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Abstract. Laser light propagation in a photonic lattice consisting 
of two parallel waveguide arrays is theoretically studied using the 
coupled mode method, with the interaction of each waveguide with 
the nearest neighbours and between the waveguides of the arrays 
being taken into account. Analytical expressions are obtained that 
make it possible to accurately predict the presence of localisation of 
light depending on the coupling constants. Particular solutions of a 
system of coupled waves are found, which describe strongly 
localised light propagating without transverse diffraction along the 
entire lattice at certain values of the coupling constants. The emer-
gence of spatially limited transverse diffraction of light is predicted.

Keywords: photonic lattice, waveguide array, localised light, cou-
pled mode method.

1. Introduction

Much attention is presently paid to the study of linear states 
of light in photonic lattices with nonstandard geometry and 
different periods. The main goal of these investigations is to 
analyse the possibility of localisation of light in such struc-
tures without the use of additional impurities and without any 
limitation of the light power. As shown in [1], flat-band (FB) 
lattices have a special linear spectrum, in which at least one of 
the linear bands is completely flat. This means that the modes 
of the flat band do not diffract and remain localised in space 
along the entire length of the system. The authors of Refs 
[2 – 5] considered Lieb photonic lattices, i.e. square lattices, 
which consist of three combined unit cells and are character-
ised by a dispersion law with three tight-binding bands, with 
one being perfectly flat (linear). Mukherjee et al. [4] studied 
experimentally and numerically the features of dispersionless 
localisation of light in a Lieb lattice formed by an array of 
optical waveguides.

Xia et al. [5] presented the results of an experimental 
study of distortion-free image transmission through optically 
induced photorefractive photonic Lieb lattices with different 
periodicities [6, 7]. These works generated great interest 
because they prove that waves can remain localised in the 
continuum even in the absence of any defect [8], disorder [9] 
or nonlinearity [10]. Theoretical and experimental studies of 
FB and related phenomena were carried out for one-dimen-
sional and two-dimensional sawtooth gratings [11, 12], as well 

as for Kagome [13 – 15] and Fano [16] lattices. It is shown that 
macroscopically degenerate flat bands in periodic lattices 
contain compact localised states due to the presence of a ‘ran-
dom’ flat band and can be observed as a result of the fine 
tuning of the inter-site coupling coefficients [11], which forms 
destructive interference and local symmetry depending on the 
lattice geometry.

Vicencio et al. [17] considered the possibility of propaga-
tion of localised discrete fundamental solitons in a model of a 
two-dimensional Kagome lattice with defocusing nonlinear-
ity. Mukherjee and Thomson [18] experimentally demon-
strated the photonic realisation of a dispersionless flat band 
in a quasi-one-dimensional photonic rhombic lattice in the 
tight-binding approximation. Goblot et al. [19] studied the 
nonlinear response of cavity polaritons in the flat band of a 
one-dimensional Lieb lattice with the formation of gap soli-
tons with quantized size. They showed that in such a system it 
is possible to support two dispersive and one nondispersive 
(flat) band.

Theoretical studies of sawtooth lattices, in which quan-
tum topological excitations are observed, were carried out in 
[20], and the possibility of observing Bose – Einstein conden-
sation in the flat band for a one-dimensional sawtooth lattice 
and a two-dimensional Kagome lattice in the Bose – Hubbard 
model was considered in [21]. Baboux et al. [22] demon-
strated that bosonic condensation of exciton polaritons is 
possible with the occurrence of a nondispersive energy 
band in a geometrically frustrated lattice of optical cavities. 
Rojas-Rojas et al. [23] reported the experimental results of 
studying the localisation of light in FB lattices of various 
geometries. Quasi-one-dimensional and two-dimensional FB 
lattices were investigated in the quantum regime. Quantum 
states were constructed that remain localised along the 
entire length of the lattice, do not experience diffraction, 
and do not depend on external parameters. The properties 
of separability of flat-band quantum states during infor-
mation transmission through multicore fibres were also 
investigated. The properties of tunable one-dimensional 
sawtooth and zigzag optical lattices with ultracold atoms 
and polar molecules in an optical lattice are described in 
[24, 25].

Recently, studies of the properties of zigzag waveguide 
arrays [26 – 31], where the second-order coupling plays an 
important role in diffraction effects, have been of great inter-
est. The authors of these works obtained an analytical expres-
sion for the trajectory of an oscillating beam. The solutions 
found for the beam trajectory make it possible to determine 
the periods of beam oscillations and the position of the trajec-
tory turning points.

In addition to studies of fundamental flat bands observed 
in the above experiments, there are many theoretical dis-
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cussions about the existence of a flat band and the possibil-
ity of conservation and stability of localised states in space, 
as well as about the lifetime of flat states [32] and their stabil-
ity in relation to the lattice geometry and coupling parameters 
[33]. Special attention is paid to artificial FB lattices created 
by structured potentials. Currently, significant experimental 
advances have been made in the realisation and study of flat 
bands for electrons, cold atoms, photons, and polaritons, as 
well as in the development of methods for controlling the lat-
tice settings to obtain the desired lattice geometry and the 
study of compact localised states. The main attention is 
focused on the observation of new quantum and nonlinear 
effects of interaction in lattices [34], on the prospects for 
further studies of flat bands in photonic lattices under res-
onant optical pumping with the formation of polaritons 
and exciton-polaritons in metamaterials, coupled microcavi-
ties, superconducting microwave circuits [35], as well as on 
the study of compact discrete breather-periodic and spa-
tially compact localised solutions for translationally invari-
ant flat networks and for dispersive networks with fine-
tuned nonlinear dispersion [36].

Real et al. [37] experimentally studied the main proper-
ties of a Stub photonic lattice and demonstrated for the 
first time the possibility of exciting a linear localised FB 
mode propagating without diffraction in a Stub. In addi-
tion, the feasibility of combining this mode with neigh-
bouring modes to generate arbitrary linear combinations 
was shown, with the help of which the possibility of per-
forming three all-optical logical operations was demon-
strated. The possibility of using the properties of the pho-
tonic lattice Stub with FB for the development of new all-
optical logic gates was predicted. The presented brief 
review of the literature indicates that the study of the fea-
tures of localised light propagation in photonic lattices of 
various geometries is of interest both from a theoretical 
and an applied point of view and, as a result, is an urgent 
problem. Complex geometries of arrays, the use of new 
materials such as metamaterials, photonic crystals, pho-
tonic lattices, and the variety of their properties, as well as 
the prospect of implementing all-optical logic elements 
based on these materials, provide unique possibilities for 
controlling light propagation. The results of these studies 
are important for the applied field of modern optics, i.e. 
transformation optics. In this paper, we present the main 
results of a theoretical study of the effects of light propaga-
tion in one of such systems, namely, in a photonic optical 
lattice of waveguides, which consists of two parallel arrays 
of waveguides, taking into account their coupling with the 
nearest neighbours. The influence of the coupling con-
stants and their ratios on the possibility of localising and 
maintaining a localised state in space is also considered.

2. Statement of the problem. Basic equations

The starting point of our consideration is a system of equa-
tions for the amplitudes of coupled modes of an optical pho-
tonic lattice consisting of two infinite waveguide arrays: an 
array of waveguides Аn (A) and an array of alternating wave-
guides Bn (B) and Cn (C) parallel to it (Fig. 1). Nodes A, B, 
and C make up a cell that periodically repeats in space and 
forms an optical photonic lattice. One can see from Fig. 1 that 
each waveguide Аn interacts only with waveguides Bn of the 
parallel array, and each waveguide Bn, in addition, interacts 

with the nearest neighbouring waveguides Cn and Cn – 1 of the 
same array. The system of equations in the geometry of Fig. 1 
will have the form

i d
d
x
bn  + k(cn + cn – 1) + aan = 0,

i d
d
x
cn  + k( ) 0b bn n 1+ =+ ,

0i d
d
x
a

bn
na+ = , 

(1)

where a is the coupling constant of between arrays; x is the 
coordinate along the waveguide; k is the coupling constant 
of the waveguide with the nearest neighbours in the arrays B 
and C; and an, bn, and cn are the normalised field amplitudes 
of the propagating modes in the nth waveguide (Fig. 1). We 
consider a homogeneous array of waveguides; therefore, all 
waveguides in the array are characterised by the same propa-
gation constants. The evolution of light in such an array 
occurs along the waveguides in a direction orthogonal to the 
transverse periodic structure. The system of equations (1) is 
described in [16, 37, 38]. We use the Fourier transform for the 
functions an(x), bn(x), and cn(x):

( ) ( , ) ( )exp i da x a x n2
1

n p q q q= -
r

r-

y , 

( ) ( , ) ( )exp i db x b x n2
1

n p q q q= -
r

r-

y , 

( ) ( , ) ( )exp i dc x c x n2
1

n p q q q= -
r

r-

y . 

(2)

Substituting (2) into (1), for the Fourier transforms a(q, x), 
b(q, x),  and с(q, x) we obtain a system of first-order coupled 
linear differential equations:

id
d
x
b + k[1 ( )] 0exp i c aq a+ + = ,

id
d
x
c + k[1 + exp(– iq)]b = 0,

0id
d
x
a ba+ = . 

(3)

We will seek solutions for the field amplitudes an, bn, and 
cn in the system of equations (1) in the form of a plane 
wave:

An

Bn Cn Cn +1Bn +1

An +1An -1

Cn -1Bn -1

a

A

B Ck
k

Figure 1. Layout of the waveguides of two coupled parallel infinite ar-
rays in a photonic lattice.
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an(x) = aexp(ipx), bn(x) = bexp(ipx),

cn(x) = cexp(ipx), (4)

where p plays the role of the Bloch wave vector of the lattice 
[39]. Then system (1) takes the form

aa – pb + k[1 + exp(iq)]c = 0,

k[1 + exp(– iq)]b – pc = 0,

pa – ab = 0 

(5)

and will represent a system of linear homogeneous algebraic 
equations for the field amplitudes a, b, and c, a nontrivial 
solution of which is possible if

[ ( )]
[ ( )]

0exp
exp

i
i

p

p
p0 1

1

0

a
k q

a

k q
+ -

+

=

-

-
-

. (6)

Expression (6) makes it possible to determine the dispersion 
law for linear modes propagating in the transverse direction 
in an array of waveguides when they propagate in the longitu-
dinal direction x along the array. Expanding the determinant, 
we obtain a cubic equation for finding the eigenvalues of the 
wave vectors of the array, which characterise the excited lin-
ear state propagating without diffraction along the direction 
of the array [37, 40]:

p3 – pk2[1 + exp(– iq)][1 + exp( iq)] – pa2 = 0, (7)

whose solution will have the form

p1 = 0,  p2, 3 = ( )cos2 12 2! !k q a b+ + = . (8)

Solutions (8) represent a spectrum of linear states. One of 
them is the straight line p1 = 0, which characterises a linear 
flat band of the spectrum, and the other two are linear bands 
of opposite signs (Fig. 2). One can see that there is a ‘gap’ 
between the linear bands at a ¹ 0, the width of which is 2a; 
at a = 0 and the condition q = ± p , the gap is absent in the 
spectrum (Fig. 2b). The behaviour of the bands p2, 3 is deter-
mined by the values of the coupling constants between 
waveguide arrays and between waveguides in the array, 
while the flat band p1 does not depend on the coupling con-
stants in the lattice. The presence of a spectral linear flat 
band indicates that the amplitudes of the linear modes bn 
belonging to this band are equal to zero, which agrees with 
the results of Refs [37, 38].

The solutions to the system of equations (3) depend on 
arbitrary constants determined by the initial conditions. This 
system can be reduced to one second-order differential equa-
tion:

0
d
d
x
b b
2

2b+ =2 .

Using expressions (8), we will seek a solution to the equa-
tion for the field amplitude b(q, x) in the form

b(q, x) = B1 + B2exp(ipx) + B3exp(– ipx), (9)

where arbitrary constants B1, B2 and B3 can be found from 
the initial conditions

bn x n0 0; d== ,  a c 0n x n x0 0; ;= == =

(dn 0  is the Kronecker symbol), which at n = 0 (the end face of 
the zero waveguide B0 is pumped) take the form

b 1x0 0; == ,  0a cx x0 0 0 0; ;= == = . (10)

Substituting (10) into (9) and using the first equation of sys-
tem (3) with allowance for the initial condition 

( , )
i d
d

x
b x

0
q

=
0x=

,

we obtain the system of equations

B1 + B2 + B3 = 1,

B2 – B3 = 0.

to determine arbitrary constants.
As a result, we find

B1 = 0,  (11)

B2 = B3 = 2
1 , (12)

0

0

-p /2 p /2-p p
q/rad

0.35

-0.35

-0.70

p

0-p /2 p /2-p p
q/rad

0

0.35

-0.35

-0.70

p

a

b

Figure 2. Spectrum (dispersion relation) of the photonic lattice at a =  
(a) 0.3 and (b) 0; k = 0.3.
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and the solutions to the system of equations (3) for the Fourier 
transforms can be written in the form:

b(q, x) = B2exp(ipx) + B3exp(– ipx),

a(q, x) = i p
a sin( px) + A1,

c(q, x) = i p
k [1 + exp(– iq)]sin( px) + C1,  

(13)

where A1 and C1 are the integration constants. Taking into 
account the initial conditions (10) and (11), (12), we obtain 
A1 = 0  and C1 = 0. Then the final solutions to the system of 
equations (3) take the form

b(q, x) = cos( px),

a(q, x) = i p
a sin( px),

c(q, x) = i p
k [1 + exp(– iq)]sin( px). 

(14)

Substituting (14) into (2), we find the solutions for the func-
tions an(x), bn(x), and cn(x):

( ) ( ) ( )cos cosdb x n x1
n p q q b=

r

0
y ,

( ) ( )
( )

cos
sini da x n

x
n p

a q q b
b

=
r

0
y ,

( ) { ( ) [( ) ]}
( )

cos cos
sini dc x n n

x
1n p

k q q q b
b

= + +
r

0
y . 

(15)

Setting 4k2/a2 << 1, expanding b in series, and using the 
known relation

3

( ) ( ) ( )exp cos expi i ix J xk
ka q kq=

3+

k= -

/ ,

where Jk(x) is the kth-order Bessel function, we obtain a solu-
tion for bn(x):

( ) cosib x J x x1n
n
n

2

2

2

a
k a

a
k= +d dn n< F. (16)

Solution (16) is the nth-order Bessel function modulated by a 
cosine and describes the propagation of modes in waveguides 
Bn along the second array.

Let us consider other initial conditions when pumping is 
performed at the end face of the zero waveguide A0 of the first 
array:

an x n0 0; d== ,  0b cn x n x0 0; ;= == = . (17)

Then expressions (11) and (12) for the initial conditions (17) 
take the form

B1 = 0, (18)

B2 – B3 = p2
a , (19)

and the solution to the first equation of system (3)

( , )
0i d

d
x

b xq
a+ =

x 0=

taking into account (18) and (19) will be as follows:

( , ) ( ) ( ) ( )exp exp sini i ib x p px p px p px2 2q a a a= - =- .

Let us find a solution for the amplitudes a(q, x) and с(q, x) 
from the second and third equations of system (3) taking into 
account b(q, x):

a(q, x) = 
p2
2a cos( px) + A1,

c(q, x) = 
p2
ak [1 + exp(– iq)]cos( px) + C1.

Then, taking into account the initial conditions (17), we deter-
mine the integration constants A1 and C1 at x = 0:

A1 = 1 – 
p2
2a ,  C1 = – 

p2
ak [1 + exp(– iq)]. (20)

Then

( ) ( )
( )

cos
sini db x n

x
n p

a q q b
b

=
r

0
y ,

( ) ( )
( )

cos
sin

da x n
x2

n n0

2

2

2

d p
a q q

b
b

= -
r

0
y ,

( ) { ( ) [( ) ]}
( )

cos cos
sin

dc x n n
x

1n 2

2

p
ak q q q

b
b

= - + +
r

0
y .

 (21)

Let us consider the case of complete excitation of a unit cell of 
an optical photonic lattice, when pumping is performed at the 
end face of all zero waveguides of both arrays. The initial con-
ditions take the form

an x n0 0; d== , bn x n0 0; d== , cn x n0 0; d== . (22)

Taking into account (22), we write the solutions to the system 
of equations (3) for the Fourier transforms:

b(q, x) = cos( px),

a(q, x) = i p
a sin( px) + A1,

c(q, x) = i p
k [1 + exp(– iq)]sin( px) + C1. 

(23)

Let us define the integration constants at x = 0:

A1 = 1 – i p
a ,  C1 = 1 – i p

k [1 + exp(– iq)],
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and write the solution to system (1): 

( ) ( ) ( )cos cosdb x n x1
n p q q b=

r

0
y .

( ) ( )
( )

cos
sini da x n

x1
n n0

2

d p
a q q b

b
= -

-r

0
y ,

( ) { ( ) [( ) ]}
( )

cos cos
sini dc x n n

x
1

1
n p

k q q q b
b

= + +
-r

0
y .

 (24)

As for the intensities of propagating waves |an(x)|2, |bn(x)|2  
and |cn(x)|2, we can easily obtain for them the expression

( ) 1a b cn n n
n

2 2 2; ; ; ; ; ;+ + =
3

3+

= -

/ . (25)

This relationship is the law of conservation of energy in the 
system: at any point, regardless of the x coordinate, the sum 
of energies over all waveguides of both arrays is conserved 
and is equal to the energy pumped from the end face (x = 0) 
of the zero waveguide.

3. Results and discussion 

Let us first consider the case when pumping is performed only 
at the end face of the waveguide B0 of the second array. We 
investigate the spatial distribution of the light intensity in the 
waveguides of the arrays for different values of the coupling 
constants k and a.

If a ¹ 0 and k ¹ 0, then both waveguide arrays are 
excited. The spatial distribution of the light intensity in the 
arrays depends on the relationship between the constants 
and in unpumped waveguides is a sequence of intensity max-
ima separated by field zeros. Under the condition 4k2/a2 << 
1 , the light is localised in the zero waveguides of the arrays, 
and the spatial distribution of the light intensity in them is 
periodic. Such localisation at a sufficiently large distance 
along the array is possible under the condition of strong 
coupling. In this case, the light is highly localised and propa-
gates without transverse diffusion along the optical lattice. 
The maximum intensity is concentrated in the zero wave-
guides A0 and B0, where the periodic pump regime is 
observed, while the waveguides C0 and C1 are excited in the 
waveguides Cn (Fig. 3a). In this case, the intensity of the 
pumped light in the waveguides Cn is very low, and the pump 
period coincides with the pump period in the waveguides An. 
The light intensity in the waveguides Bn of the second array 
is determined by expression (16).

In the case a > k, both waveguide arrays are excited and a 
strong spatial diffusion of light in the transverse direction is 
observed in all waveguides of both arrays (Fig. 3b). In this 
case, the intensities of the light propagating in the waveguides 
An and Bn are the same, while the light intensity in the wave-
guides Cn of the second array increases. The intensity of the 
light in the pumped waveguide rapidly decreases as it propa-
gates along the array due to the presence of strong transverse 
diffraction and the light pumping between the arrays; the 
region of the excited waveguides of both arrays depends on 
the constant k.

If a = k, then the spatial intensity distribution is a set of 
minima and maxima of the propagating light located sym-
metrically with respect to the zero waveguides A0 and B0, 
while the waveguides Cn exhibit symmetry of the intensity dis-

tribution relative to the excited waveguides C0 and C1 
(Fig.  3b). The main part of the light intensity is concentrated 
in the waveguides Bn of the second array. Figure 3d shows the 
spatial distributions of the light intensity in the first and sec-
ond waveguide arrays for a < k. In this case, the light intensity 
distribution is a complex superposition of oscillations in all 
waveguides of both arrays, and a rapid attenuation of the 
light is observed in them due to the presence of transverse dif-
fusion of light. One can see that for these values of the con-
stants, the intensity of the propagating light is concentrated in 
the waveguides Bn and Cn, which is due to the value of the 
parameter k.

Let us now consider the case when pumping is performed 
only at the end face of the zero waveguide A0 of the first 
array. We investigate the spatial distribution of the light 
intensity in the arrays of waveguides of the optical lattice for 
the same values of the coupling constants k and a as in the 
previous case.

If a >> k, then both arrays of the waveguides are excited. 
The spatial intensity distribution in the waveguides is a peri-
odic sequence of intensity maxima separated by field zeros, 
most of the light is localised in the zero waveguides of arrays 
A and B, and the light intensity in the waveguides C0 and C1 
is very low (Fig. 4a). In the case when a > k, the behaviour 
of the spatial distribution of the light intensity in the wave-
guides changes qualitatively, i.e. spatial diffusion of the light 
is observed in the waveguides of arrays A and B, and the 
region of excited waveguides increases as the light propa-
gates along the lattice. In this case, the light remains localised 
in the excited waveguides C0 and C1 of the second array 
(Fig. 4b). If a = k, then spatial diffusion of the light exists in 
all waveguides of both arrays, their excitation occurring at a 
closer distance from the end face of the lattice (Fig. 4c). When 
a < k , the light near the end face is localised in the zero wave-
guide of the first array. At some distance from the end face, 
there arises spatial diffusion of the light and successive excita-
tion of the array waveguides is observed; however, the light 
intensity in the excited waveguides is very small and the wave-
guides of the arrays B and C exhibit strong spatial diffusion of 
light, which emerges at a very small distance from the end 
face. In this case, the waveguides of the array B are succes-
sively excited, the light intensity in which decreases at a cer-
tain distance and then increases again. The nature of the spa-
tial distribution of the light intensity in all waveguides of both 
arrays is different (Fig. 4d).

Let us consider the case of complete excitation of a unit 
cell of an optical photonic lattice, when pumping is performed 
at the end face of all zero waveguides of arrays A, B, and C 
(22). We investigate the spatial distribution of the light inten-
sity in the arrays of waveguides of the optical lattice for the 
same values of the coupling constants k and a as in other 
cases. One can see from Fig. 5a that for a >> k both arrays of 
waveguides of the lattice are excited and the propagating light 
is strongly localised in the pumped waveguides of both arrays. 
The spatial distribution of the intensity in the waveguides is a 
sequence of intensity maxima separated by field zeros, and 
the spatial distribution of the light intensity in the zero wave-
guides of both arrays is periodic. For a > k (Fig. 5b), the light 
in the waveguides of the first and second arrays A and B is 
still localised, and at a certain distance from the end face, spa-
tial transverse diffusion of radiation arises symmetrically with 
respect to the waveguides A0 and B0. In the waveguides of the 
second array C, spatial diffusion arises asymmetrically with 
respect to the zero waveguide С0 and waveguide С1  (Fig. 5b).



1151Electromagnetic waves in an optical photonic lattice

8

4

0
0

0

5

5-5
n

x

x

A B C

8

4

0

x

8

4

0

x

0 5-5
n 0 5-5

n

0 5-5 n

10

0

5

x

x

10

16

12

8

4

0
0 10-10

n 0 10-10
n 0 10-10

n

x

16

12

8

4

0

x

16

12

8

4

0

0 5-5 n 0 5-5 n

0 5-5
n

0 5-5
n

0 5-5
n

0

5

x

10

0

5

x

10

0

5

x

10

0

5

x

10

a

b

c

d

Figure 3. Spatial distributions of the light intensity in the first and second arrays of the lattice waveguides as functions of the coordinate x under 
pumping into the end face of the waveguide B0 for different values of the constants: (a) a = 0.9, k = 0.01; (b) a =0.9, k =0.3; (c) a = 0.3, k = 0.3; 
and (d) a = 0.3, k = 0.6.
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Figure 4.  Spatial distributions of the light intensity in the first and second arrays of the lattice waveguides as functions of the coordinate x under 
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If a = k (Fig. 5c), then the light is localised in the zero 
waveguide of the first array. The waveguides of the second 
array exhibit spatial diffusion of the light and are successively 
excited: symmetric with respect to B0 in waveguides of the 
array B and asymmetric with respect to С0 in the waveguides 
C; in this case, the region of the excited waveguides of the 
second array increases. In the case a < k (Fig. 5d), spatial dif-
fusion of the light is observed in all waveguides of both arrays, 
and the region of the excited waveguides of the arrays A and 
B increases, remaining symmetric with respect to the zero 
waveguides, while in the waveguides of the second array C, 
spatial diffusion is still asymmetric with respect to the wave-
guide С0.

4. Conclusions

Using the coupled mode method, the spatial distribution of 
the intensity of the light propagating in an optical photonic 
lattice consisting of two parallel arrays of waveguides is theo-
retically studied under different initial conditions. The choice 
of the initial conditions significantly affects the intensity dis-
tribution in the waveguides of the optical photonic lattice. It 
is shown that this distribution is a periodic function of the 
coordinate and depends on the coupling constants in the lat-
tice. The results of the theoretical study allow us to speak 
about the presence of a criterion that determines the possibil-
ity of localising the light propagating without transverse dif-
fraction along the array in the waveguide arrays of the lattice. 
This fact makes it possible to conclude that localisation in the 
geometry under consideration can be experimentally observed 
only in an optical photonic lattice with strong coupling. It is 
also shown that for certain values of the coupling constants in 
the array, there is a complete periodic pumping of the light 
between the arrays. It is found that in the system in question 
one can observe spatially limited transverse diffraction of 
light, which substantially depends on the parameters of the 
system. In addition, the relationship between these parame-
ters makes it possible to control the intensity of the pumped 
light propagating in the waveguides of the arrays. The 
obtained theoretical results and the results of numerical simu-
lations are in complete agreement with the results of the 
experiment [33] and can find application in the development 
of optical devices in quantum electronics for controlling the 
propagation of light.

References
 1. Morales-Inostroza L., Vicencio R.A. Phys. Rev. A, 94, 043831 

(2016).
 2. Guzmán-Silva D. New J. Phys., 16, 063061 (2014).
 3. Vicencio R.A. et al. Phys. Rev. Lett., 114, 245503 (2015).
 4. Mukherjee S. et al. Phys. Rev. Lett., 114, 245504 (2015).
 5. Xia S. et al. Opt. Lett., 41, 1435 (2016).
 6. Xia S., Ramachandran A., Xia S., et al. Phys. Rev. Lett., 121, 

263902 (2018).
 7. Zong Y., Xia S., Tang L., et al. Opt. Express, 24, 8877 (2016).
 8. Makasyuk I., Chen Z., Yang J. Phys. Rev. Lett., 96, 223903 

(2006).
 9. Schwartz T., Bartal G., Fishman S., Segev M. Nature, 446, 52 

(2007).
10. Fleischer J.W., Segev M., Efremidis N.K., Christodoulides D.N. 

Nature, 422, 147 (2003).
11. Weimann S., Morales-Inostroza L., Real B., Cantillano C., 

Szameit A., Vicencio R.A. Opt. Lett., 41, 2414 (2016).
12. Johansson M., Naether U., Vicencio R.A. Phys. Rev. E, 92, 

032912 (2015).
13. Vicencio R.A., Mejía-Cortés C. J. Opt., 16, 015706 (2014).

14. Song D. et al. Opt. Express, 24, 8877 (2016).
15. Ma J., Rhim J.-W., Tang L., et al. Nanophotonics, 9 (5), 1161 

(2020).
16. Flach S., Leykam D., Bodyfelt J.D., Matthies P., 

Desyatnikov A.S. Eur. Phys. Lett., 105, 30001 (2014).
17. Vicencio R.A., Johansson M. Phys. Rev. A, 87, 061803(R) (2013).
18. Mukherjee S., Thomson R.R. Opt. Lett., 40, 5443 (2015).
19. Goblot V., Rauer B., Vicentini F., Le Boité A., Galopin E., 

Lemaître A., Le Gratiet L., Harouri A., Sagnes I., Ravets S., 
Ciuti C., Amo A., Bloch J. Phys. Rev. Lett., 123, 113901 (2019).

20. Blundell S.A., Núñez-Regueiro M.D. Eur. Phys. J. B, 31, 453 
(2003). 

21. Huber S.D., Altman E. Phys. Rev. B, 82, 184502 (2010).
22. Baboux F. et al. Phys. Rev. Lett., 116, 066402 (2016).
23. Rojas-Rojas S., Morales-Inostroza L., Vicencio R.A., Delgado A. 

Phys. Rev. A, 96, 043803 (2017).
24. Zhang T., Jo G. Sci. Rep., 5, 16044 (2015).
25. Zou H., Zhao Er., Xi-Wen Guan, Liu W.V. Phys. Rev. Lett., 122, 

180401 (2019).
26. Gozman M.I., Polishchuk Yu.I., Polishchuk I.Ya. Opt. Eng., 53 

(7), 071806 (2014).
27. Wang G., Huang J.P., Yu K.W. Opt. Lett., 35, 1908 (2010).
28. Gozman M.I., Guseynov A.I., Kagan Yu.M., Pavlov A.I., 

Polishchuk I.Ya. arXiv:1501.06492 (2015).
29. Keil R. et al. Appl. Phys. Lett., 107, 241104 (2015).
30. Korovay O.V., Krukovskii A.P., Khadzhi P.I. Quantum Electron., 

48 (1), 37 (2018) [ Kvantovaya Elektron., 48 (1), 37 (2018)].
31. Korovay O.V., Khadzhi P.I., Markov D.A. Quantum Electron., 49 

(2), 150 (2019) [ Kvantovaya Elektron., 49 (2), 150 (2019)].
32. Du L., Zhang Y. J. Opt. Soc. Am. B, 37 (7), 2045 (2020).
33. Gneiting C., Li Z., Nori F. Phys. Rev. B, 98, 134203 (2018).
34. Leykam D., Andreanov A., Flach S. Adv. Phys.: X, 3 (1), 677 

(2018).
35. Leykam D., Flach S. APL Photonics, 3, 070901 (2018).
36. Danieli C., Maluckov A., Flach S. Low Temp. Phys., 44, 678 

(2018) [ Fiz. Nizk. Temp., 44, 865 (2018)].
37. Real B., Cantillano C., López-González D., Szameit A., Aono M., 

Naruse M., Song-Ju Kim, Wang K., Vicencio R.A. Sci. Rep., 7, 
15085 (2017).

38. Leykam D., Bodyfelt J.D., Desyatnikov A.S., et al. Eur. Phys. J. 
B, 90, 1 (2017).

39. Vicencio R., Cantillano C., Morales-Inostroza L., Real B., 
Mejía-Cortés C., Weimann S., Molina A. Phys. Rev. Lett., 114, 
245503 (2015).

40. Lazarides N., Tsironis G.P. Sci. Rep., 9 (1), 4904 (2019). 


