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Abstract.  We report on a theoretical model of the effect of coherent 
population trapping in alkali atoms in an optically thin gas cell with 
a buffer gas at a nonzero temperature in a pulsed laser field. The 
shape of the Ramsey resonance is analysed for two different tem-
perature ranges, i. e. for a ‘cold’ atomic ensemble and for an ensem-
ble of ‘hot’ atoms in a cell with a buffer gas. The influence of the 
hyperfine structure of the excited level on the shift of the central 
Ramsey resonance is investigated.

Keywords: coherent population trapping, pulsed pumping, gas cell, 
alkali atoms, moving atoms.

1. Introduction

The interaction of bichromatic laser radiation with atomic 
ensembles leads under certain conditions to the appearance of 
the coherent population trapping (CPT) phenomenon [1 – 4]. 
A distinctive feature of this effect is the possibility of observ-
ing narrow resonances that are free of Doppler broadening of 
the optical transition. The CPT resonance width can reach 
hundreds or even tens of hertz. This opens up wide possibili-
ties for using the CPT phenomenon in various practical appli-
cations, including in optical magnetometers [5, 6], high-reso-
lution spectroscopic devices [7, 8], as well as for the develop-
ment of quantum-information recording and storing devices 
[9 – 11] and inversionless lasers [12 – 15]. A special place in the 
application of the CPT phenomenon is occupied by small-size 
quantum frequency standards [16 – 21].

Recently, the use of pulsed pumping to excite CPT reso-
nance (Ramsey scheme) has attracted considerable interest 
[22]. The essence of this method is that the atomic ensemble 
interacts with two successive (pump and interrogation) pulses 
separated by a dark pause. It turns out that with such an 
interrogation scheme, the width of the CPT resonance is det
ermined only by the dark pause, which makes it possible to 
obtain a much narrower CPT resonance [23].

The essence of this method, as well as of its various modi-
fications as applied to the CPT effect, has been studied in 
detail in a number of works. Research in this area was initi-
ated in the pioneering work by Zanon-Willette et al. [24], who 
reported the observation of Raman – Ramsey fringes using a 

double lambda scheme creating coherent population trapping 
in an atomic ensemble excited by pulsed optical radiation. Liu 
et al. [25] experimentally observed high-contrast and narrow 
CPT resonances with the Ramsey interrogation scheme in 
atomic vapours of 133Cs. In order to increase the stability of 
the atomic clock, Yano et al. [26, 27] suggested using the pul
sed two-step method to excite CPT resonances. This method 
is a Raman – Ramsey scheme relying on the use of laser pulses 
with a lower light intensity, which makes it possible to pro-
vide a lower sensitivity of the CPT resonance shape to changes 
in the light intensity. The influence of the buffer gas pressure 
on the CPT resonance shape in the Raman – Ramsey scheme 
for 87Rb atoms was considered by Kuchina et al. [28]. High-
contrast and narrow CPT resonances under pulsed pumping 
in atomic vapours of 133Cs were studied by Hafiz et al. [29], 
who demonstrated the stability of an atomic clock at a level of 
2.3 ́  10–13 per 100 s. This paper also notes that the width of 
the central Ramsey resonance may be narrower than the 
expected width of the Ramsey line. Similar features were 
observed by Boudot et al. [30] when studying CPT resonances 
in the Raman – Ramsey scheme in microcells filled with 
Cs – Ne vapours. Experimental study of CPT resonances 
using the Raman – Ramsey technique in cells containing an 
87Rb  – Ar – Ne gas mixture for the lin || lin polarisations was 
reported by Baryshev et al. [31]. Hafiz et al. [32, 33] proposed 
a scheme based on a symmetric autobalanced Ramsey pulse 
train, which made it possible to reduce the light shift by an 
order of magnitude. Using the proposed method, the authors 
have implemented a high-precision atomic clock based on 
133Cs, with the contribution of the light shift to the frequency 
stability now varying within 10–16 at averaging times of 104 s. 
Lenci et al. [34] observed Ramsey bands when studying the 
effect of light-induced transparency in a cell with a buffer gas.

The development of frequency standards requires an inc
rease in the signal, which can be realised by increasing the 
temperature. In this case, the number of active atoms inc
reases, and at a certain concentration of them we can speak of 
an optically dense medium. The influence of the optical den-
sity of a medium on the shape of the CPT resonance line in the 
implementation of the Raman – Ramsey scheme was consid-
ered theoretically in Refs [35 – 37].

Note that, despite a fairly large number of studies on the 
CPT effect in gas cells in the Raman – Ramsey scheme (see, 
for example, [28 – 33]), they are mostly experimental. The pur-
pose of this work is to construct a theory of the CPT effect for 
a nonzero temperature in the presence of a buffer gas in the 
case of a Ramsey interrogation scheme; in this case, special 
attention is paid to the influence of the presence of the hyper-
fine structure of the excited level on the shift of the central 
Ramsey resonance.
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2. Mathematical model

Let us assume that an ensemble of atoms resides at a nonzero 
temperature in the field of a plane electromagnetic wave with 
two carrier frequencies (Fig. 1a). The wave propagates along 
the z axis, and the electric field intensity is expressed as

E(z, t) = e1E1exp[–i(w1t – k1z)]

	 + e2E2exp[–i(w2t – k2z)] + c. c.,	 (1)

where Ej, ej and kj are, in the general case, the complex ampli-
tude of intensity, the unit vector along the polarisation direc-
tion, and the wavenumber, respectively ( j = 1, 2).

Let us consider a model in which atoms have four energy 
levels: two ground levels (|1 ñ and |2 ñ) corresponding to the 
hyperfine splitting of the s-state; and two excited levels (|3 ñ 
and |4 ñ), corresponding to the hyperfine splitting of the 
p-state (Fig. 1b). The frequencies of the fields, w1 and w2, are 
close to the frequencies of the |1 ñ « |3 ñ and |2 ñ « |3 ñ transi-
tions with detunings D1 and D2, respectively, and w34 is the 
frequency of the hyperfine transition between the excited state 
levels |3 ñ and |4 ñ.

The state of an ensemble of atoms will be described using 
a single-atom density matrix rt ( p, r, t), which in the Wigner 
representation in the translational degrees of freedom of the 
atom satisfies the following quantum kinetic equation:

¶
¶
t m

p
d+c m rt (  p, r, t) = [ , , , ]i H tp r

'
r- t t^ h

	 + Rt
t
{ rt (  p, r, t)} + St

t
{ rt (  p, r, t)},	 (2)

where p = m u is the momentum of the atom; m is the mass of 
the atom; Ht  is the Hamiltonian of the atom, which takes into 
account its interaction with the external field; Rtt  is a superop-
erator that phenomenologically takes into account the spon-
taneous relaxation of atoms of the ensemble; and St

t  is a super-
operator that takes into account collisions between active and 
buffer atoms.

The Hamiltonian can be represented as Ht  = H0
t  + Vt , 

where

H n
n

0
1

4

e=
=

t / |n ñá n|	 (3)

is the Hamiltonian of the system in the absence of a field, and 
Vt  is the operator of interaction with the field, which in the 
dipole approximation has the form

exp iV t k zdE 1 1 1' wW=- = - -t t ^ h6 @|3 ñá 1|

	 + exp i t k z2 2 2' wW - -^ h6 @|3 ñá 2| + h.c.	 (4)

Here dt  = eddt  is the atomic dipole moment operator, Wj = 
Ej d3j /' are the Rabi frequencies ( j = 1, 2), and it is also assumed 
that the polarisation vectors of the incident waves are codirec-
tional with the dipole moment vector [(ed, e1, 2) = 1], and ele-
ments of the matrix of the dipole moment d12 = 0 due to the 
fact that the electric dipole transition |1 ñ « |2 ñ is forbidden; 
and ku  = d41/d31 and qu  = d42/d32 are the ratios of the matrix 
elements of the dipole moment.

Since we assume the front of the incident wave to be plane 
and infinite, the problem can be reduced to one-dimensional 
one in coordinate. In this case, the density matrix will depend 
only on the projection of the atomic velocity along the radia-
tion propagation direction and on the z coordinate: rt ( p, r, t) = 
rt ( u, z, t), where u = uz.
Let us make a substitution that selects rapidly oscillating 

factors in the off-diagonal elements of the density matrix:

ru ge = rge exp[– i(wg t – kg z)],   g = 1, 2,   e = 3, 4,	 (5)

ru 12 = r12 exp[– i(w1 – w2)t + i(k1 – k2)z],	 (6)

where rnm(u, z) = á n| rt (u, z)|m ñ, after which we use the rotat-
ing wave approximation.

We will assume that the medium is optically thin along the 
wave propagation direction, i. e. the mean free path of a pho-
ton is much greater than the length L of the atomic ensemble 
in this direction (nasL £ 1, where na is the concentration of 
active atoms and s is the effective cross section for photon 
scattering by an atom of the ensemble). Thus, neglecting the 
dependence on z, we use the model of strong collisions [38, 39] 
to write system (2) in the form [37]

ro 11(u) = – iW1 ru 13(u) + iW*
1 ru 31(u) – ikuW1 ru 14 + i

*ku W*
1 ru 41

	 + 
2
g
( r33(u) + 

2ku r44(u)) – vr11(u)

	 + v11M(u) ( ) ( ) ( )d dv M2111 22r u u u r u u+l l l ly y
	 + v31M(u) ( ) ( ) ( )d dv M33 41 44r u u u r u u+l l l ly y ,	 (7)
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Figure 1.  ( a ) Gas cell with active atoms and a buffer gas and the direc-
tion of propagation of two-frequency laser radiation, as well as ( b ) en-
ergy level diagram of active atoms and excited transitions.



1025Effect of collisions on the shape of the coherent population trapping resonance detected by the Ramsey method

ro 22(u) = – iW2 ru 23(u) + iW*
2 ru 32(u) – iquW2 ru 24 + iq

*u W*
2 ru 42

	 + 
2
g
( r33(u) + q

2u r44(u)) – vr22(u)

	 + v22M(u) ( ) ( ) ( )d dv M22 12 11r u u u r u u+l l l ly y
	 + v32M(u) ( ) ( ) ( )d dv M33 42 44r u u u r u u+l l l ly y ,	 (8)

ro 33(u) = – iW1 ru 13(u) – iW*
1 ru31(u) + iW2 ru 23(u) – iW*

2ru32(u)

	 – gr33(u) – vr33(u) + v33M(u) ( )d33r u ul ly
	 ( ) ( )dv M43 44u r u u+ l ly ,	 (9)

ro 44(u) = ikuW1 ru 14(u) – ik
*u W*

1 ru 41(u) + iquW2 ru 24(u)

	 – iq*u W*
2 ru 42(u) – 2

g
(k2u  + q2u ) r44(u) – vr44(u)

	 + ( ) ( )dv M44 44u r u ul ly  + ( ) ( )dv M34 33u r u ul ly ,	 (10)

ruo 12(u) = 
*
21ruo (u) = iW*

1 ru 32(u) – iW2 ru 13(u) + ik
*u W*

1 ru 42

	 – iquW2 ru 14 + [i((D2 – D1) + (k1 – k2)u) – G12 – v] ru 12(u)

	 + v coh
uul M(u) ( )d12r u ul luy ,	 (11)

ruo 13(u) = 
*
31ruo (u) = – iW*

1 r11(u) – iW*
2 ru 12(u) + iW*

1 r33(u)

	 + [– i(D1 – k1u) – G – v] ru 13(u),	 (12)

ruo 14(u) = 
*
41ruo (u) = – ik*u W*

1 r11(u) – iq
*u W*

2 ru 12(u)

	 + ik*u W*
1 r44(u) + [– i(D1 – w34 – k1u) – G – v] ru 14(u),	 (13)

ruo 23(u) = 
*
32ruo (u) = – iW*

1 ru 21(u) – iW*
2r22(u) + W*

2 r33(u)

	 + [– i(D2 – k2u) – G – v] ru 23(u),	 (14)

ruo 24(u) = 
*
42ruo (u) = – ik*u W*

1 ru 21(u) – iq
*u W*

2 r22(u)

	 + iq*u W*
2 r44(u) + [– i(D2 – w34 – k2u) – G – v] ru 24(u).	 (15)

The argument t in formulae (7) – (15) is omitted for brev-
ity. Here g is the rate of spontaneous decay of the excited 
state; G is the decay rate of optical coherences; G12 is the decay 
rate of low-frequency coherence (all decay rates are due to the 
interaction of an atom with a vacuum thermostat); M(u) = 
( )T

1p u - exp(– u2/ T
2u ) is the Maxwell distribution function 

over the velocity projection; uT = /kT m2  is the most prob-
able velocity; v is the total collision frequency; vij are the fre-
quencies of inelastic collisions with the transitions from the 
state (|i ñ to the state | j ñ; and v cohuul  is the frequency of colli-
sions at which low-frequency coherence is maintained. The 
collision frequencies are calculated based on the gas-kinetic 
formula va = (na + nbuf) saur , where na and nbuf are the concen-
trations of active atoms and buffer gas atoms; sa is the section 
of the corresponding process; ur  = /kT8 p m  is the average 

thermal velocity; and m = mbuf  ma/(ma+ mbuf) is the reduced 
mass. Note that the concentration nbuf in the ensemble is 
much higher than the concentration na. Because of this, the 
temperature dependence of the frequency v can be neglected, 
since only the concentration na depends on the latter.

The system of equations (7) – (15) is written in the approx-
imation when the optical pump rate is much lower than the 
rates of gas kinetic processes and processes of spontaneous 
relaxation of the excited state,|W12| << v, g. In this case, the 
populations of the excited state are small [ò ree(u, t)du << 1]; 
therefore, the coherence r34(u, t) can be neglected.

Solving this system of equations is a challenging task. In 
order to simplify it, we will use the reduced density matrix

rij(t) = ( , )dtr u uijy ,   i, j = 1, 2, 3, 4.	 (16)

To this end, we integrate equations (7) – (15) over the velocity, 
assuming the velocity distributions of the populations of the 
ground states and low-frequency coherences to be Maxwellian:

rjj (u, t) = M(u) rjj (t),   j = 1, 2,	 (17)

ru12(u, t) = M(u) ru12(t).	 (18)

Then, we write down Eqns (7) – (11) for the reduced elements 
of the density matrix (relations for the collision frequencies 
were considered in [39]):

ro 11 = –2Re{iW1[ ru13 + ku ru14]} + 2
g
(  r33 + 

2ku r44)

	 + (v11 – v) r11 + v21 r22 + v31 r33 + v41 r44,	 (19)

ro 22 = –2Re{iW2[ ru23 + ku ru14]} + 2
g
(  r33 + q

2u r44)

	 + (v22 – v) r22 + v12  r11 + v32  r33 + v42  r44,	 (20)

ro 33 = 2Re{i [W1 ru13 + W2ru23]} – g'r33 + v43  r44,	 (21)

ro 44 = 2Re{i [W1kuru14 + W2qu ru24]} – 2
g
( 2ku  + q2u )r44

	 + (v – v44) r44 + v34  r33,	 (22)

ruo 12 = i [W*
1 ru32 – W2 ru13 + k

*u W*
1 ru 42 – quW2 ru14]

	 + [id – G '12] ru12,	 (23)

where g’ = g + v – v33 and G '12 = G12 + v – v coh
uul  are the rates of 

decay of the excited level and low-frequency coherence modi-
fied due to collisions; and d = D2 – D1 is the two-photon 
detuning. In our case, assumptions (17) and (18) are only used 
in obtaining equation (23).

For optical coherences, the velocity distribution cannot be 
considered Maxwellian, since they are rapidly destroyed in 
collisions. Therefore, it is necessary to find these distributions 
and integrate them in velocity. To this end, we find solutions 
to equations (12) – (15) in quadratures by the method of varia-
tion of an arbitrary constant. Let us take into account that in 
the approximation of weak fields the adiabatic approximation 
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is valid, in which r33, 44 << r11, 22. This allows us to neglect the 
third terms on the right-hand sides of equations (12) – (15). 
Using expressions (12) – (15), we write

ru j3(t) = –i 'dt
t

0
y [W*

2(t’ ) ru j2(t' ) + W*
1(t’ ) ru j1(t' )]

	 ´  ( )d Mu u
3

3

-
y exp[– (i(Dj – kj u) + G ' )(t – t’ )],	 (24)

ru j4(t) = –i 'dt
t

0
y [q*u W*

2(t' ) ru j2(t' ) + 
*ku W*

1(t' ) ru j1(t' )]

	 ´  ( )d Mu u
3

3

-
y exp[– (i(Dj – w34 – kj u) + G ' )(t – t' )],	 (25)

where G ' = G + v is the collision-modified decay rate of optical 
coherences. The velocity integrals in (24) and (25) are real in 
the sense of the principal value and can be calculated analyti-
cally:

ru j3(t) = – i
t

( ) ( ) ( )' ' ' 'expd it
k

t t t t
4
T j

j
0

2 2
2u

D G- - + -= Gy

	 ´ [W*
2(t' ) ru j2(t' ) + W*

1(t' ) ru j1(t' )],	 (26)

ru j4(t) = – i
t

( ) ( ( ) )' ' 'expd it
k

t t
4
T j

j
0

2 2
2

34

u
wD G- - - +=y

	 ´ ( )'t t- G[q*u W*
2(t' ) ru j2(t' ) + 

*ku W*
1(t' ) ru j1(t' )].	 (27)

In formulae (26) and (27), the first term in the exponent 
describes a decrease in the interaction of atoms with radiation 
due to Doppler detuning, while the second denotes the homo-
geneous broadening of absorption lines due to collisions.

Next, substituting expressions for ru j3 and ru j4 from (24) and 
(25) into system (19) – (23), we arrive at a system of Volterra 
integro-differential equations of the first kind, which can be 
represented in the general form as

yo i (t) = 
t
( , ) ( ) ( )' ' 'dK t t y t t A y tij j ij j

0
+y ,	 (28)

where yi (t) is the function to be found; Kij (t, t' ) is the kernel of 
the integral equation; and Aij is a constant matrix (here the 
silent summation rule is used).

To solve the system of equations (28), we applied a method 
based on the use of a difference scheme. The essence of this 
method is to replace the integral with its approximate value 
using the sum over the integration interval partition points 
tm Î [0, t] by the trapezoid method. As a result, for the step h 
and the number of partitions l, expression (28) will be written 
in the form

y tio ^ h = , ,h K t t y K t t y
2 , ,ij m j m ij m j m
m

l

1 1
1

1

+ + +

=

-

^ ^h h6 @/

	 + Aij yj (t),   yi, m = yi (tm).	 (29)

System (29) was solved numerically using Euler’s method. 
The collision rates in calculations were assumed to be the fol-
lowing:

v11 = v22 = v,

v33 = v (1 – h),

v44 = v /q1 22 2h k- +u u^ h6 @,

v31 = v32 = hv/2,	 (30)

v41 = v14 = hv /22ku ,

v42 = v24 = hv /2q2u ,

v12
uul  = v.

Here h is a parameter that determines the fraction of colli-
sions leading to the decay of the excited state.

3. Pulsed pumping

The system of equations (19) – (23), (26), and (27) describes the 
behaviour of an atomic system in a laser field, whose ampli-
tude arbitrarily changes in time. Let us consider a scheme of 
pulsed pumping by the Ramsey method, which makes it pos-
sible to significantly narrow the CPT resonance line (Fig. 2). 
The first pump pulse of duration tp, when interacting with 
atoms, transfers them to the CPT state. The duration of the 
pump pulse should be longer than the CPT settling time: tp > 
g'/W 2, where g' is the rate of decay of the excited state; and W 
is the characteristic Rabi frequency.

The duration of the dark pause lies within 1/g' << Td < 
12/ '1 G . In this case, the populations of excited levels and the 

optical coherences of atoms completely decay, and the low-
frequency coherence freely evolves.

An interrogation pulse of duration tp < g'/W 2, depending 
on the phase incursion between low-frequency coherence and 
laser radiation, leads to different degrees of atomic excitation 
after the action of radiation, which makes it possible to detect 
the Ramsey resonance.

4. Results and discussion

4.1. Three-level model (lambda atom)

Let us consider the excitation of CPT resonances in atomic 
ensembles within the framework of a three-level model (we 
neglect the splitting of the excited state) for two temperature 
ranges: at low temperatures of 1 mK – 1 K, corresponding to 
the case of cold atomic ensembles, the absorption line width 
of which is mainly affected by natural and Doppler broaden-
ing, and collisional broadening has a weak effect; and at tem-

W1,2 (t)

W0 tp Td t

0 t

Figure 2.  Sequence of laser pulses with the Ramsey scheme of CPT 
resonance interrogation: W0 is the Rabi frequency of the incident fields; 
and tp, Td, and t are the durations of the pump pulse, dark pause, and 
interrogation pulse, respectively.
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peratures of 30 – 60 °C, corresponding to the temperature of a 
gas cell filled with saturated vapour of an alkali metal. In such 
a gas, the Doppler and collisional broadenings are compara-
ble in magnitude and are two orders of magnitude higher than 
the natural one.

Figure 3a shows a change in the CPT resonance detected 
using continuous radiation (dashed curves) and the Ramsey 
method (solid curves) in the low temperature region for the 
case of cold atoms. As the temperature increases, the Doppler 
broadening increases and the number of atoms in resonance 
with radiation decreases. As a consequence, the optical pump 
rate decreases with decreasing population of the excited level. 
This leads to a significant drop in the amplitude of the central 
Ramsey resonance. In addition to a decrease in population, 
the envelopes narrow down, which is due to the fact that the 
width of the CPT resonance is determined by two terms: G '12 + 
W 2/ g'. The first term is associated with the decay of low-fre-
quency coherence due to collisions of atoms with each other, 
with the buffer gas, and with the cell walls, and the second, 
with light broadening under the action of laser radiation. At 
low temperatures, the first term is close to zero, since it is 
caused only by collisions of atoms with each other, and the 
term W 2/ g' is of the order of 103 – 105 s–1 for the considered 
Rabi frequencies. With rising temperature, the decay rates of 
the low-frequency coherence G '12 and the excited level g' begin 

to increase due to the presence of inelastic collisions. For Rb 
atoms with a concentration of 1011 cm–3, when temperature 
rises from 0.001 to 0.01 K, the increment in G '12 is ~ 0.1 s–1, 
and the increment in g' is 103 s–1, which in total leads to a 
decrease in the resonance width.

In the case of hot atoms (Fig. 3b) in the temperature range 
of 30 – 60 °C, at which gas cells are used, the amplitude of the 
Ramsey resonance decreases with increasing temperature, and 
its change is much less than in the case of cold atoms.

4.2. Account for the hyperfine structure of the excited level

Let us now consider the influence of the additional upper level 
caused by the hyperfine structure on the peculiarities of the 
Ramsey resonance. We assume that the value of hyperfine 
splitting is in the range 60 g £ w34 £ 160 g. When the fields are 
tuned to the |1 ñ – |3 ñ transition, fast atoms, due to the 
Doppler broadening, interact with the level |4 ñ, which leads 
to light shifts of optical transitions and, as a consequence, to 
a shift of the low-frequency |1 ñ – |2 ñ transition and CPT res
onance. Figure 4a shows the dependences of the light shift S 
of the central Ramsey resonance on the temperature T. One 
can see that the position of the central Ramsey resonance cha
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Figure 3.  Forms of CPT resonances ( a ) in cold atoms and ( b ) in a hot 
gas cell ( solid and dashed curves are resonances detected by the Ramsey 
method and continuous radiation, respectively ). The duration of the 
interrogation pulse is t = 10 g–1, the duration of the pump pulse tp cor-
responds to reaching a stationary state, the duration of the dark pause 
is Td = 0.8 ms; it is also assume that mа = 87 a.m.u, mbuf  = 40 a.m.u, nа = 
0.5 ́  1011 cm–3, nbuf = 1019 cm–3, g = 107 s–1, G = g /4, G12 = 200 s–1, D1 = 
d/2, D2 = – d/2, and h = 0.01.

S/Hz

–3.2

–3.6

–4.0

–3.2

–3.6

–4.0

–4.4

S/Hz

20 40 60 80 T/°C

w34 = 60g

100g

140g

120g

160g

80g

60 80 100 120 140 w34/g

20 °C

T = 80 °C

60 °C

40 °C

100 °C

a

b

Figure 4.  Dependences of the light shift of the central Ramsey reso-
nance on ( a ) temperature for different values of hyperfine splitting w34 
and on ( b ) hyperfine splitting w34 for different temperatures. The am-
plitude of fields is W0 = 105 s–1, ku  = 1, and qu  = 0.5; other parameters are 
the same as for Fig. 3.
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nges. This change depends on the magnitude of the splitting of 
the excited state and has a nonmonotonic character. The non-
monotonicity is due to the fact that the dependence of the 
light shift on the detuning coincides with the shape of the dis-
persion contour [40]. As the temperature changes, the width 
of the dispersion contour changes, which is equivalent to sca
nning the w34 splitting. Thus, if the dispersion contour of 
atoms is broadened consistently with the magnitude of the 
splitting of the excited state, the temperature dependence of 
the light shift can be either increasing or decreasing. The con-
tours of the excited levels of atoms overlap only in a small 
group of atoms; therefore, the magnitude of the shift is units 
of hertz. This is in complete agreement with the experimental 
results [29]. It should be noted that in [17] the value of the 
light shift increases with increasing temperature. We believe 
this to be due to the fact that the effect of an optically dense 
medium, in which radiation pulses with different wavelengths 
propagate, also contributes to this shift [20, 36].

5. Conclusions

A theory is constructed that describes the excitation of CPT 
resonance by a pulsed laser field in an optically thin atomic 
ensemble with allowance for the motion of atoms. A system 
of equations is derived for the velocity-integrated elements of 
the atomic density matrix, in which the optical coherences are 
expressed in terms of quadratures. A method for solving such 
systems of equations is briefly described. The numerical solu-
tion of this system makes it possible to calculate the shape of 
the CPT resonance for the Ramsey interrogation scheme.

The shape of the Ramsey resonance is analysed for two 
temperature ranges, namely, for a cold atomic ensemble, in 
which the Doppler broadening is comparable to the natural 
one, and for an ensemble of hot atoms in a gas cell with a buf-
fer gas (the Doppler and collisional broadening is much larger 
than the natural one). It is shown that with an increase in 
temperature in the case of cold atoms, the amplitude of the 
Ramsey resonance decreases with a simultaneous narrowing 
of the envelope, and in the case of hot atoms, the resonances 
shift to the region of lower populations with a simultaneous 
decrease in the amplitude. It is found that in the presence of a 
hyperfine structure of the excited state, a light shift of the 
Ramsey resonance takes place. The dependence of the light 
shift of the central Ramsey resonance on temperature and the 
magnitude of hyperfine splitting is analysed.
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