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Abstract.  A model of an all-plasmonic switch based on a graphene 
waveguide integrated with a stub nanoresonator loaded with a 
quantum dot is considered. Using the full-wave numerical simula-
tion, it is shown that successive on/off switching of the control sur-
face plasmon – polariton wave at the input of the waveguide leads to 
a change in the phase of the signal plasmon – polariton wave in the 
nanoresonator by p. This causes reversible switching of the device 
operation regime – from almost complete blocking to stable trans-
mission of the signal plasmon – polariton wave through the wave-
guide. The effect is implemented at rates of ~0.5 THz for infrared 
electromagnetic waves localised in a device with a switching region 
of 40 ´ 20 nm.

Keywords: graphene waveguide, nanoresonator, quantum dot, all-
plasmonic switching.

1. Introduction 

Achievements of modern graphene technologies [1 – 3] and 
quantum nanoplasmonics [4, 5] allow expecting the practical 
implementation of fundamentally new information process-
ing devices based on transistors operating at terahertz fre-
quencies and having a size of a few nanometres. Such devices 
can be based on improved methods for controlling surface 
plasmon – polaritons (SPPs) [6 – 8] in 2D media and hybrid 
systems with high electron mobility and ultrafast nonlineari-
ties [9 – 12]. For their fabrication, graphene materials loaded 
with semiconductor nanostructures, including semiconductor 
quantum dots (QDs), can be used [13, 14]. The simplest sys-
tems are systems in which QDs are located at such a distance 
from the 2D material that the structure of the electronic levels 
of the system does not undergo hybridisation. 

The efficient interaction of QDs and the surface wave 
(QD-SPP coupling) in these systems is achieved when the 
strong coupling condition is satisfied [15, 16]. This means that 
the constant of the QD-SPP coupling exceeds the characteris-
tic time of electron scattering in graphene [17] and the time of 
change in the spontaneous relaxation rate in the system 

[16, 17], as a result of which it becomes possible to effectively 
control the amplitude – phase characteristics of the SPP by 
changing the polarisation of the QD. At the same time, even 
when the strong coupling condition is met and the ‘narrow’ 
resonances for the SPP are achieved [18], the question of the 
reversibility and the influence of the rewritable memory effect 
on the functionality of such devices remains open [19].

In this work, we present the results of a study of the inter-
action of a semiconductor core – shell QD and SPP modes 
localised on the surface of a two-layer graphene. Two steady 
states of QD polarisation have been determined upon its 
interaction with two SPPs (signal/pump) using a ladder 
scheme of transitions between energy levels in a QD, which is 
placed in a graphene stub nanoresonator. It is shown that 
turning on (off) the SPP pump leads to a change in the level 
populations, as well as nonlinear QD polarisations and, as a 
consequence, to the possibility of controlling the nonlinear 
phase shift for the signal SPP. In particular, when the change 
of the signal SPP phase by p is induced by the pumping SPP, 
it is possible to implement reversible transitions from con-
structive interference in a stub nanoresonator to destructive 
one. The characteristic rate of such switching is ~0.5 THz for 
a 40 ́  20 nm nanoresonator. The discussed effects can be used 
to implement ultrafast plasmonic transistors and to design 
sensors and detectors with an ‘instantaneous’ response based 
on them. 

2. Mathematical model of SPP propagation 
through a graphene waveguide integrated  
with a stub nanoresonator 

Let us consider a model of a graphene waveguide coupled to 
a stub nanoresonator containing a core – shell QD (Fig. 1). In 
the absence of the resonator, the propagation constant b for 
SPP localised on two graphene sheets obeys the dispersion 
equation [3]
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and the interband conductivity 
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where k is the Boltzmann constant; T is the temperature; mc is 
the chemical potential; 1/t is the scattering rate; s0 = pe2/(2h);  
and e is the electron charge. 

To simulate the operation of the device, we choose the 
effective graphene thickness Dg = 2 nm (which corresponds to 
the discretisation step in the finite difference time domain 
(FDTD) method [20] and significantly differs from the true 
graphene sheet thickness equal to ~0.33 nm); other parame-
ters are as follows: mc = 0.6 eV, t = 0.9 ps, ed = 2.022, signal 
field wavelength l2 = 8.04 mm, and pump wavelength l1 = 
2.56 mm. For the chosen parameters, the intraband conduc-
tivity exceeds the interband conductivity for the pump field 
and dominates over it for the signal field (Fig. 2). At the same 
time, to take into account the contribution of the interband 
conductivity in the FDTD simulation, its approximation by 
the Padé formula is required: 
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the coefficients in which are determined by fitting with the 
reference frequencies wp1, wp2, and wp3 [21]. As a result of this 
approximation, the coefficients a0 = 2.346 ´ 10–8, a1 = – 2.112 
´ 10–20, a2 = 9.589 ´ 10–39 ,b1 = – 6.745 ´ 10–19, and b2 = 1.007 
´ 10–31 were obtained near l2 using three reference wave-
lengths: lp1 = 7.2 mm, lp2 = 8.2 mm and lp3 = 9.2 mm (Fig. 2a). 

To estimate the type of coupling between SPP and two-
layer graphene the following parameter is used:

Re
ic kd
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The case d > x corresponds to the weak coupling of SPP with 
graphene, in which the dispersion curves for two-layer gra-
phene have a hyperbolic shape and almost coincide with the 
dispersion curves for single-layer graphene. On the contrary, 

the case d < x corresponds to a strong SPP-graphene cou-
pling, for which the dispersion curves differ significantly from 
their monolayer graphene analogues [22]. To satisfy the 
strong coupling condition between SPP and graphene for the 
signal field with l2, we choose d = 20 nm and, taking into 
account the fact that for the used graphene x = 71 nm, we 
obtain a very good localisation of the plasmon – polariton 
mode at the characteristic wavelength lSPP+ = 135.5 nm. Note 
that Eqn (1) has two solutions, b+ and b– (Fig. 2b), corre-
sponding to symmetric and antisymmetric modes [22], but we 
will consider only b+, since in this case the electromagnetic 
field is strongly localised in the gap between graphene sheets. 
This will be required in the future to satisfy the strong cou-
pling condition between the SPP and the QD placed in the 
gap between the sheets. Then, determining the effective refrac-
tive index of the graphene waveguide in the form 

/in n n keff
IR

0b= + =! !eff!eff! , it is possible to estimate for SPP 
both the wavelength lSPP+ = 2p/Re b+ and its characteristic 
propagation lengthLSPP =+

r  /(4 )Imneff0 pl +  in a waveguide 
consisting of two parallel graphene sheets. In particular, the 
parameter LSPP+r  will be 3.7 mm for the signal SPP. 

The stub resonators considered below are commonly used 
to filter the electromagnetic signal at fixed wavelengths [23]. 
In this work, it is proposed to insert an active centre (QD or 
quantum well, dye molecule, and other chromophores) into 
such a resonator, which can be used for efficient control of the 
phase shift of the signal field interacting with this centre. This 
can be achieved by changing the polarisations of the corre-
sponding transitions between energy levels of the centre under 
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Figure 1.  (Colour online) (a) Model of a stub nanoresonator based on 
two structured graphene sheets and a core – shell QD placed in a dielec-
tric and (b) scheme of the ladder-type interaction of a SPP and a core--
shell InAs/ZnS QD with a radius of aQD = 9.9 nm; the working energy 
levels in the QD are located in the valence band (E|1ñ = – 4.55 eV) and in 
the conduction band (E|2ñ = – 4.063 eV and E|3ñ = – 3.908 eV). 
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Figure 2.  (a) Frequency dependences of the total (sg) and interband 
(sinter) conductance with the results of the Padé approximation (circles); 
(b) dependences of the propagation constants b± and the interaction 
length Lc = 2p/(2 2 | b– – b+|) for the signal SPP versus the distance d 
between graphene sheets. The inset shows the dependence of the effec-
tive refractive index on the distance d.
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the action of an additional pump field, which can be described 
using the density matrix formalism and based on the analysis 
of the stability of nonlinear systems [24]. 

To begin with, we choose the height D of the stub resona-
tor so that the signal field is tuned to the interference maxi-
mum and is not blocked by the resonator. This is possible if 
the ‘plasmon’ path of the signal SPP in the resonator DS = 
(2 )D d neff

R
+ + will be equal to an integer number of wave-

lengths, i.e., ll0, where l = 0, 1, 2, . . . . Then, choosing l = 1, we 
obtain D = 40 nm (the resonator width is 24 nm), and the 
signal field will freely propagate through the region of the 
waveguide containing the nanoresonator (Fig. 3c). 

3. Reversible switching of the transmittance  
of the signal SPP mode through  
a graphene waveguide integrated  
with a QD-loaded nanoresonator 

We assume that in the nanoresonator loaded with a core – shell 
InAs/ZnS QD, the C-scheme of plasmon – exciton interaction 
of the ladder type with two SPP modes is realised (see Fig. 
1b). The control pump field E1 (determined by the set of com-
ponents, i.e., E1

2
= E Ex y1

2
1
2

+ ) is tuned to the interband transi-
tion 1S(h) ® 1S(e), and the signal field E2 is tuned to the intra-
band transition 1S(e) ® 1P(e). The resonance frequencies of 

the corresponding transitions can be obtained in the form (see 
Fig. 1)
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where Eg = 0.35 eV is the band gap width; me = 0.026m0 and 
mh = 0.41m0 are the effective masses of an electron and a hole 
in InAs, respectively; m0 is the mass of a free electron; and 
k1; 1 = 4.439 and k1; 0 = p are the roots of the Bessel function. 
According to expression (3b), to implement resonant interac-
tions with the SPP signal mode at a wavelength l2 = 8.04 mm, 
the QD radius aQD = DQD /2 should be 9.9 nm. Then, the 
pump wavelength l1 = 2.56 mm will be precisely tuned to the 
interband resonance in accordance with expression (3a) and 
the condition w12 = w1. 

The performed numerical simulation demonstrates the 
rapid decay of the pump SPP under weak coupling conditions 
(x = 6 nm) for the electromagnetic field at a wavelength l1 in 
a graphene waveguide. However, even in this case, the pump 
SPP intensity is sufficient to provide induced polarisation at 
the 1S(h) ® 1S(e) transition in the QD. 
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Figure 3.  (Colour online) Contour plots of spatial distributions of the resulting electric field component (E 2
2x + E

 2
2y)

1/2 for the signal SPP at times 
t = (a) 5 ps (with the pump on), (b) 12 ps (at the time of changing the transmission regime) and (c) 15 ps (with pump off). The white point between 
the graphene sheets is the location of the field source (magnetic dipole), the white circle inside the resonator is the location of the QD. 
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The dipole moment of the intraband transition in the QD 
can be approximately estimated as m32 = 0.433eaQD L, where 
L  = 3eZnS /(2eZnS + eInAs), eInAs = 12.3 is the permittivity of 
the QD core, and eZnS = 8.3 is the permittivity of the shell. At 
the same time, the dipole moment of the interband transition 
can be found from the expression
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where Ds = 0.43 eV is the energy of the spin – orbit splitting for 
InAs. The calculated values of the parameters for the consid-
ered InAs/ZnS QD are as follows: m32 = 5.91 ´ 10–28 C m and 
m21 = 14.9 ´ 10–29 C m. 

In the absence of field E1, the 1S(e) energy level is not 
populated; therefore, steady-state solutions for the matrix ele-
ments of transitions in the QD are equal to zero values, i.e., 

21r =r  032r =r . In this situation, the signal field freely propa-
gates through the region containing the nanoresonator 
(Fig. 3c). The instantaneous switching on of the field E1 leads 
to an increase in the oscillating polarisation at the 1S(e) ® 
1P(e) transition. In the process of subsequent evolution, the 
system stabilises with new steady-state solutions for polarisa-
tion (see Appendix):
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where W1 = g1B and W2 = g2a are the Rabi frequencies of the 
pump and the signal SPP modes; B and a are the amplitudes 
of the corresponding SPPs; D1 = iD + g21; D2 = id +  g31 + g32; 
G32 = i(d – D) + 21 32 31g g g+ + ; n21 22 11r r= -r r r ; n32 33 22r r= -r r r ;  
and 11rr , 22rr , and 33rr  are steady-state solutions for the level 
populations. It should be noted that at a subwavelength dis-
tance between QDs and graphene, the relaxation parameters 
change significantly [16, 25 – 27]. The magnitude of this 
change can be determined either exactly for a simplified case, 
when the chromophore is located near a flat conducting layer 
[26], or within the framework of an approximate calculation 
of the local density of optical states (LDOS) [28] based on the 
existing field distribution in the nanoresonator. Here we used 
the first approach and obtained an estimate of the relaxation 
parameters: g32(31) = 1.43 ´ 1012 s–1 and g21 = 5 ´ 1011 s–1 [18]. 
In fact, the accurate calculation of the spontaneous relaxation 
rate for a non-point emitter in a complex-shaped resonator is 
a fundamental problem that requires refinement and has non-
trivial solutions even for simple geometries [27]. 

To study the dynamics of a coupled SPP-QD system, we 
use a combined approach [29] based on the numerical solu-
tion of a system of differential equations for the density 
matrix (A4) and numerical simulation of the electromagnetic 
field by the FDTD method [20]. Within the framework of this 
approach, we assume that the plasmon – exciton coupling 
parameter

( ) ( )g
V
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1 2
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where the coefficient Z1(2)(r) = E1(2)(r)/E ( )
max
1 2  specifies the field 

distribution at the point with coordinate r where the QD is 

located, and Veff 1(2) = l3SPP+ 1(2) corresponds to the effective 
mode volume. Determining the values of these parameters 
directly from the simulation results for the field in the resona-
tor, we obtain g1 = 6.575 ´ 1011 s–1 and  g2 = 1.472 ´ 1012 s–1. 

The switching principle (Fig. 3) is based on controlling the 
phase shift of the signal SPP mode in the resonator by 
changing the polarisation values (4) via the pump field vari-
ation. This phase shift can be calculated using the formula 
Df = (2p/l2)Re[ nQD]DQD, where the effective refractive index 
of the QD has the form nQD » cQD /2 and is expressed through 
its susceptibility cQD = [Nm32/(e0E2)] 32rr  (N is the concentra-
tion of charge carriers). Hence, the QD permittivity induced 
by the external field can be represented as eQD = 1 + cQD. For 
the case a = 1 and B = 10, we obtain that the phase shift Df = 
p required for the transition from constructive interference to 
destructive one can be realised at frequency detunings Dm = 
– 6.156 ´ 1012 s–1 and dm = 1.697 ´ 1013 s–1 (in this case, 

0.0318Re 32r =r  and 0.0065Im 32r =r ). 
To test the device operation, we use the gating of the 

nanoresonator by the pump field at a rate of 2p /td with the 
signal field turned on. In this case, the pump field amplitude 
changes abruptly from zero to E1

max and back at the moments 
of time t = mtd (td = 10 ps, m = 0, 1, . . .), leading to oscillations 
of the permittivity QD

Re  of the quantum dot (Fig. 4b). 
Numerical simulation of the electromagnetic field was 

carried out taking into account the phase shift that changes 
following the polarisation of the signal SPP mode in the reso-
nator. As a numerical criterion for the transmission of the 
signal SPP through the waveguide, we chose the transmit-
tance, which is defined as the ratio of the integrated E2 field 
intensities from different sides of the nanoresonator, i.e., Ktr 
= (Str /Stotal) ´ 100 %, where Stotal is the integrated field inten-
sity inside the waveguide, including the resonator region, and 
Str is the integrated field intensity to the right of the resonator 
centre, but within the waveguide. Thus, at E1 = 0, the trans-
mittance Ktr is 33.3%, decreasing to 7.6 % at E1 = E1

max 
(Fig.  4). An important feature of the presented scheme is the 
achievement of ‘narrow’ plasmon resonances in the stub 
nanoresonator, which provide a high transmittance of the sig-
nal field when the pump field is off. Switching on the pump 
field leads to prolonged oscillations of the QD permittivity. 
At the same time, the transmittance decreases to a minimum 
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value almost ‘instantly’, which is associated with violation of 
the resonance conditions even with small changes in QD

Re  (Fig. 
4). The reverse transition of the system when the pump field is 
turned off occurs in a time tsw = 2 ps, which provides a switch-
ing rate of 0.5 THz. 

4. Possibilities of technical implementation  
of all-plasmonic switches with QDs

The design and fabrication of all-plasmonic switches require 
separate consideration. The fabrication of such devices is pos-
sible using the existing modern technologies, but utilising a 
combination of several different experimental techniques at 
once. In particular, dielectric substrates made of silica glass 
SiO2 or aluminium oxide Al2O3, on the surface of which 
grooves of the required size and shape are made, can be a 
basis for the production of devices [30]. The deposition of a 
graphene layer on the surface of such a structured dielectric 
can be realised using plasma-enhanced chemical vapour 
deposition (PECVD [31]). In this case, the deposition of gra-
phene occurs when two precursors are combined, which are 
hydrogen and methane at a pressure of 10 mTorr and a tem-
perature of 500 – 900 °C. However, the problem of the stabil-
ity of the graphene layer thickness when it covers such bulk 
elements as a stub nanoresonator requires an experimental 
study similar to [32] for dielectric strips. The issues of gra-
phene modification [33], including the fabrication of doped 
graphene with altered chemical potential and electron scatter-
ing rate, are also a particular problem. 

The next stage is associated with loading QDs into a 
nanoresonator, which can be performed by using the tech-
nique of micro- and nanomanipulation using the tip of an 
atomic force microscope [34]. The simplified technology con-
sists in depositing a QD layer on the graphene surface with 
their subsequent mechanical removal from the surface in such 
a way as to leave single QDs situated in the nanoresonator. 

Coating the graphene layer with a dielectric is the most 
difficult stage, since it requires the use of low-temperature 
methods to preserve the integrity of the graphene layer. In 
particular, using the technique of atomic layer deposition 
(ALD [35]) with such precursors as AlCl3 and H2O, Al2O3 can 
be deposited at a temperature of 200 – 400 °C. The use of tri-
methylamine and water allows one to reduce the graphene 
deposition temperature to 125 °C [36] and to 100 °C [37]. It 
should be noted that the quality of adhesion of materials sig-
nificantly depends on the state of the graphene surface, taking 
into account its initially hydrophobic nature. To solve this 
problem, methods of functionalisation of the graphene sur-
face are used, in particular, the deposition of a thin (1 – 2 nm 
thick) Al layer on the graphene surface [38], which is com-
pletely oxidised during atomic layer deposition. This deter-
mines the qualitative grapheme – insulator interface without 
deteriorating the electron mobility in graphene. The subse-
quent stages, i.e. the deposition of a second graphene layer to 
produce the waveguide structure and its covering with a 
dielectric, require an alternate use of the PECVD and ALD 
methods. In the absence of access to ALD, the technological 
chain can be rebuilt to use the method of electron beam evap-
oration for the deposition of a dielectric on graphene [39]. 
However, its use requires a rigidly specified geometry of the 
location of the source and the sample (the sample is at the top 
of the chamber), which may be unacceptable for the consid-
ered nanoresonator + QD device. 

Let us focus on the details of the development and appli-
cation of an effective near-field SPP source for the considered 
system. Under experimental conditions, the available near-
field sources are mainly represented by near-field microscopy 
devices (near-field scanning microscope, NSM) equipped 
with tips of various configurations. Usually this is a pointed 
tip of an optical waveguide, which can have various geome-
tries, sizes and topologies. The simplest case is a rounded tip, 
in which, depending on the radius of its curvature, various 
configuration resonances can be excited corresponding to dif-
ferent moments of the electromagnetic field [40]. In accor-
dance with this, the tips can be dipole sources (electric and 
magnetic [41]), quadrupole sources, etc. However, even when 
using NSM needles based on highly refractive materials [42], 
their size remains incommensurate with the characteristic 
scale (40 ´ 20 nm) of a plasmonic switch (see Fig. 1a). 

A partial solution of the problem can be provided by 
using all-dielectric nanoantennas [43], as well as hybrid nano-
structures, including quantum nanowires [44], which make it 
possible to capture and convert the energy of the electromag-
netic field at the nanoscale. Such systems are used to fabricate 
nanolasers [45], but can also be used as near-field sources with 
specified classical [46] and quantum [47, 48] characteristics 
and can be integrated into plasmonic schemes (see Fig. 1a).

Another important problem is the localisation of SPPs 
propagating over the graphene surface in a narrow region 
along the z axis. This problem can be solved purely techni-
cally using micro- and nanostructured substrates based on a 
combination of Si and SiO2 layers. In those areas where SPP 
is required to be localised, Si with a thin buffer layer of SiO2 
serves as a substrate for graphene, and monolithic SiO2 plays 
this role in the remaining areas. Thus, Si and the graphene 
layer above it act as an extended capacitor: when a voltage is 
applied to it, the chemical potential of graphene decreases in 
comparison with that for regions above monolithic SiO2 
[49 – 51]. As a result, a waveguide effect arises: SPPs are 
localised and propagate only along the graphene regions 
located above Si, which can be used to create complex inter-
node connections in the system [30] and data buses for plas-
monic circuits. 

5. Conclusions

In this work, we propose a model and discuss the fabrication of 
an all-plasmonic reversible switch based on a graphene stub 
resonator loaded with a core – shell QD. It should be noted that 
the relatively small propagation lengths of SPPs in graphene 
systems compared with those in metal – insulator –semiconduc-
tor structures [52] significantly limit the scaling of such devices 
to full-fledged integrated circuits [53]. At the same time, the 
presented model can be of fundamental importance for the 
development of both individual high-speed switches and ultra-
fast sensors based on them. In the latter case, a plasmonic 
switch can be used to quickly trigger a certain operating algo-
rithm in the electronic part of the circuit when an optical signal 
is applied to one of its inputs. In addition, advances on the way 
to achieving high-temperature conductivity of graphene [54, 
55] give hope for a solution to the problem of SPP rapid damp-
ing in graphene. In this case, additional technical difficulties lie 
in the maintaining of superconductivity upon contact of a two-
dimensional material with a substrate [56]. The solution of such 
problems requires the use of a new paradigm in the creation of 
functional optical and optoelectronic devices based on two-
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dimensional materials with unique physical characteristics 
[57 – 59].
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Appendix. Mathematical model of the ladder 
scheme of SPP-QD coupling

The Hamiltonian of SPP-QD interaction can be represented 
as 

H = H0 + Hv,	 (A1a)

where 

| | ( ) | |H 2 2 3 30 12 12 23' HG HGw w w= + +6 @	 (A1b)

is the unperturbed Hamiltonian and 

|2 1| |1 2| |3 2| |2 3|Hv 1 1 2 2' HG HG HG HGW W W W=- * *+ + +u u u u^ h	 (A1c)

is the Hamiltonian of the interaction between the semicon-
ductor QD and two SPP modes in accordance with the ladder 
interaction scheme (see Fig. 1b); |1ñ º |1S(h)ñ is the ground 
energy state of a hole in the valence band; |2ñ º |1S(e)ñ and 
|3ñ º |1P(e)ñ are the electronic states in the conduction band; 1Xu  
and 2Xu  are the Rabi frequencies of the pump and signal SPP 
modes; and w12 and w23 are the frequencies of interband and 
intraband transitions, respectively. 

The evolution of the presented system is described using 
the Liouville equation

¶
¶

[ , ]i
t

H
'

r
r G=- -

u
u t ,	 (A2a)

where

|1 1| |2 2| |3 3| |1 2| |2 1|11 22 33 12 21HG HG HG HG HGr r r r r r= + + + +u u u u u u

	 |2 3| |3 2| |1 3| |3 1|23 32 13 31HG HG HG HGr r r r+ + + +u u u u 	 (A2b)

is the density matrix of the QD states; 

 |2 2| 2|1 2| |2 1| |2 2|21 HG HG HG HGg r r rG = - +t u u u^ h

	 |3 3| 2|2 3| |3 2| |3 3|32 HG HG HG HGg r r r+ - +u u u^ h

	 |3 3| 2|1 3| |3 1| |3 3|31 HG HG HG HGg r r r+ - +u u u^ h	 (A2c)

is the Lindblad superoperator describing the process of spon-
taneous relaxation in the system; gij are the rates of spontane-
ous relaxation of the corresponding transitions; and i, j = 1, 
2, 3 and i ¹ j. 

Using expressions (A1) and (A2), we obtain the following 
system of equations for the elements of the density matrix: 

2 2i i11 1 21 1 12 21 22 31 33r r r g r g rW W= - + +*uo u u u u u u ,

i i i i22 1 12 1 21 2 32 2 23r r r r rW W W W= - + -* *uo u u u u u u u u

	 2 221 22 32 33g r g r- +u u ,

2 2i i33 2 23 2 32 32 33 31 33r r r g r g rW W= - - -*uo u u u u u u ,

i i i i12 1 22 12 12 1 11 2 13 21 12r r w r r r g rW W W= + - - -* *uo u u u u u u u u ,

i i i i21 1 22 12 21 1 11 2 31 21 21r r w r r r g rW W W=- - + + -*uo u u u u u u u u ,	 (A3)

( )i i i13 1 23 12 23 13 2 12 31 13 32 13r r w w r r g r g rW W= + + - - -* *uo u u u u u u u ,

( )i i i31 1 32 12 23 31 2 21 31 31 32 31r r w w r r g r g rW W=- - + + - -uo u u u u u u u ,

i i i i23 23 23 1 13 2 33 2 22r w r r r rW W W= + + -* *uo u u u u u u u

	 ( )23 21 32 31r g g g- + +u ,

i i i i32 23 32 1 31 2 33 2 22r w r r r rW W W=- - - +*uo u u u u u u u

	 ( )32 21 32 31r g g g- + +u .

Next, we apply the slowly varying amplitude approximation 
to introduce new variables

( )exp i t12 12 1r r w=u ,   ( )exp i t23 23 2r r w=u ,

[ ( ) ]exp i t13 13 1 2r r w w= +u , 11 11/r ru , 22 22/r ru ,   33 33/r ru ,

( )exp i t1 1 1wW W=u ,    ( )exp i t2 2 2wW W=u ,

where w1(2) are the frequencies of the pump(signal) SPP mode. 
Then the system of equations (A3) is transformed to a new 

form: 

2 2i i11 1 21 1 12 21 22 31 33r r r g r g rW W= - + +*o ,

i i i i22 1 12 1 21 2 32 2 23r r r r rW W W W= - + -* *o

	 2 221 22 32 33g r g r- + ,

2 2i i33 2 23 2 32 32 33 31 33r r r g r g rW W= - - -*o ,

i i i i12 1 22 12 1 11 2 13 21 12r r r r r g rW D W W= + - - -* *o ,

i i i i21 1 22 21 1 11 2 31 21 21r r r r r g rW D W W=- - + + -*o ,	 (A4)

i i i13 1 23 13 2 12 31 13 32 13r r dr r g r g rW W= + - - -* *o ,

i i i31 1 32 31 2 21 31 31 32 31r r dr r g r g rW W=- - + - -o ,

( )i i i i23 23 1 13 2 33 2 22r d r r r rD W W W= - + + -* *o

	 ( )23 21 32 31r g g g- + + ,

( )i i i i32 32 1 31 2 33 2 22r d r r r rD W W W=- - - - +*o

	 ( )32 21 32 31r g g g- + + ,

where D = w12 – w1; and d = w12 + w23 – w1 – w2. Introducing 
new variables n21 = r22 – r11 and n32 = r33 – r22, system (A4) 
can be represented in the form: 

2 2i i i in21 1 12 1 21 2 32 2 23r r r rW W W W= - + - -* *o
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	 4 2( )21 22 32 31 33g r g g r- + - ,	 (A5a)

2 2i i i in32 2 23 2 32 1 12 1 21r r r rW W W W= - - +* *o

	 4 2232 33 31 33 21 22g r g r g r- - + ,	 (A5b)

i i in21 1 21 21 2 31 21 21r r r g rW D W=- - + -*o ,	 (A5c)

( )i i in32 2 32 32 1 31r d r rW D W=- - - - *o

	 ( )21 32 31 32g g g r- + + ,	 (A5d)

( )i i i31 1 32 31 2 21 31 32 31r r dr r g g rW W=- - + - +o .	 (A5e)

Considering the steady-state regime of SPP-QD coupling 
(i.e., the case when the time derivatives are zero), we find r31 
from Eqn (A5e) in the form 

i
i i

31
31 32

2 21 1 32r
d g g

r rW W
=

+ +

-
r

r r
,	 (A6)

where 21rr , 32rr , and 31rr  are the steady-state values of the 
polarisation at the corresponding transitions. Substituting 
31rr  into (A5c) and (A5d), we obtain the expressions

0
| |

i i
i

n1 21 21 21
31 32

2
2

r g
d g g

W D
W

=- - + +
+ +

e o

	
i 31 32

1 2 32

d g g
rW W

+
+ +

*

,	

(A7)

0 i
i

n2 32
31 32

1 2 21

d g g
r

W
W W

=- +
+ +

*

	 ( )
| |

i
i32 21 32 31

31 32

1
2

r g g g d
d g g

D
W

- + + + - +
+ +

= G.

Solving system (A7), we determine the steady-state solutions 
21rr  and 32rr  in the form: 

| | | |
| | | |i
D D D
n n D n

21
1
2

1 1 2 32 2
2
32

1 1
2
21 2

2
32 2 21 32r

W G W G
W W W G

=-
+ +

+ +
r

r r r^ h
,	

(A8)

 
| | | |
| | | |i
D D D
n D D n n

32
1
2

1 1 2 32 2
2
32

2 1
2
21 1 2 32 2

2
32r

W G W G
W W W

=-
+ +

+ +
r

r r r^ h
.

Substituting (A8) into Eqns (A4), one can find steady-state 
solutions for the level populations: 

111 22 33r r r= - -r r r ,

| |
| | | | ( )

A22
1
2

2
4

1 32 2
2 2

2
2

2 3 21r g d g
W

W G W G G G= + + +r 6 @" "

	 2 2 32 2 1
2

2
2
32 1 21 32d g g g gDG G G G D G- + + +^ h

	 ( ) | | B1 2 21 32 1
2g gG G W+ + +, ,,	 (A9)

| | | |
| | ( )

A33
2
2

1
2

2
2

1
2 2

1
2

2 21r d g
W W

W G D G G= + - +r 6 @"

	 | |1 21 1
2gG W+ ,,

where

| | | |A B 22
6

1 3
2

21
2

1
2gW G G D W= + + +^ h

	 | | ( )22
4 2 2

1 1 3 2 21d gW D G G G G+ + + +6 @"

	 2 ( ) ( ) ( ) | |1 3 2 21 21
2

1 2 1 31 1
2d g g gD G G G G G G W- + + + + -6 @ ,

	 | | ( ) ( 4 )22
2 2

2
2

1 3 21
2 2

1 3 2 21d g gW G G G D G G G+ + + +6"

	 | | 22 1
2

21 31 1
2

2 21
2 2

1
2g g d g dG W DG D G+ + + - + +^ ^h 6@

	 ( )| | 22 2 21 31 32 1
2 2

2 1 2 3 2 21
2g g g gG W D G G G G G+ + - + +^h @

	 | | | | (2 )32 1
2

1 2 1
2

2 1 3 21
2g gW G G W G G G+ + + +^h h6

	 | |21
2

2
2

21 32 1
2g gG G W+ + +^ h @,;

( )B 2 21
2

1
2 2

2
2g d dG D G G= - + +^ h6 @"

	 2 ( ) | | | |1 2 1
2

1
4d dD G G W W+ - + +6 @ ,; and

1 21 31 32g g gG = + + ;   2 31 32g gG = + ;   3 21 31g gG = + .

Thus, expressions (A8) and (A9) allow tuning the required 
regime of interaction between the QD and the signal SPP by 
controlling the parameters of this interaction via the intensity 
of the SPP pumping.
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