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Abstract.  Based on the dispersion relation for a wave localised in a 
thin film of a nonlinear dielectric, which is located on the surface of a 
topological insulator, we have derived a system of equations that 
describes the propagation of a surface wave. It is shown that the lon-
gitudinal and transverse tangential components of the electric field 
vector are related due to the nonlinearity of the film and change peri-
odically during propagation. It is found that the rotation period of 
this vector is determined by the axion charge of the topological 
dielectric and the nonlinear susceptibility of the thin film.

Keywords: thin film, topological insulator, dispersion relation, 
wave localisation, travelling waves, nonlinear waves.

1. Introduction

A number of phenomena of nonlinear optics are being inves-
tigated in thin films, which represent a layer of a polarisable 
material with a thickness significantly less than the wave-
length of electromagnetic radiation. The first works in this 
direction were devoted to the study of optical bistability [1 – 7] 
and related issues, such as dynamic chaos [8 – 10]. Many non-
linear optical processes occurring at the interface between 
media have been studied on the basis of the thin film model. 
We should mention here the investigations of coherent tran-
sient processes, in particular superradiance [11 – 14], photon 
echo [15], reflection and refraction of ultrashort pulses  
[1, 2, 6,  16 – 24], and parametric processes [25 – 28]. It was 
most often assumed that the nonlinear properties of a thin 
film are due to the presence of resonant (two-level or three-
level) atoms in it. However, a film can exhibit the nonlinear 
properties, for example, in the case of ferroelectric media [29], 
semiconductors [30], polymers [23, 31], and metals [32, 33].

For a surface wave to exsits, the dielectric constant of one 
of the media must be negative. This condition is fulfilled for 
the metal – dielectric interface. Artificially created media, i.e. 
metamaterials [34, 35] and hyperbolic media [36, 37], have a 
negative dielectric constant. However, if a thin film of a polar-
isable material is located at the interface between two dielec-
trics with positive dielectric constants, then the displacement 
currents induced in it can also ensure the existence of a sur-
face wave. Thus, the use of thin films expands the region of 
existence of surface waves.

It is known that when a wave passes through an interface 
between various topological insulators (with conventional 
dielectrics), the vectors of the magnetic and electric fields 
rotate [38 – 40]. For this reason, there are no separate surface 
TE or TM waves and the surface wave is hybrid, i.e. all com-
ponents of its fields are nonzero. This is the peculiarity of sur-
face waves at the dielectric – topological insulator interface.

In this work, we investigated the propagation of an elec-
tromagnetic wave localised in a thin film of a nonlinear dielec-
tric located at the interface between a topological insulator 
and an ordinary dielectric. Because the film thickness is less 
than the radiation wavelength, a macroscopic description of 
the fields inside the film is impossible, and the presence of the 
film manifests itself through the conditions of continuity/dis-
continuity of the field components and inductions [1, 2, 41]. 
These conditions in relation to the considered situation are 
presented in Section 2. The nonlinear dispersion relation for 
the surface wave is obtained in Section 3. The truncated wave 
equations for the tangent components of the electric field 
slowly varying in space and time are derived in Section 4. The 
solution to the wave equations is presented in Section 5. It is 
shown that the tangential transverse and longitudinal compo-
nents of the electric field envelope vary periodically in time 
and space so that the tangential vector of the electric field 
rotates in the interface plane with a certain frequency. The 
normal component of the electric field vector changes syn-
chronously with the longitudinal component.

2. Role of surface currents at the interface

The propagation of an electromagnetic wave in a dielectric 
or in a topological insulator is described by the system of 
Maxwell’s equations (there are no free charges and currents) 
[42]

¶
¶rot c tE B1= - ,  divB = 0,	 (1)

¶
¶rot c tH D1= ,  divD = 0.	 (2)

In this case, inductions and fields in a dielectric are related by 
the relations H = B and D = E + 4pP, and in a topological 
insulator , by the relations H = Ha /  B – aqE and D = Da /  
E + 4pP + aqB. Here a is the fine structure constant, and the 
parameter q, called the axion charge [42], is zero in a conven-
tional dielectric and p (mod2p) in a topological insulator [40]. 
When a wave passes from one medium to another, the field 
strengths and inductions change according to the conditions 
of continuity at the interface.
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Let the coordinate axes be chosen so that the normal to 
the interface plane n is directed along the x axis, and the unit 
vectors ez and ey of the z and y axes lie in the interface plane, 
and the z axis is directed along the wave vector of the surface 
wave, while the y axis is perpendicular to it. Continuity condi-
tions are derived from equations (1) and (2). If on both sides 
of the interface there are media with different values of q, then 
the following conditions are satisfied [43, 44]:

(D(1) – D(2))n = a(q(2) – q(1))B(1)n,

(H(1) – H(2))ez, y = a(q(1) – q(2))E(1)ez, y,

(B(1) – B(2))n = 0,  (E(1) – E(2))ez, y = 0.	

(3)

Hereinafter, the superscript indicates the medium number. 
Expressions (3) mean that a current flows along the interface

4
cja p
a= (q(1) – q(2))E(1) ́  n,

having a topological nature. Its direction is determined by the 
orientation of the interface and the difference in numbers 
q(1, 2). As in the Hall effect, the current ja is perpendicular to 
the electric field.

If a thin (less than a wavelength) film of a substance is 
located at the interface, which is characterised by polarisation 
Pf, then continuity conditions (3) (their derivation at q = 0 
and in the absence of a thin film can be found in [45], and 
when the thin film is taken into account, in [1 – 10]) are modi-
fied and take the form:

(D(1) – D(2))n = a(q(2) – q(1))B(1)n,

(B(1) – B(2))n = 0,  (E(1) – E(2))ez, y = 0,

(H(1) – H(2))ez = a(q(1) – q(2))E(1)ez ¶
¶4

c t
p+ Pf ey,

(H(1) – H(2))ey = a(q(1) – q(2))E(1)ey ¶
¶

c t
4p- Pf ez .	

(4)

According to (4), magnetic inductions experience a disconti-
nuity determined by surface currents: topological current ja 
and displacement current in a thin film.

3. Fields outside the interface 
and the dispersion relation

In the chosen coordinate system, the strengths of all fields 
depend only on the variables x, z and time. In this case, for the 
components of the electric field Ey and the magnetic field Hy , 
we can write the wave equations, and express the remaining 
components in terms of them. Then the system of Maxwell’s 
equations is reduced to the system of equations for the Fourier 
components of the field strengths:
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where k0 = w/c. Since the media are homogeneous in the 
direction of the z axis, all fields and induction can be rep-
resented as E(x, z; w) = e(x; w)exp(ibz), H(x, z; w) = 
h(x; w)exp(ibz) and D(x, z; w) = d(x; w)exp(ibz), where b 
is the propagation constant. This allows us to reduce the 
system of the above equations to two ordinary equations 
for the components ey(x) and ez(x). The rest of the compo-
nents are expressed through them. Let the media be isotro-
pic and the dielectric constant be e(w) = e1 at x < 0 and 
e(w) = e2 at x > 0.

Outside the thin film, the media are linear, and the equa-
tions for ey(x) andez(x) have the form

¶

¶
0

x

e
p e

,
,

y z
y z2

2
2- =  for x > 0,

¶

¶
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q e

,
,

y z
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2
2- =  for x < 0,

where p2 = b2 –k0
2e2 and q2 = b2 –k0

2e1. Solutions for all fields 
in linear media that satisfy the boundary conditions (for sur-
face waves, the fields vanish far from the interface) are written 
in the form:

e ( )x
1 (x) = [ b/(iq)]B1exp(qx),  e ( )y

1 (x) = A1exp(qx),

e ( )z
1 (x) = B1exp(qx),

h ( )x
1 (x) = – (b/k0)A1exp(qx),  h ( )y

1 (x) = [k0 e1/(iq)]B1exp(qx),

h ( )z
1 (x) = – (iq/k0)A1exp(qx)

for x < 0 and

e ( )x
2 (x) = (i b/p)B2exp(– px),  e ( )y

2 (x) = A2exp(– px),

e ( )z
2 (x) = B2exp(– px),

h ( )x
2 (x) = – ( b/k0)A2exp(– px),  h ( )y

2 (x) = (ik0 e2/p)B2exp(– px), 

h ( )z
2 (x) = (ip/k0)A2exp(– px)

for x > 0.
The continuity conditions at x = 0 allow one to determine 

the amplitudes A1, 2 and B1, 2. In the case under consideration, 
this leads to the equations

A1 = A2,  B1 = B2,

4iq p B k A pz
1 2

1
0
1 p

e e k+ = -a k ,	 (5)

(q + p)A1 = ikk0B1 + 4p k0
2py,	 (6)

where  k = aDq; Dq =  q(1) – q(2); and pz and py are the tan-
gential components of the thin film polarisation.

For film polarisation, we employ the model used in 
[46,  47]:

py, z = cey,z(0) + c3[|ey(0)|2 + |ez(0)|2]ey,z,
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where ey,z(0) are the tangential components of the wave elec-
tric field inside the film, that is, at point x = 0; c and c3 are 
linear and nonlinear third-order susceptibilities. Due to the 
continuity of the tangent components, we have ey(0) = A1  
and ez(0) = B1. Consequently, py = R(|A|2,|B|2)A and pz = 
R(|A|2,|B|2)B, where R(|A|2,|B|2) = c + c3(|A|2 + ½B½2). 
The indices for variables A and B are omitted hereinafter.

Taking into account the expressions for polarisation, 
equations (5) and (6) can be rewritten as

a11A – a12B = g1A,  a21A + a22B = – g2B,	 (7)

where the following notations are introduced

a11 = p + q – 4pk0
2c,  a12 = k0k,  a22 = e1p + 4ppqc, 

a21 = (k/k0)pq,  g1 = 4pk0
2c3(|A|2 + |B|2),

g2 = 4ppqc3(|A|2 + |B|2) .

For the case of a linear thin film (c3 = 0) , Eqns (7) become a 
homogeneous system of linear equations, a nontrivial solu-
tion of which is possible if its determinant vanishes: f(w, b) /  
a11a22 + a12a21 = 0. This is the dispersion relation for linear 
surface waves. In the nonlinear case, waves with amplitudes A 
and B are coupled due to the nonlinearity of the film polarisa-
tion. Equations (7) can be considered a nonlinear generalisa-
tion of the dispersion relation. To clearly determine the 
expression that defines the dispersion law of linear waves, we 
rewrite (7) in an equivalent form:

(a11a22 + a12 a21)A = f(w, b)A 

	 = Rnl (|A|2,|B|2)(a22 k0
2A – a12 pqB),	 (8)

(a11a22 + a12 a21)B = f(w, b)B

	 = Rnl(|A|2,|B|2)(a21 k0
2A + a11 pqB),	 (9)

where Rnl(|A|2,|B|2) = 4p c3(|A|2 + |B|2) reflects the non-
linear properties of a thin film in the Agranovich – Babichenko –
Chernyak model [46, 47].

Below, we will consider the propagation of a quasi-har-
monic wave, which can be represented as a wave with a slowly 
varying envelope.

4. Equations describing a surface 
quasi-harmonic wave

If we determine the normalised envelopes of the tangential 
components of the electric field of the surface wave inside a 
thin film y1 and y2 by the formulas

Aexp(i bz) = (k0kpq)1/2 y1,  Bexp(i bz) = (k0kpq)1/2 y2,

then equations (8) and (9) can be written in the form:

f(w, b)y1 = 4pc3(|y1|2 + |y2|2)(d1y1 – y2) ,	 (10)

f(w, b)y2 = – 4pc3(|y1|2 + |y2|2)(d2y2 + y1) .	 (11)

Here we introduced the parameters 

d1 pq
k a0 22
k= ,  d2 k

a
0

11

k= .

Let the tangential components of the electric field of the sur-
face wave be described by quasi-harmonic waves y1, 2 (z, t) = 
u1, 2(z, t)exp(i bc z – i wc t), where wc is the carrier wave fre-
quency, and bc is its propagation constant related to fre-
quency by the equation f(wc, bc ) = 0. Envelopes u1, 2(z, t) are 
assumed to be slowly varying in space and time in compari-
son with changes in the carrier wave. Let the Fourier com-
ponents of the quasi-harmonic wave satisfy the nonlinear 
dispersion relation f(w, b)y1, 2(w, b) = h1, 2(w, b;|y1, 2|2), in 
which the right-hand side is a small quantity. In the case 
when h1, 2 = 0, the dispersion relation for the envelope fol-
lows from the dispersion relation for the quasi-harmonic 
wave: f(wc + w, bc + b)u1, 2(w, b) = 0. If h1, 2 ¹ 0, the problem 
can become very complex. There is a method for obtaining 
an approximate dispersion relation for u1, 2(z, t) [48, 49]. If 
h1, 2 is considered as a small perturbation, then in the first 
order of smallness we have

f(wc + w, bc + b)u1, 2(w, b) = h1, 2(wc + w, bc + b;|u1, 2|2) ,

or

f(wc + w, bc + b)u1, 2(w, b) = h1, 2(wc, bc;|u1, 2|2) .	 (12)

For a quasi-harmonic wave, the functions u1, 2(w, b) are non-
zero in the region where w << wc  and k << k0. Therefore, we 
can expand f(wc + w, bc + b) in a Taylor series and restrict 
ourselves to the first (or first and second, if we take into 
account second-order dispersions) order of derivatives. Since 
f(wc, bc ) = 0, expression (12) is written as

w
¶
¶

¶
¶f f

gw b b+ +d nu1, 2(w, b) = h1, 2(wc, bc;|u1, 2|2).

The derivatives in brackets are calculated at point (bc, wc), 
and the ellipsis denote the higher orders of the expansion in 
b and w. Since b and w in the vicinity of point (bc, wc) are 
related by the dispersion relation f(w, b) = 0, we can use 
the theorem on the differentiation of an implicit function, 
which yields ¶ ¶/f b  = – (dw/db)¶ ¶/f w , and determine the 
group velocity ug = (¶ ¶/w b ) [48, 49]. The substitutions w ® 
¶ ¶/i t , b ® –  ¶ ¶/i z  and u1, 2(w, b) ® u1, 2(z, t) lead to an evolu-

tionary equation for slowly varying envelopes. By applying 
this procedure to the system of equations (10) and (11), one 
can obtain a system of equations describing the propagation 
of a surface wave in a nonlinear thin film on the surface of a 
topological insulator:

¶
¶

¶
¶i t z u1gu m+ =a k (|u1|2 + |u2|2)(d1u1 – u2) ,	 (13)

¶
¶

¶
¶i t z u2gu m+ = -a k (|u1|2 + |u2|2 )(d2u2 + u1) ,	 (14)

where m = 4pc3(¶ ¶/f w )– 1 and derivatives are calculated for 
w = wc. Equations (13) and (14) describe the change in the 
envelopes of the tangent components of the electric fields of 
the surface wave without taking into account the dispersion 
of group velocities and in this sense can be called truncated 
(reduced) wave equations. Similar equations were obtained 
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when considering surface waves at the interface between a 
nonlinear dielectric and a topological insulator [50]. The dif-
ferences are in the form of the right-hand sides of equations 
(13) and (14) and are caused by a different type of nonlinear-
ity in the problem considered in [50].

5. Stationary nonlinear surface wave

Since the group velocity dispersion is absent, one can use the 
derivative along the characteristic

¶
¶

¶
¶

¶
¶

t zgz u= +a k

and pass from (13) and (14) to a system of ordinary differ-
ential equations. It is also useful to pass to real variables 
u1(z, t) = aexp(ij1), u2(z, t) = bexp(ij2) and rewrite the 
resulting system of equations in real form:

¶
¶a
z =  – m(a2 + b2)bsinF,  ¶

¶b
z =  m(a2 + b2)asinF ,	 (15)

¶
¶ ( ) cosa b b

a
a
b2 2

z m dF F= + + -d n< F,	 (16)

where the phase difference F = j2 – j1 and the parameter 
d = d1 + d2 are introduced. Equations (15) and (16) resem-
ble the equations arising in the description of the paramet-
ric interaction of waves. For this reason, it can be expected 
that the transformation of the transverse tangent compo-
nent of the electric field ey(z; t) into the longitudinal com-
ponent ez(z; t) and vice versa will be periodic.

The system of equations (15) and (16) has two integrals of 
motion:

a2 + b2 = a0
2 ,  abcosF a I2

2
0

d- = .

If we exclude b from these expressions, then there remains one 
equation,

¶
¶ sinw w1 2

z F= - - ,	 (17)

2 /cosw w w J I a1 2 2
0 0 0

2dF- - = = ,

for the variable w = a/a0, which depends on a0
2x m z= . The 

constant J0 is determined by the initial conditions. In the 
general case, the solution to equation (17) is expressed in 
terms of elliptic functions and is cumbersome. However, if 
we assume that at the initial moment the electric field had no 
transverse component, i.e. ey(z; 0) = 0, then at subsequent 
times, the transverse component will change according to 
the formula

( ) sina a a
4
4

4
4

0 2

2

0
2z

d
m d z=

+
+d n.	 (18)

The phase difference F is determined by the ratio

,cos
cos

sin
a

4 4
42

2 2

2 2

0
2

2

d f
d f

f m d zF =
+

=
+

.

It follows from the expression for the first integral of 
motion that the envelope of the longitudinal field component 
ez(z; t) has the form

( ) cosb a a
4
4

4
4

0 2

2

0
2z

d
m d z=

+
+d n.	 (19)

It can be seen from (18) and (19) that the components ey(z; t)  
and ez(z; t) change harmonically with a shift by p/2. This 
means that the nonlinear properties of a thin film manifest 
themselves during the rotation of the tangential vector of the 
electric field in the plane of the dielectric – topological insula-
tor interface.

From (18), it is possible to determine the period T of oscil-
lations (changes in space and time) of the electric field enve-
lope ey(z; t) or ez(z; t). If the measured quantity is the squared 
envelope (i.e. the intensity of the wave), then

a T4
4 2

0
2 pm d+ = .	 (20)

Since k » 10–2, the parameter

k
a

pq
k a1

0

11 0 22d k= +d n » 10 2.

Consequently, the expression under the root in (20) is much 
greater than unity. This allows one to find an estimate for the 
period Т :

T » 
a 30
2c
k .

Thus, the oscillation period can vary as a function of the sur-
face wave intensity.

6. Conclusions

We have considered a surface wave propagating along the 
interface between a topological insulator and a conven-
tional dielectric. A thin film of nonlinear dielectric is 
located at the interface, due to which the electromagnetic 
wave is localised at this interface. In the absence of a film, 
a surface wave can exist only if the signs of the dielectric 
constants of the media are opposite or the dielectric is non-
linear. The magnetoelectric effect inherent in a topological 
insulator leads to mixing (hybridisation) of transverse elec-
tric (TE) and transverse magnetic (TM) waves, and the 
nonlinearity of the film leads to their interaction. As a 
result, the tangential vector of the electric field of the sur-
face wave rotates in the plane of separation of the media 
during wave propagation. In this case, the normal compo-
nent of the electric field oscillates with the same frequency. 
By varying the intensity of the surface wave, the oscillation 
period can be changed.

To take into account the nonlinear properties of a thin 
film, a simple model was used [46, 47], which allows the pro-
cesses occurring in the film to be described qualitatively. Of 
fundamental importance is the magnetoelectric effect that is 
typical of a topological insulator.
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