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Abstract.  Based on the exact solution of the Maxwell equations in 
the form of a collapsing spherical vector wave specified by an arbi-
trary function of time, we have calculated the maximum energy 
density that can be achieved when focusing extremely short pulses 
of various shapes. It is shown that our earlier formula expressing 
the maximum energy density in terms of the spectrum parameters 
for Gaussian quasi-monochromatic pulses is approximately (with 
an accuracy of ±40 %) valid for the main types of extremely short 
pulses.

Keywords: single-cycle and sub-cycle electromagnetic pulses, col-
lapsing spherical vector wave, Maxwell equations.

1. Introduction

The generation and application of ultrashort laser pulses with 
a small number of field cycles have attracted attention for two 
decades [1 – 3]. These pulses are widely used in nonlinear 
optics, in the study of fast processes, in laser technologies, and 
in a number of other fields. In addition, the spatio-temporal 
couplings are most pronounced for them, namely, the depen-
dence of the temporal and spectral characteristics of coherent 
radiation on the position (coordinate) of the detector [4 – 7]. 
In our previous paper [8], the field evolution in collapsing 
quasi-monochromatic electromagnetic pulses was considered. 
In this work, following [8], by an example of the simplest 
exact solution of the Maxwell equations for a finite-energy 
beam, we consider the evolution of collapsing ultrashort 
pulses whose duration is on the order of the light wave period.

The second section is devoted to a review of works on 
finding exact solutions of the Maxwell equations in vacuum. 
Section 3 gives a brief derivation of one of the solutions that 
describes an electromagnetic pulse with the shape of a col-
lapsing shell and discusses its main properties, including the 
ratio of the maximum energy density to the total pulse energy. 
Further, in Section 4, for nonmonochromatic beams, the 
average frequency and line width (dispersion) are determined, 
which are then used in this section and in Section 6 to describe 
quasi-monochromatic pulses, as well as single-cycle and half-
cycle ones and their focusing parameters. In Section 5, an esti-
mate of the energy density at the centre of a collapsing pulse 
for comparison is obtained from thermodynamic consider-

ations and using the Fresnel integral. The Appendix considers 
the property of a three-dimensional wave equation, with the 
help of which the method of the present work can be extended 
to collapsing electromagnetic shells of a more complex geom-
etry. 

2. On exact solutions of the electromagnetic 
field equations

Suppose that there is a laser pulse with energy E . What is the 
maximum density of electromagnetic energy em that can be 
obtained by focusing it? How does focusing change its shape 
and spectrum? Such questions require the development of 
theoretical models based on solutions of the Maxwell equa-
tions, which satisfy two conditions: the localisation of the 
solution, which means finiteness of the total energy E  equal 
to the integral of the energy density e(r, t) over the entire 
space, and the impossibility of representing the field as a 
product of spatial and temporal parts. We note immediately 
that an ordinary Gaussian beam, as well as any monochro-
matic beam, do not satisfy these conditions. However, their 
superposition can be used to describe beams having a finite 
spectral width and energy.

The development of laser physics and, especially, lasers 
generating ultrashort pulses containing a small number of 
field periods, gave rise to rapid growth of interest in studying 
the exact solutions of the Maxwell equations for nonmono-
chromatic beams, which, unlike Gaussian beams, can be 
directly used to solve the above problems of ultrashort laser 
pulse physics.

Let us list the main approaches to obtaining exact solu-
tions of the electromagnetic field equations, which are widely 
used in optics and laser physics. The best known are exact 
solutions in the form of Gaussian beams and Fresnel integrals 
of a parabolic wave equation, which itself is approximate. 
Therefore, such approaches are applicable, strictly speaking, 
only for monochromatic and narrowly directed (paraxial) 
beams*. To model nonparaxial monochromatic beams, com-
plexified (obtained by shifting one of the coordinates to the 
complex plane) spherical waves and other exact solutions of 
the Helmholtz equation describing harmonic (monochro-
matic) electromagnetic fields are used [9 – 11]. However, for 
the above reasons, the parabolic wave equation and the 
Helmholtz equation are not suitable for describing the effects 
considered in this paper, and hereinafter we will discuss only 
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the complete system of Maxwell’s vector equations. In this 
case, most of the work on finding exact solutions relies on the 
deep connection of the Maxwell equations with the scalar 
wave equation, known since the beginning of the last century 
[12]. In particular, any solution to the latter makes it possible 
to construct an exact solution of Maxwell’s equations using 
elementary vector operations (see below)*. Due to this fact, 
the problem is reduced to finding the exact solutions of the 
scalar wave equation. The simplest spherically symmetric 
solution [14, 15] is used in our work (see Section 3). The exact 
solution of the equations for an electromagnetic field with 
finite energy based on it is no longer spherically symmetric, 
but possesses a more complex symmetry, corresponding to 
the angular dependence of the characteristics of the radiation 
of a dipole.

Probably, for the first time the exact solutions of the 
Maxwell equations were used to describe ultrashort laser 
pulses by Helwarth et al. [16 – 18]. The authors of these works 
used the method based on the scalar wave equation that 
became standard by that time, but instead of the spherically 
symmetric solution, they used a more complex one having 
cylindrical symmetry, found earlier in [11]. It served as a ‘gen-
erating function’ for beams corresponding to exact non-sin-
gular solutions of Maxwell’s equations and having a dough-
nut shape in focus. The results of the calculation were used to 
describe single-cycle laser pulses and their spatiotemporal 
correlations, the acceleration of relativistic electrons by them, 
and experiments with terahertz radiation. The possibilities of 
obtaining such pulses in waveguides and resonators with 
curved mirrors were discussed. 

In Ref. [19], which is a development of [20], the structure 
of focused laser beams is studied in order to observe quantum 
electrodynamic effects. It also applies the scalar wave equa-
tion method with a generating function having axial symme-
try. However, instead of the standard operator [12, 13], a new 
operator is proposed that transforms this function into the 
solution of Maxwell’s equations. The structure of focused 
harmonic and sub-cycle pulses is studied. The research results 
are used in calculating the threshold intensity at which elec-
tron – positron pairs are created in the laser field [21].

The simplest, in the sense of being described by elemen-
tary functions, light pulse with finite energy can be imagined 
as follows. A spherical shell of arbitrary shape, filled with a 
field, contracts to the centre, passes through it, interfering 
with itself for some time, and then continues to expand, going 
to infinity. In this case, the shape of the shell changes slightly, 
except for the moment of collapse, after which it is restored. 
The corresponding solution is discussed in [8, 22] and in the 
present paper. To derive a nonsingular solution, Gonoskov et 
al. [22] introduce the Hertz vector of a point source, and then, 
as in Ref. [19], add the retarded and advanced potentials fol-
lowing [23, 24]. The calculation results are used to analyse the 
structure of the field, estimate its maximum value and the vol-
ume occupied by the field during focusing. A method is pro-
posed for obtaining such beams in ‘4p-focusing systems’ with 
parabolic mirrors. In Ref. [8], the same solution is found by 
the standard method of the scalar wave equation, but the tem-
poral structure of the pulse is different. A significant draw-

back limiting the practical application of the results [8, 22] is 
the lack of a parameter responsible for the divergence. 
Nevertheless, they allow us to relate the maximum field at the 
moment of compression to the total energy and spectrum of 
the incident pulse [8], as well as to trace the evolution of the 
pulse shape during focusing. This circumstance indicates the 
fundamental possibility of the formation of the temporal 
structure of the pulse to achieve maximum fields in focus [22].

The theory of electromagnetic pulses, their invariants and 
examples is the subject of monograph [25]. A large number of 
exact solutions of the scalar wave equation are presented in 
review [9] and in the later paper [26]. In accordance with the 
foregoing, they can be used to build free electromagnetic 
fields. One more approach that is regular can be developed 
using the classification of solutions of the wave equation and 
Maxwell equations based on representations of the group of 
rotations and spherical vectors [27, 28]. The result presented 
in the Appendix also evidences in favour of this.

3. Collapsing shell – electromagnetic pulse  
with finite energy

It is known that the Maxwell equations for an electromag-
netic field in free space can be written as a system of equations 
for the vector potential A:

c
A A1

2
D = p ,	 (1a)

divA = 0,	 (1b)

where c is the velocity of light in vacuum. In this case, the vec-
tors of the electric (E ) and magnetic (H ) fields are expressed 
in terms of the potential A as follows:

c
E A1=- o ,   H = rotA.	 (2)

The solutions of system (1) interesting for us and the fields (2) 
corresponding to them have a general form:

( , ) ( , )t u tA r l r# d= ,   
¶
¶ ( , )

c t
u tE l r1

# d=- ,	

(3)

	 ( , ) ( ) ( , )u t u tH l r l rd dD= - ,

where l is an arbitrary unit axial vector, and u(r, t) is an arbi-
trary solution of the scalar wave equation

u
c
u1

2
D = p .	 (4)

If we take the solution of Eqn (4) in the form of a plane 
wave, then it is easy to verify that substituting it into Eqns (3) 
and (2) we will get a solution of Maxwell’s equations (1) in the 
form of a plane wave with linear polarisation, whose vector is 
perpendicular both to the vector l, and the direction of wave 
propagation. However, the solution in the form of a plane 
wave is not suitable for the mentioned problem, since it has 
infinite energy. 

To solve this problem, it is possible to use a spherically 
symmetric solution of Eqn (4) without a singularity at zero:

( , )
| |

( | |) ( | |)
u t

f ct f ct
r

r
r r

=
+ - - ,	 (5)

* The other (in a certain sense, converse) statement is also true, namely, 
the Whittaker theorem [12, 13]: Any free electromagnetic field can be 
expressed in terms of two solutions of the scalar wave equation. The 
theorem is more elegantly formulated as follows: Any free electromag-
netic field is a superposition of two fields, each of which is constructed 
on the basis of the exact solution of the scalar wave equation.
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where f (x) is a real, smooth function, rapidly decreasing for 
large x. Substitution of this expression into Eqn (3) gives the 
following expressions for the electric and magnetic fields:

¶
¶

¶
¶

¶
¶( )lnu

r r
u r

r r r
uH l n1 1D= - -` `j j,	

(6)

¶ ¶
¶

c t r
uE n l 2

#= ,    | |r r= ,   
r

n r= .

It is logical to call the point r = 0 the point of the wave col-
lapse. Expressions (6) are greatly simplified in two limiting 
cases: for points infinitely remote in time and space and for 
the collapse point itself. In the first case (for ct ® ∞, r = ct – 
x® ∞, x being a variable whose modulus does not exceed an 
order of magnitude of the pulse length), we have

( )
r
g ct rE n l#= - ,   

( )
( )

r
g ct rH

l n ln
=

-
- ,	 (7)

and in the second case (for r = 0) we obtain

0E = ,    ( )lg ctH
3
4= l ,	 (8)

where

( ) ( )g x f x= ll 	 (9)

is a new arbitrary function in terms of which the total pulse 
energy E  and the energy density at the centre e(r = 0, t) can be 
expressed. The corresponding formulae are given in Ref. [8].

Expressions (7) and (8) demonstrate the effect of spatio-
temporal coupling: In the process of propagation to the cen-
tre, the shape of the collapsing impulse transforms into the 
shape of its derivative. They also make it possible to obtain a 
number of useful relations, for example, the relation between 
the total pulse energy E  and the maximum value of energy 
density em at the collapse point:

3
e

( )

[ ( )]max

dg x x

g x

3E
m

2

2

p
=

3-

l

y
.	 (10)

Here, to calculate the total pulse energy, the Poynting theo-
rem was used. Expressions (7) and (8) make it possible to 
obtain a simple relation for the pulse spectrum shapes at the 
collapse point [F0(w)] and far from it

F0(w) µ 
3

( )exp i dg x
c
x x

2w-
3-

l c my

	
3

( )exp i d
c

g x
c
x x

2 2w w= -
3-

` cj my  µ w2F∞(w).	 (11)

Formula (10) is the most general, but it does not allow 
expressing the above ratio in terms of generally accepted pulse 
parameters: duration, frequency, and width of the spectrum. 
Indeed, such expressions should depend on the specific shape 
(type) of the incident pulse, some of which will be considered 
below. To begin with, we will specify the choice of the main 
universal temporal and spectral characteristics of the pulse.

4. Quasi-monochromatic Gaussian pulse

When considering real-valued pulses of arbitrary shape g(t), 
we choose the root of the time variance st as a temporal char-
acteristic and call it the duration:
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As the spectral characteristics, we use the centre (average) fre-
quency w0

3

3
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, 	  (13)

and spectrum width sw (square root of frequency variance):

2
0
2G Hs w w= -~ ,   3

3
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2 2
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=
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y

,	 (14)

where

3

( ) ( ) ( )exp i dG g t t tw w= -
3-
y 	 (15)

is the Fourier transform of the function g(t). We start with the 
pulse considered in [8, 22], for which the function g(x = ct) is 
given by the expression

g(x) = Cexp(–x2/a2) sin(qx).	 (16)

If

qa >> 1,	 (17)

then the pulse can be called quasi-monochromatic Gaussian, 
and the duration st, the spectrum width sw, and the centre 
frequency w0 according to (12) – (14) are determined by the 
relations

st = a/(4c),    w0 = qc,    sw = c/a.	 (18)

Substituting function (16) into expression (10) and taking 
Eqns (18) into account, we obtain [8]

e
a
q
3

2
3
8 2

E

/
m

2 3 2

0

3

0p
p

l w
s

= = ~c cm m .	 (19)

Here l0 = 2pc/w0 is the centre wavelength for the considered 
pulse. Expression (19) has a clear meaning: The ratio of the 
maximum energy density of a pulse to its total energy is pro-
portional to the relative width of the spectrum and inversely 
proportional to the volume of the region of space with linear 
dimensions of the order of l0.
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5. Approximate estimation of the maximum 
energy density for the quasi-monochromatic case 
(‘thermodynamic limit’) 

For a quasi-monochromatic beam, a formula similar to 
Eqn (19) can be obtained by estimating the maximum attain-
able brightness of the radiation at the focal point. Let the 
pulse be a plane wave incident on an ideal focusing system. 
The entry to this system is circular and has a radius R, and the 
exit is visible from the focal point at a solid angle W (Fig. 1). 
To assess the brightness of the radiation at the focal point, we 
use the theorem that it cannot exceed the brightness of the 
source. As is known, brightness is a concept of geometric 
optics, while the indicated limit of the energy density is com-
pletely determined by the wave properties of radiation. 
However, this discrepancy can be overcome by replacing the 
mentioned focusing system with an equivalent one (Fig. 2), in 
which the paraxial approximation can be used to estimate the 
‘wave’ constraints.

The supplemented scheme shown in Fig. 2 differs from the 
initial one (Fig. 1) by the presence of a diaphragm of radius R 
and two identical lenses with a common focus in front of the 
focusing system. It is assumed here that

1 >> R/F >> l0/R.	 (20)

In the considered case, the beam at the exit of the second 
lens will practically not differ from the beam at the entrance 
of the first lens, since the laws of geometric optics are valid 
when the second inequality (20) is satisfied. Moreover, we can 
say that our focusing system, together with the second lens, 
actually creates an image of a diffraction spot located at the 
point of common focus of the lenses. The maximum radiation 
intensity in this diffraction spot is easily found using the 

Fresnel integral, knowing the corresponding maximum radia-
tion flux Fmax through the input diaphragm:

I
R F

R
max

max
max0 2

0

2 2

0
2
0

p
p
l l

F F W
= =c m .	 (21)

Here W0 = pR2/F 2 is actually the solid angle in which the radi-
ation from the diffraction spot is concentrated. Thus, the dif-
fraction spot at the focus of the lenses can be considered as an 
extended radiation source with maximum brightness

B I
max

max max

0

0

0
2lW

F
= = .	 (22)

Then, according to the above theorem, the brightness of the 
radiation at the focal point is limited by value (22). This fact 
means that for the desired maximum energy density em, we 
can write the following estimate:

e 4
c
I

c
B

c
max max max

m

0
2

G p
l

W F
= = .	 (23) 

Here we assume that the maximum solid angle in which the 
focusing is performed is 4p.

It remains to express the maximum energy flux Fmax  
through the pulse parameters. For a pulse having the form of 
(16), with Eqn (17) taken into account, the time dependence 
of the energy flux F (t) can be represented as

( ) ( )exp sint
a
c t qct2

max 2

2 2
2F F= -c m .	 (24)

Then the total energy is

3

( )dt t
c
a

8
E max

pF F==
3-
y .	 (25)

Finally, taking (25) and (18) into account, expression (23) can 
be presented as

e 2
a a

q8 2 8 2
E

/
m

0
2

3 2 2

0

3

0
G p

p
p

l l w
s

= = ~c cm m .	 (26)

Note that the resulting formula differs from the exact formula 
(19) by a numerical factor of 3.

6. Ultrashort pulses of various shapes

We now consider the case of ultrashort pulses and try to 
obtain expressions similar to (19) for them. We note that for 
these pulses, the average frequency and the average wave-
length are not related by such a simple formula as (19) for a 
quasi-monochromatic pulse. At the same time, the average 
wavelength calculated by averaging over frequencies can be 
infinite. In this regard, the characteristic wavelength for the 
pulse l0 will be defined using the average frequency w0 in the 
same way as in the quasi-monochromatic case:

c2
0

0

pl
w

= ,    w0 = áwñ.	 (27)

Here we will not consider the problem in a general form, but 
restrict ourselves to the types of pulses given in [29].
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Single-cycle Gaussian pulse. It can be specified in the form 
(16), assuming that q ® 0. In this case, this expression will 
turn into the expression

g(x) = Cxexp(–x2/a2).	 (28)

The ratio of the maximum energy density at the collapse point 
to the total energy (10) takes the form

e

a3
2 2

E
m

3

3

p= c m .	 (29)

Now we express the same value in terms of spectral parame-
ters. Substituting the pulse spectrum 

| ( )| expG A
c
a

2
2 2 2

2

2 2

w w w= -c m

into Eqns (13) and (14), we arrive at the relations

c a
1 80

p
w

=  » .
a
1 77 ,     

c a
3

2

2

2

G Hw
= ,	

	
c a

1 3 8
p

s
= -~ » .

a
0 67 .	

(30)

Here A is a constant related to the constant C from Eqn (28). 
Performing simple transformations, we obtain an analogue of 
expression (19):

e 38
3
2 8 2

E

/
m

1 2

0

3

0p p
p

l w
s

= - ~
-

c cm m  

	 » 1.6 2
0

3

0

p
l w

s~c m . 	 (31)

Half-cycle Gaussian pulse. It is also obtained by passing to 
the limit of zero modulation frequency in Eqn (16), but only 
if the sine is first replaced by the cosine:

g(x) = Cexp(–x2/a2).	 (32)

Expression (10) takes the form

e

ea3
2 2

E

/
m

3

3 2

p= c m .	 (33)

The spectrum of the pulse and its parameters are determined 
by the relations

| ( )| expG A
c
a

2
2 2

2

2 2

w w= -c m,    c a
1 20

p
w

=  »  .
a
0 8 ,

 
c a

1
2

2

2

G Hw
= ,   

c a
1 3 2

p
s

= -~ » .
a

0 603 ,	
(34)

and the reduced energy density is

e
E
m »  . 62 5 2

0

3

0

p
l w

s~c m .	 (35)

Half-cycle soliton-like pulse. For solitons (stable field con-
figurations maintained by the spatial profile of the nonlinear 

addition to the refractive index of the medium), the field can-
not decrease faster than exponentially with respect to the 
coordinate absolute value. The closest regular function cor-
responding to such a law is hyperbolic secant. In Ref. [9], a 
half-cycle soliton-like pulse is specified by the following field 
dependence:

( )
( / )cosh

g x
x a

C
2= .	 (36)

Expression (10) for this field has the form

e

27 a
4

E
m

3p
= .	 (37)

The Fourier transform of function (36) is implemented by 
integration over the contour in the complex plane – ¥  ® 
+ ¥ ® + ¥ + ipa ® –¥ + ipa ® –¥ and reduces to one residue 
(at the point ipa/2). As a result, we have the relations
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( / )sinh

G
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A
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w
w= ,	 (38)
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G
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c a5
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Here

(3) n
n

3

1

z =
3

-

=

/
is the corresponding value of the Riemann zeta function. As a 
result, the ratio (37) is expressed in terms of the spectrum 
parameters as follows:

e
E
m » 2.72 2

0

3

0

p
l w

s~c m .	 (40)

Single-cycle soliton-like pulse. It corresponds to the deriv-
ative of the pulse (36), i.e.

( )
( / )
( / )

cosh
sinh

g x
x a

C x a
3= .	 (41)

For this case, expression (10) has the form

e

a4
5

E
m

3p
= .	 (42)

Since the derivative (41) is proportional to the derivative of 
the half-cycle pulse (36), its spectrum is obtained from the 
corresponding expression (39) by multiplying by w2:

| ( )|
( / )sinh

G
a c

A2

2

2 4

p
w

w
w= .	 (43) 

To calculate the spectrum parameters, we will use the general 
formula for the integrals:

3

[ / ( )] ( )
! ( )
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d
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n n
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n2
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1p pw
w w z=

+y ,	 (44)
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also applicable to obtain results using the formulae (39). 
Thus, for the spectrum parameters (43) we obtain the rela-
tions

( )
c a

450 50
5p

w z=  » .
a

1 525 ,	

(45)

c a7
20

2

2

2

G Hw
= ,  

c
s~ » .

a
0 729 .	

Finally, the expression for the reduced energy density takes 
the form

e
E
m » 2.7 2

0

3

0

p
l w

s~c m . 	 (46)

Half-cycle Lorentz pulse. Its generating function has the 
form of a resonance curve:

( )g x
a x
C

2 2=
+

. 	 (47)

The relation (10) has the form

e

a32
9

E
m

2 3p
= .	 (48)

The pulse spectrum (47) and its parameters are determined by 
the relations

| ( )| expG A
z
a22 2w w= -` j,   c a2

10w
= ,	

(49)
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1
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= ,  
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and the expression for the reduced energy density (48) is con-
verted into the expression

e

2
9 2

E
m

0

3
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p

l w
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= ~c m  » .3 59 2
0

3

0

p
l w

s~c m .	 (50)

The considered characteristics of single-cycle and half-cycle 
nonparaxial collapsing pulses are summarised in Table 1.

Thus, formulae (31), (35), (40), (46) and (50) show that 
the expression for the limiting reduced density of electro-
magnetic energy of the collapsing pulse (19), found in Ref. 

Table  1.  Spectral parameters and coefficients at reduced energy density (10) for various types of pulses.

Pulse type              Shape
Pulse parameters

Coefficient of reduced 
energy density

w0 sw

Gaussian quasi- 
monochromatic

a

qc c/a 1 [see (19)]

Single-cycle Gaussian

a

1.77c/a 0.67c/a 0.6

Half-cycle Gaussian

a

0.8c/a 0.603c/a 0.96

Single-cycle soliton-like

a

1.525c/a 0.729c/a 1.013

Half-cycle soliton-like

a

0.698c/a 0.56c/a 1.02

Half-cycle Lorentzian

a

0.5c/a 0.5c/a 1.347
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[8] for the quasi-monochromatic case, remains valid and for 
single-cycle and half-cycle pulses up to a factor of 0.6 – 1.4. 
The difference is due to the shape of the ultrashort pulse. 
The maximum value of the reduced energy density is 
obtained for a half-cycle Lorentz pulse. Note that, accord-
ing to Ref. [29], the probability of atom ionisation in the 
field of single-cycle and half-cycle pulses also depends on 
their shape.

7. Conclusions

In this paper, by an example of the simplest exact solution of 
the Maxwell equations with finite field energy, we investi-
gated the properties of electromagnetic beams that are beyond 
the paraxial and monochromatic approximations, which 
allowed considering single-cycle and half-cycle pulses.

It is shown that the reduced maximum density of the elec-
tromagnetic energy of a collapsing pulse, found earlier for a 
quasi-monochromatic Gaussian pulse, retains its value in 
cases of single-cycle and half-cycle pulses up to a factor of 
0.6 – 1.4, depending on the shape of the pulse. It is found that 
the shape of an arbitrary pulse, as it propagates to the centre 
of collapse, is transformed into the shape of its derivative.

The investigated solutions of the equations for the electro-
magnetic field correspond to spherically symmetric solutions 
of the scalar wave equation. The latter also has exact analyti-
cal solutions without radial symmetry corresponding to 
spherical harmonics with index l ¹ 0 (see Appendix). 
Obviously, the theory presented in this article can also be con-
structed for them.

The found relations between the maximum attainable 
density of electromagnetic energy and the spectrum of a col-
lapsing pulse can be useful for heuristic estimates. For practi-
cal purposes, it is desirable to conduct a similar study of the 
parameters of electromagnetic pulses corresponding to solu-
tions of the scalar wave equation with cylindrical symmetry. 

In conclusion, we note that in a number of papers (see 
Section 2), the motion of charged particles in beams 
described by exact solutions of the Maxwell equations is 
considered. This is undoubtedly of certain interest in cases 
(including the present work), when the solutions contain an 
arbitrary function of time and allow simulating pulses of an 
arbitrary temporal shape with an arbitrary number of cycles. 
At the same time, the spatial structure of the field, as a rule, 
is quite concrete (in this work, it is spherical harmonic) and 
can be very far from that usually encountered in practice. 
Therefore, in [16 – 18, 22] optical systems were proposed for 
converting laser radiation into beams, which are described 
by exact solutions of the field equations. Another approach 
is to search for new exact solutions of Maxwell’s equations, 
which more fully reproduce the characteristics of real laser 
radiation [19, 26, 30].
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Appendix

In addition to the spherically symmetric solution (5), the sca-
lar wave equation (4) has a solution in the form of spherical 
harmonics:

( , ) ( , ) ( , )u t Y R r tr lm lq j= ,	 (A1)

where ( , )Ylm q j  is a spherical function, and the radial function 
Rl (r, t) satisfies the equation

¶
¶

¶
¶ ( 1)

r
r

r
R l l R

c
r Rl

l l
2

2

2

- + = pc m .	 (A2)

We now express the function Rl (r, t) in terms of an arbitrary 
smooth function f (x), using the fact that for l = 0 the solution 
is representable in form (5). To do this, we repeat the reason-
ing given in [31]. Suppose we find a solution Rl (r, t) of 
Eqn (A2) for some l. We write Eqn (A2) for l = l + 1:
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¶
¶ ( 1)( )
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r
R l l R

c
r R2l
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+ +

pc m .	 (A3)

Let us substitute into (A3) the function 

¶
¶R r
r r
R

l
l

l
l

1 =+ c m.	 (A4)

For the right-hand side of Eqn (A3), taking Eqn (A2) into 
account, we obtain the expression

¶
¶

¶
¶

c
r R

r c
r R

r
l

c
r R r

r
R2

l l l
l

2

2

1 2

2

2

2
2

3

3

= - + =+
p p pc cm m

¶
¶

¶
¶( 2) ( 1)( 2) ( 1)( 2)l r

r
R l l

r
R l l l

r
Rl l l

2

2

- - - + + + + + ,	 (A5)

and for the left-hand side of Eqn (A3) we have the expression

¶
¶

¶
¶

¶
¶( 1)( 2)

r
r

r
R l l R r

r
Rl

l
l2 1

1
2

3

3

- + + =+
+c m

	
¶

¶
¶
¶( 2) ( 1)( 2)l

r
R l l

r
R

r
Rl l l

2

2

- - - + + -c m.	 (A6)

From (A5) and (A6) it follows that equality (A3) holds. 
As a result, we have the recurrence formula (A4), which, 

together with formula (5), gives a solution to the radial wave 
equation for a spherical wave for any l containing an arbi-
trary smooth function f (x).

Finally, we present the expressions for the radial functions 
Rl (r, t) for the first three harmonics:

( , )
( ) ( )

R r t
r

f ct r f ct r
0 =

+ - - ,

( , )
( ) ( )

R r t
r

f ct r f ct r
1 =

+ + -l l

( ) ( )
r

f ct r f ct r
2-

+ - - ,	 (A7)
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