E(x) = sin(px/L) is the factor depending on the spatial 
location of the atom in the cavity; and L is the length of the 
cavity. For reliable confinement of a photon in the cavity, the 
cavity length should be L = ll/2, where l is the photon wave-
length; in experiments, l is taken to be 1 in order to reduce the 
effective volume of the cavity, which makes it possible to 
obtain a few tens of Rabi oscillations (see, e.g., [5]). 

We cannot choose the parameter n of the photon transi-
tion intensity too large because of the energy – time uncer-
tainty relation for photons, since a very short time interval 
during which a photon passes from cavity to cavity automati-
cally means a large uncertainty of its energy. This leads to a 
rapid loss of the photon, whose wavelength begins to differ 
greatly from the doubled cavity length. 

Taking into account that the photon frequency in experi-
ments with the Rb atom is approximately 1010 s–1, and assum-

ing the upper boundary value of the possible frequency 
uncertainty to be 109 s–1 (the real value is much less), from 
the uncertainty relation dwdt » 1 we find the lower estimate 
for the photon transition time window dt » 10–9 s. For the 
period of the Rabi oscillation t » 10–6 s, we obtain the 
inequality 10–9  s G  dt <<   10–6  s for the time window, which 
means the possibility of a single gate triggering with an error 
exceeding 10–3. Such error, unfortunately, does not allow 
building a Feynman quantum computer based on this proces-
sor, if we consider its only option. 

Note that the above inequalities are only a matter of 
discussion and by no means can serve to estimate the real 
error of the gate under consideration, since the uncertainty 
relation operates in conjunction with other factors of deco-
herence including the inaccuracy of Eqn (3) and the limited 
photon lifetime in the cavity. For example, we could 
increase the possible range of dt variation by decreasing 
the period of the Rabi oscillation via the reduction of the 
spatial location parameter E(x), but this will lead to a 
decrease in the photon lifetime in the cavity, which is no 
less fatal for the gate. 

A similar difficulty occurs in all photon gate designs. The 
way out is to use many processors, i.e., to combine the quan-
tum effect with the effect of classical parallelisation. A similar 
technique is used in other known schemes of photonic com-
puters, e.g., in the already mentioned KLM scheme. 

In the literature, there are no higher-accuracy estimates of 
the combined action of three factors: errors in determining 
the time n2t2, errors due to the limitation of the photon trans-
fer time window, and limitation of the number of oscillations. 
The proposed scheme is the simplest known one, and all its 
disadvantages are inherent in other similar schemes. Its suit-
ability for quantum computing can be evaluated only in 
experiment, and the considered scheme is one of the best can-
didates for implementation. 

5. Conclusions 

We have proposed a coCSign entanglement gate scheme 
based on asynchronous atomic excitations in optical cavities, 
which is fully described by the JCH model and is much sim-
pler than the known schemes of this type. It is shown that 
beam splitters, as in the closest known analogue, the Azuma 
gate, can be replaced with time shifts using only one auxiliary 
cavity instead of two. To implement the proposed gate, an 
additional optical cavity and organisation of the transfer of 
photons from cavity to cavity in a time window are required, 
on the possible values of which two types of restrictions are 
imposed. The first type is associated with the technical 
response rate of the Pockels cell, and the second one with the 
fundamental energy-time uncertainty relation. Similar limita-
tions exist in other photonic computer designs. 

The simplicity of the considered scheme in comparison 
with the known schemes makes it a probable candidate for 
experimental implementation. The quantum computing effect 
of such a scheme can be achieved by using classical parallel-
ism as an addition to the traditional Feynman gate scheme on 
individual processors. 

The main advantage of the proposed scheme for imple-
menting gates is its simplicity and the possibility of accurately 
following the theoretical JCH model, which, despite the dif-
ficulties mentioned above, inspires optimism in relation to 
scalability and comparison of the theory of a quantum com-
puter with experiments on a large number of qubits. 
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