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Abstract.  We consider the behaviour of the orbital angular momen-
tum of the light field as a superposition of Hermite – Gaussian 
beams upon astigmatic mode conversion. An analytical expression 
is obtained for the orbital angular momentum of such fields. 
Expressions are found for various linear combinations of 
Hermite – Gaussian beams. The astigmatic mode conversion of the 
initial light fields that are equivalent from the point of view of the 
orbital angular momentum is shown to lead to significantly differ-
ent final results.

Keywords: coherent optics, spiral light beams, orbital angular 
momentum.

1. Introduction

Mode conversion as a means of changing the orbital angular 
momentum (OAM) of a light field has been known for a long 
time (see [1] and references therein). A distinctive feature of 
this conversion is the fact that the OAM in this case dramati-
cally changes as a function of the initial field form.

Abramochkin and Volostnikov [2] theoretically investi-
gated and experimentally implemented astigmatic mode con-
version (AMC) of various Hermite – Gaussian beams. An 
optical system consisting of spherical and cylindrical lenses 
and performing astigmatic conversion is described in detail in 
[1]. It was shown in [3, 4] that linear combinations of the 
Hermite – Gaussian modes can have a significant angular 
momentum. The asymptotic behavior of such light fields was 
considered in [4]. Of interest is the question: How does the 
OAM of a linear combination of Hermite – Gaussian modes 
change upon AMC?

Of course, as an integral feature, the angular momentum 
is not a complete characteristic of the light field; however, it is 
known that in the case of AMC, the change in the orbital 
momentum depends on the form of the initial field. For exam-
ple, a field that does not have an OAM can gain it, and vice 
versa, a field with an angular momentum can lose it as a result 
of conversion. It is characteristic that the initial Hermite – 
Gaussian beam with an astigmatic phase weighting function 
has the same OAM as the resulting Laguerre – Gaussian 
beam. Nevertheless, it is obvious that the initial field is devoid 
of optical vortices. It was shown in [3, 4] that linear combina-

tions of Hermite – Gaussian modes can contain optical vorti-
ces and have a nonzero OAM.

Examples of nonrotating light fields with a nonzero OAM 
that do not rotate during propagation can also be found in 
[4,  5]. Work [6] is devoted to the relationship between the 
OAM and the rotation of the light field during its propaga-
tion. At first glance, it seems somewhat unusual that the sum 
of fields that do not separately possess an orbital angular 
momentum does possess this moment. However, it is clear 
that the system of Hermite – Gaussian functions is complete 
and orthogonal, and any light field with a finite energy can be 
represented as their superposition. The meaning of this 
becomes clearer if we consider the Laguerre – Gaussian mode 
with an OAM equal to –1.

The aim of this paper is to study the behaviour of the 
OAM of characteristic light fields before and after astigmatic 
conversion. Expressions are obtained for the OAM upon 
AMC of characteristic light fields, which are a linear combi-
nation of Hermite – Gaussian beams.

2. OAM of the light field

Consider a plane-polarised field E defined by the expressions

Ex = F(x, y, l )exp(ikl – iwt),

Ey = 0,

El = g(x, y, l )exp(ikl – iwt).

From Maxwell’s equation divE = 0, we find in the parax-
ial approximation the relationship for the longitudinal and 
transverse components of the electric vector: 

g(x, y, l ) » 
¶
¶i

k x
F .

From Maxwell’s equation

i
rot

k
B E1
= ,

we obtain the components of the magnetic field:

Bx » 0,

By » F(x, y, l )exp(ikl – iwt),

Bl » 
¶
¶i

k x
F  exp(ikl – iwt).
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The time-averaged density of the OAM along the l axis is 
determined by the expression

[ , [ , ]]ReM
c

r E B
8
1

l lp
e= r

where e is the dielectric constant of the medium. Substituting 
the components of the electric and magnetic fields into it, we 
obtain
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d dL M x yl = yy ,   d dE FF x y= ryy .

Then we substitute the representation of the field in the form 
of a superposition of the Laguerre – Gauss modes in these 
expressions, using their orthogonality:
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3. AMC of light fields as a superposition  
of Hermite – Gaussian beams and the resulting 
OAM

Astigmatic mode conversion A in mathematical form can be 
represented by the formula:

( , ( , )) ( )A HG x y Gnm nma a=

	 [ ( , , ) /8] [ ( ) /4]exp expi ix y n mpj a= +

[ ( ) ( , , )] ( , ) ( , )exp i i d dx y HG F
R

nm
2

x h j x h a x h x h x h# - + +yy ,

where

( , )expHG H x y
x y
2nm nm

2 2

= -
+e o

are the Hermite – Gaussian beams; 

( , , ) ( ) ( ) ( )cos sin2 2 22 2j x h a x h a xh a= - + ;

and the parameter a has the physical meaning of the angle of 
rotation of an optical system consisting of spherical and cylin-
drical lenses and implementing astigmatic conversion relative 
to the optical axis.

For the Hermite – Gaussian modes, this conversion trans-
forms them into Laguerre – Gaussian modes (at a = p/4) [3] or 
into Hermite – Gaussian modes (at a = 0). The conversion 
into the Hermite – Gaussian mode is nontrivial, i.e. the 
resulting Hermite – Gaussian mode has an additional phase 
factor [3]:

( /4, ( , )) ( /4)A HG x y Gnm nmp p=
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Let the initial fields have the form

F1 = HGn(x)HGn + 1(y),	
(4)

F2 = HGn(x)HGn + 1(y) + HGn + 1(x)HGn(y).

Let us denote their modal astigmatic conversions (at a = 0) as 
follows:

A(a, F1) = G1(a) = A(a, HGn(x)HGn + 1(y)), 	
(5)

A(a, F2) = G2(a) = A(a, HGn(x)HGn + 1(y)

	 + HGn + 1(x) HGn(y)) = G2  n  n + 1 (a) + G2  n + 1 n (a).

These fields were chosen because they have similar properties: 
both are real and structurally stable during propagation, but 
their astigmatic conversions have completely different OAMs.

It is interesting and important to note that the modal 
astigmatic conversion G2(a) at a = 0 coincides, up to a con-
stant factor (–i)n + 1, with the superposition of fields given in 
[4, 5]; therefore, the specific OAM will be the same:

( ( ) ( ))
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This property is also valid for other cases considered in [4, 6]. 
For example, let the light field have the form

F(x, y) = HGn(x)HGn + 1(y) + A1HGn + 1(x)HGn(y)

	  + A2HGn + 2(x)HGn – 1(y).

Its AMC is expressed as

G(a = 0, x, y) = (–i)n + 1 [HGn(x)HGn + 1(y) 

	 + iA1HGn + 1(x)HGn(y) + i2A2HGn + 2(x)HGn – 1(y)].
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Thus, the problem of mode astigmatic conversion of light 
fields of form (5) has been reduced to a problem that was 
studied in detail in [4, 6]. It can be seen from the above expres-
sions that a real light field can acquire a substantially nonzero 
OAM in the case of AMC.

Consider the astigmatic conversion of the above light 
fields. Let the field have the form

F = HGn(x)HGn + 1(y) + iHGn + 1(x)HGn(y).

AMC in this case is of interest at a = p/4, since at a = 0 mode 
conversion yields L = 0. After AMC we have

 A(p/4, F ) = (–1)n [2n +1n!LGn
(–1)(x, y) + i2n +1n!LGn

(1)(x, y)].

The specific orbital momentum of such a field is also zero:

.
E
L

0l
=

Consider now the field [6]

F = HGn(x)HGn (y) + iHGn + 1(x)HGn – 1(y).

From work [4] it follows that this combination has the same 
asymptotic value of the OAM as field (2), but for AMC we 
obtain in this case the expression

A(p/4, F ) = (–1)n 2nn!LGn
(0)(x, y) 

	 + (–1)n– 1 i2n +1(n – 1)!LG ( )
n 1
2
- (x, y).

Accordingly, the specific OAM is expressed as
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The asymptotic value of the OAM at n ® ¥ is –1. Thus, with 
AMC, the equality of OAMs for these two cases is not satis-
fied.

Figure 1 shows intensity and phase distributions of field 
(5) for n = 4 and the result of its AMC for a = p/4.

Now let the light field be a superposition of three Hermite –
Gaussian modes (the weight coefficients are borrowed from [6]):

F(x, y) = HGn(x)HGn + 1(y) + iA1HGn + 1(x)HGn(y) 

	 + i2A2HGn + 2(x)HGn – 1(y),	 (6)

  A1 = 2 ,  A2 = 1.

Let us find its AMC:

A(a, F ) = (–1)n 2n +1n!LGn
(–1)(x, y) + (–1)n 2n +1A1n!LGn

(1)(x, y)

	 + i2(–1)n– 12n +2A2(n – 1)!LG ( )
n 1
3
- (x, y).

The specific OAM of such a field for the case considered in [6] 
is determined by the expression
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The asymptotic value of the OAM at n ® ¥ is 1. Figure 2 
shows intensity and phase distributions of field (6) at n = 4 
and the result of its AMC (a = p/4).

Let us now consider a ‘symmetric’ combination (the 
weights are borrwed from [6]), which is the result of mode 
conversion of a symmetric combination of fields:
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Figure 1.  Distributions of (a, c) amplitude and (b, d) phase of field (5) before (a, b) and after (c, d) AMC (a = p/4).
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Figure 2.  Distributions of (a, c) amplitude and (b, d) phase of field (6) before (a, b) and after (c, d) AMC (a = p/4).
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F(x, y) = – iA–1HGn – 1(x)HGn + 2( y) + HGn (x)HGn + 1( y) 

	 + iA1HGn + 1(x)HGn(y). 	 (7)

Its AMC (a = p/4) is determined by the expression

A(a, F ) = – i(–1)n –1 A–12n +2(n – 1)!LG ( )
n 1
3
-
- (x, y) 

	 + 2n +1(–1)nn!LGn
(–1)(x, y) + i2n +1(–1)nn!A1LGn

(1)(x, y).

In this case, the OAM will be as follows:
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Finally, we consider a superposition of four Hermite –
Gauss modes (the weights are borrowed from [6]):

F = HGn(x)HGn + 1(y) + iA1HGn + 1(x)HGn(y)

	 + i2A2HGn + 2(x)HGn – 1(y) + i3A3HGn + 3(x)HGn – 2(y),

n  ³ 2,  A1 = A2,  A3 = 1, A2 = (1 + 5 )/2.	 (8)

Let us find the result of its AMC:

A(a, F ) = (–1)n 2n +1n!LGn
(–1)(x, y) + iA1

 2n +1(–1)nn!Gn
(1)(x, y)

	 + i2(–1)n –1A2
 2n +2 (n – 1)!LGn
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	  + i3(–1)n –2A32n +3(n – 2)!LGn
(5)(x, y).	 (9)

For the OAM we obtain the expressio
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Figure 3 shows intensity and phase distributions of field 
(8) at n = 4 and the result of its AMC. Let us compare this 
result with the result corresponding to the symmetric combi-
nation:

F(x, y) = – iA–2HGn – 1(x)HGn + 2( y) 

	 + A–1HGn (x)HGn + 1( y) + iA1HGn + 1(x)HGn(y)  

	 + i2A2HGn + 2(x)HGn – 1( y).

The AMC for this field is described by the expression

A(a, F ) = – i(–1)n +2 2n – 1(n – 1)!A–2LG
( )
n 1
3
-
- (x, y) 

	 + A–12n +1(–1)n+1n!LGn
(–1)(x, y) 

	 + iA12n +1(–1)nn!LGn
(1)(x, y) 

	 + i2A22n +2(–1)n – 1(n – 1)!LG ( )
n 1
3
- (x, y),

and the specific OAM will be zero:
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2
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It was shown in [4] that for field (8) and for the symmetric 
combination, the asymptotic OAMs are the same. From the 
above consideration, it can be seen that for these combina-
tions the equality of OAMs after AMC also does not hold.

4. Conclusions

Thus, we have studied the change in the OAM in the case of 
the AMC. It has been found that the OAM changes radically. 
Moreover, even fields with the same OAM acquire completely 
different values in the case of the AMC. For example, this is 
true for real structurally stable light fields.
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Figure 3.  Distributions of (a, c) amplitude and (b, d) phase of field (8) before (a, b) and after (c, d) AMC (a = p/4).


