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Abstract.  We propose a scheme of a quantum photon polarisation 
converter, which is based on controlled electron – photon – phonon 
transitions in a hybrid semiconductor nanostructure. This structure 
consists of a GaAs/InAs quantum dot (QD) that has a parallelepi-
ped shape and contains a single electron, and an optomechanical 
microcavity (MC) based on a photonic crystal (PC) that supports 
two orthogonally polarised photonic modes and one mechanical 
(phonon) mode. Within the framework of the microscopic theory, 
the QD and MC performance characteristics are found. Populations 
of states of the system as functions of time and its parameters are 
calculated. The principal possibility of photon polarisation conver-
sion using transitions in a five-level resonance scheme for coherent 
(single-photon) and steady-state (subphoton) regimes is shown. The 
MC optical and mechanical spectra are simulated, and the PC 
structure parameters are selected to ensure the efficient operation 
of the converter.

Keywords: quantum dot, microcavity, polarisation, photonic crystal, 
optical phonons, optomechanics.

1. Introduction

The development of technology for manufacturing nanostru­
ctures with a characteristic size of less than 1 mm has led to the 
emergence of new areas of experimental quantum physics. 
They include solid-state quantum optics, which studies, in 
particular, the interaction of discrete-spectrum nano-objects 
with external fields [1]. Many phenomena of traditional quan­
tum optics, which deals with ‘natural’ atoms and molecules, 
are also observed in ‘artificial’ atoms, such as semiconductor 
quantum dots (QDs) [2], superconducting cavities, quantum 
bits (qubits) [3], and crystal lattice defects [4]. By 2010, the 
concept of a quantum chip, i. e. a device that combines the 
main functional elements for encoding, processing and trans­
mitting quantum information, had been formulated and par­
tially implemented [5]. The dynamics of processes in a chip is 
controlled by quantum fields: single photons are used as tran-
sport qubits, and subphoton pulses are used to measure the 
states of individual chip elements.

The choice of electromagnetic radiation polarisation is of 
great importance in the development of optical control cir­
cuits. It is especially important to be able to control the polar­

isation vector of the field interacting with high-spatial-sym­
metry systems, which are characterised by the pronounced 
selection rules for internal transitions. In this regard, it is nec­
essary to be able to form fields with specified orthogonal com­
ponents, as well as convert one component to another. Usu­
ally, the polarisation of a macroscopic laser beam is changed 
using a phase shifter (a plate placed in the path of beam prop­
agation) [6]. However, for single photons propagating thro­
ugh a single-mode optical fibre from one qubit to another, this 
option may not be acceptable due to the absorption of pho­
tons by the plate material. Therefore, a different approach to 
the development of this circuit node is required. There are 
proposals for using the quantum nonlinearity effect in an opt­
ical cavity with a QD, which allows for small phase rotations 
of the photon polarisation vector in the regime of large detun­
ing of the photon frequency from the QD frequency [7].

In our work, we propose a device that converts a single 
polarised photon into an orthogonally polarised photon due 
to its coherent interaction with a single-electron QD and a 
phonon mode. In this case, frequency conversion is also pos­
sible, which assumes scattering the excess photon energy 
into the phonon reservoir. The same is true for laser fields 
with low (subphoton) intensity, which are used in transmis­
sion spectroscopy and reflectometry [8]. In this case, the 
light passing through the system will be polarised orthogo­
nally to the incident light. A semiconductor QD is placed 
in a microcavity (MC) based on a photonic crystal (PC) 
that supports two photonic modes with orthogonal polar­
isations and one mechanical mode. Within the framework of 
the microscopic theory, the QD and MC performance char­
acteristics were found, and the populations of states of the 
system as functions of time and its parameters were calcu­
lated. The principal possibility of photon polarisation con­
version using transitions in a five-level resonance scheme for 
coherent (single-photon) and steady-state (subphoton) regi­
mes is shown.

2. Quantum hybrid converter model

We consider a single QD in the form of a parallelepiped with 
the characteristic sizes Lx, Ly and Lz along the corresponding 
Cartesian axes. We assume that the QD is located in a thin 
semiconductor plate which represents a mechanical cavity 
(Fig. 1). The low-lying electronic states of such a QD corre­
spond with good accuracy to the model of a three-dimensi­
onal quantum well with infinitely high walls. Its energy spec­
trum has the form
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nk = 1, 2, 3, ...,	 (1)

where m* is the effective mass of the electron. Hereafter, we 
restrict ourselves to three QD states: the ground state (g) and 
two almost degenerate excited (x and y) states with spatial 
wave functions.
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The QD is said to be an ‘electronic’ cavity that localises stand­
ing de Broglie waves in space, i. e. electronic wave functions in 
the conduction band. This QD is located near (in our case, 
inside) the optical MC, in the spectrum of which there are two 
almost degenerate photonic modes with frequencies wcx and 
wcy and mutually orthogonal polarisations. Let one of the 
mechanical modes of the plate have a frequency wm close to 
the frequencies wx and wy of the electronic transitions in the 
QD and the frequencies of the optical MC modes. We also 
assume that the orientation of the QD and MC symmetry 
axes is such that the x( y) mode of the MC is associated with 
the optical dipole transition |g ñ « |x( y) ñ, and the phonon 
mode interacts with each of these transitions. Then the Ham­
iltonian H describing this optoelectromechanical system can 
be represented as a sum of the Hamiltonian H0 of isolated 
subsystems and the interaction Hamiltonian He – c – m:

H0 = wx|x ñ á x| + wy|y ñ á y| + wcxa†xax

	 + wcya†yay + wmb†b,	 (3)

He – c – m = Wcx|g ñ á x|a†x + Wcy|g ñ á y|a†y 

	 + (Wmx|g ñ á x| + Wmy|g ñ á y|)b† + h.c.	 (4)

Here ax( y) and b are the annihilation operators of the exci­
tation quantum in the corresponding mode; and Wcx( y) and 
Wmx( y) are the interaction energies of the QD electron and this 
mode (Rabi frequencies), all frequencies being given in energy 
units. For continuous supply of electromagnetic energy to the 
MC, laser radiation is used, which populates the x mode of 
the MC with photons with frequency wL and amplitude W (t), 
smoothly depending on time. The Hamiltonian HL makes all­
owance for this effect:

HL = W (t)(a†x + ax)cos(wLt/').	 (5)

The envelope of the amplitude of a laser (tangential) pulse 
switched on at the time moment t0 is characterised by the 
energy WL, duration Dt, and turn-on time t:

W (t) = 0.5WL tanh tanh
t t t t t0 0

t t
D-

-
- -` cj m; E.	 (6)

Finally, we obtain the Hamiltonian

H = H0 + He – c – m + HL.	 (7)

We introduce the detuning frequencies of electronic transi­
tions in a QD, of MC modes and of a phonon mode from the 
laser radiation frequency:

dx( y) = wx( y) – wL,  dcx( y) = wcx( y) – wL,  dm = wm – wL.	 (8)

Then, passing to the reference frame associated with the laser 
pulse and applying the rotating wave approximation, we can 
rewrite the Hamiltonians H0 and HL as

H0 = dx|x ñ á x| + dy|y ñ á y| + dcxa†xax

	 + dcya†yay + dmb†b,   HL = W (t)(a†x + ax).	 (9)

We limit ourselves to the case when the system energy 
does not exceed the energy of a single optical quantum. Then 
the dimension of the space of basis vectors of the form 
|k, nx, ny, nphn ñ, where nphn is the number of phonons, k = 
g, x, y, and nx + ny + nphn £ 1, is equal to 6. The evolution of 
the system is described by the Lindblad equation for the den­
sity matrix r:
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r r=- + .	 (10)

The dissipative effects associated with the uncontrolled escape 
of photons from the MC at a rate kx( y), photon decay at a rate 
km, electron relaxation at a rate grx( y), and dephasing of the 
QD electronic states at a rate gdephx( y) are taken into account 
(in the Markov approximation) using the dissipative operator 
L ( r) in the Lindblad equation:

L ( r) = kx D(ax) + ky D(ay) + km D(b) + grx D(|g ñ á x|)

	 + gry D(|g ñ á y|) + gdephx D(|x ñ á x| – |g ñ á g|)

	 + gdephy D(|y ñ á y| – |g ñ á g|).	 (11)
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Figure 1.  Active region of the polarisation converter representing a 
single-electron semiconductor QD formed within a thin plate ( mechan­
ical resonator ), which is attached to a PC-based optical MC ( top ), and 
also the converter operation diagram ( bottom ). After the interaction of 
a photon with a QD and a mechanical resonator, the polarisation vector 
of its electromagnetic field Ex changes to Ey ( see the text and Fig. 5 ).
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Here, the expression D(O) = OrO† – [O†O,  r]/2 simulates the 
decay of the value corresponding to the operator O. By solv­
ing equation (10) with the corresponding initial conditions, 
we find the time dependences of the probabilities of populat­
ing the hybrid system states. Our task is to select the parame­
ters of Hamiltonian (7) in such a way as to perform a com­
plete or partial conversion of the polarisation of a photon or 
a weak laser field.

3. Mode structure of optical and mechanical 
cavities

First, we select the parameters of the optical MC such that its 
two modes, whose electric and magnetic field projections are 
mutually orthogonal, have the frequencies wcx( y) near the fre­
quencies wx( y) of the electronic transitions |g ñ « |x( y) ñ in the 
QD located in one of the antinodes of the MC electric field. 
As an MC, we choose a two-dimensional PC, in the centre of 
which a defective region is located to ensure the electromag­
netic field localisation. Modern technologies allow integra­
tion of a single QD or their ensembles into a photonic crystal, 
while auxiliary equipment provides control of the total quan­
tum evolution of electrons and photons in such a hybrid sys­
tem [9 – 11]. The PC is a thin GaAs plate with a refractive 
index of 3.4, in which a periodic triangular lattice of holes is 
etched (Fig. 1). The defective region where the QD is located 
is formed due to the absence of one hole in the PC centre (H1 
defect). Simulation of the structure’s optical spectrum with 
the lattice constant a = 11.54 mm and the aperture radius R = 
0.37a using the finite time domain method has shown the 
presence of two modes in the bandgap of the photonic crystal 
near a wavelength of 34 mm corresponding to the optical pho­
non frequency GaAs wm » 0.036 eV in GaAs. The mode with 
a wavelength of lс1 = 34 mm is the so-called TE mode, for 
which Ez = Hx = Hy = 0, and the mode with lс2 = 34.28 mm is 
the TM mode (Hz = Ex = Ey = 0), which is orthogonal to the 
TE mode. The two-dimensional distribution of the electric field 
E of these modes in the plane where the QD is located is 
shown in Fig. 2. Near the centre of the PC defective region, the 
electric field amplitude E0 at the antinode is about 3.5 V cm–1 
for a plate thickness of 5 mm. Since the QD size in our case is 
~17 nm, which is significantly less than the characteristic size of 
the antinode, the electric field strength can be considered to be 
constant when calculating the interaction coefficient Wcx( y) = 
á x( y)| – eEr|g ñ (e is the electron charge), and the estimated 
value Wcx( y) » 6 ́  10– 6 eV can be obtained.

As will be shown in Section 4, the most efficient operation 
of the converter is provided when the mechanical and optical 
modes converge (resonance); therefore, it is necessary to inv­
estigate the possibility of selecting the frequencies of orthogo­
nal optical MC modes. To date, several methods for modify­
ing the MC optical spectrum based on a PC have been devel­
oped [9]. This is achieved by exposing the sample surface to an 
atomic force microscope, applying substances with a refrac­
tive index different from that of the PC material, and control­
ling the temperature using laser radiation or heating microele­
ments embedded into the crystal structure. An equally effec­
tive method of spectrum tuning is a small change in the 
structure of photonic crystal holes near the field localisation 
region [12 – 14]. In this work, we replaced the round holes clo­
sest to the defective region with elliptical ones and tuned the 
MC frequencies by adjusting the ellipse eccentricity e. Figure 3 
shows the spectra of the TE and TM modes at various e. It is 
seen that with increasing parameter e, the wavelengths of both 

modes grow, and their splitting increases. At e = 0 (round 
holes), these modes are degenerate, but a small asymmetry in 
the hole structure near the PC defect eliminates the degenera­
tion. It is important to note that the electric field amplitude E0 
virtually does not change with changing e.

To calculate the electron – phonon interaction coefficient 
Wmx( y), we use the approach developed in works [15, 16], where 
the interaction of a cubic QD and localised optical phonons, 
whose frequency spectrum is a set of discrete modes, was 
studied. Such an interaction causes electron transitions betw­
een the ground and excited levels of quantum dots. If the mec­
hanical cavity dimensions wx(y, z) are close to that of a QD, 
wx(y, z) » Lx(y, z) » 17 nm, the calculations performed within 
the framework of this model give Wmx( y) » 10–3 eV, which is 
several orders of magnitude higher than the value of Wcx( y). 
For the polarisation converter to function, it is necessary that 
the Wmx( y) and Wcx( y) coefficients are close (see Section 4); 
therefore, in this work, the role of the mechanical cavity is 
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Figure 2.  ( Colour online ) Two-dimensional distribution of the electric 
field E in a PC for ( a ) TE and ( b ) TM modes.
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played by a thin plate with dimensions wx << wy, wz. The coef­
ficient Wmx( y) of electron interaction with a single optical pho­
non mode with an index (m1 m2 m3) in such a plate is expresses 
as [15, 16]
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where e0 = 13.2 and e¥ = 10.9 are static and high-frequency 
GaAs permittivities [17]; fm is the number of phonons with 
momentum qm; and

Imx( y) = ( ) ( ) ( )dr r r r( )g m x yy f yy ,
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is the dimensionless overlap integral. Since, as was already 
mentioned, for the converter to operate, it is necessary that 
the frequencies wx(y) are close to the wm frequency, the charac­

teristic QD size should be approximately equal to 17 nm. 
Hereafter, we assume that the optical phonon energy is much 
greater than the system temperature, wm >>  kBT (kB is the 
Boltzmann constant), and, therefore

fm = {exp[wm /(kBT )] – 1}–1 << 1.

Calculation of the Wmx value for lower phonon modes at 
wy(z) = 300 nm and Ly(z) = 17 nm (Fig. 4) has shown that for 
large wx, an increase in the QD size Lx contributes to an inc­
rease in the energy of electron interaction with lower phonon 
modes, while the extreme points in the Wmx(wx) dependences 
are shifted to the right. By selecting the plate thickness and 
QD sizes, the coefficient Wmx can be adjusted. For example, at 
wx » 45 nm and Lx = 20 nm, the electron – phonon interac­
tion coefficient Wmx for the (121) mode is ~6 ́  10–6 eV, i. e. 
approximately equal to Wcx( y).

4. Hybrid system dynamics in the coherent 
regime and manipulations with a single photon

To control the photon polarisation vector, a physical mecha­
nism is needed that implements the effective interaction of the 
two orthogonal components of this vector. Let us assume that 
the x mode of the MC is populated by a single photon. How 
can we convert it to y mode of the MC, i. e. change the polar­
isation by the angle p/2? It is known that the addition of an 
atom-like system to the MC structure modifies its optical pro­
perties due to quantum nonlinearity (Purcell effect) [18]; how­
ever, the dipole optical transitions responsible for this effect 
occur with preservation of photon polarisation. In addition, 
direct transitions between the excited x and y states of an atom 
are forbidden by selection rules. In work [15], an alternative 
mechanism for the excitation of electronic transitions in the 
QD under the action of mechanical deformation (phonons) was 
proposed. The interaction of the phonon optical mode with 
the QD electron is described by the Fröhlich Hamiltonian, 
which does not forbid the energy exchange between modes 
simultaneously with electronic transitions of different polari­
sations. Connecting two V-schemes of the transitions between 
the QD electronic levels, stipulated by the interaction with 
two MC photon modes and one phonon mode of the plate, 
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we obtain a W-scheme (Fig. 5), which describes the process of 
rotation of the photon polarisation vector.

To simulate the conversion of single-photon polarisation, 
we set WL = 0 in Eqn (10) and select the initial condition cor­
responding to the presence of a QD in the ground state g and 
an MC with a photon in the x mode. Analysis of population 
dynamics in atom-like systems indicates the existence of sev­
eral conditions necessary for the complete transition from one 
state of the system to another. These conditions in some way 
or other are related to maintaining the symmetry of transiti­
ons. In the simplest case of strict resonance, all Rabi frequen­
cies must coincide to ensure synchronisation of population 
transfer. Otherwise, beats occur that prevent population of the 
final state with unit probability (in the absence of dissipation). 
More complex variants are possible in the tuning regime, when 
the deviation of one of the parameters (for example, frequ­
ency detuning) from its value in the case of a symmetric con­
figuration is compensated by the controlled asymmetry of the 
other parameter [19].

Figure 6 shows time dependences of the populations of 
states corresponding to the photon position in MC modes 
with x and y polarisations. The Hamiltonian parameters are 
given in effective atomic units for GaAs (RyGaAs = 6 meV). 
They correspond to high-Q quantum optical structures in 
which the energy of the electron – photon interaction reaches 
10–6 – 10–5 eV, and the dissipation rates do not exceed 10–7 eV. 
We assume that the transition frequencies in the QD, the MC 
photon mode frequencies, and the mechanical mode fre­
quency coincide (strict resonance). It can be seen that the 

photon transition from x mode to y mode occurs during the 
time Tconv » 1/Wcx( y) with a probability of about 90 %. 
Incomplete transfer is largely due to energy losses associated 
with dissipative processes. In addition, the probability of 
transfer depends on the interaction energies of an electron 
with photon and phonon fields and on the frequency detun­
ings. In particular, the choice of energies Wcx( y) = 0.8Wmx( y) 
increases this probability compared to the probability in the 
case of a fully symmetric configuration: Wcx( y) = Wmx( y). It 
can be shown that, provided all relaxation processes are com­
pletely suppressed, this choice is optimal and leads to a 100 % 
conversion of the photon polarisation in an MC (Fig. 7). 
Based on the analysis of the dependence of the maximum 
probability value Pcy (hereinafter, the polarisation conversion 
probability Pconv) on each of the dissipation rates separately, 
it can be argued that the main contribution is made by the 
processes of escape of photons from the MC modes to the 
continuum.

As we have already noted, the population dynamics des­
cribed by the W-scheme and implementing the transition from 
one state to another requires synchronisation of the rates (int­
eraction energies) of all elements of the scheme. On the other 
hand, due to technological errors, it is impossible to select 
parameters that strictly comply with this condition. Therefore, 
it is important to study the issue of the stability of solutions to 
equation (10) in a certain domain of parameters. The conver­
sion probabilities for independently varying the electron – pho­
ton (phonon) interaction energies Wс(m)x and Wс(m)y and the 
fixed electron – phonon (photon) interaction energy Wm(c)x = 
Wm(c)y are shown in Fig. 8. Analysis of the dependences indi­
cates the existence of several regions along the Wc(m)x = Wс(m)y 
line, where the Pconv probability reaches 0.9, and the tolerance for 
parameter deviations (relative to the region size) is 20 % – 50 %. 
This indicates that the conversion algorithm can be imple­
mented for these regions, even if the parameters deviate sig­
nificantly from the symmetric case. The most preferred option 
is to select a region with the parameters specified in the cap­
tion to Fig. 8. The ratio Wcx( y) /Wmy(x) = 0.8 reflects the dynamic 
nonequivalence of optical modes, each associated with only 

wcx

wx wy

wcy
wm

WmxWсx WсyWmy

Figure 5.  W-scheme of transitions stipulated by the interaction of an 
electron with two MC photon modes and one phonon mode of the 
plate, which ensures the rotation of the photon polarisation vector.
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one electronic transition, and a mechanical mode that inter­
acts simultaneously with two electronic transitions.

Other parameters that strongly affect the conversion pro­
bability are the differences (detunings) between the QD transi­
tion frequencies and MC frequencies. It is known that in a three-
level system, an increase in detunings from zero to the values that 
exceed the interaction energy by an order of magnitude, while 
maintaining a two-photon resonance, is accompanied by a tran­
sition from the resonance mode to the Raman mode [18]. In this 
case, the population of the excited (intermediate) level in a QD 
does not exceed 1 %, which leads to a significant suppression of 
relaxation. In our five-level scheme, the phonon mode serves as 
an intermediate element linking photons with x and y polarisa­
tions. Consider the effect of detuning its frequency from the fre­
quencies of optical modes on the conversion probability. Figure 
9 shows the dependences of Pconv on the detuning dm for three 
values of the electron –phonon interaction energy Wmx( y). With 
small detunings, the Pconv value oscillates with a frequency 
inversely proportional to the energy Wmx( y), and then exponen­
tially decays. For the interaction energy Wmx( y) = 2Wcx( y), in addi­
tion to reducing the attenuation caused by the dissipation of the 
mechanical mode, there is also an increase in the conversion 
probability to 83 % at dm = 0.007, compared to 73 % at dm = 0. 
Therefore, the Raman mode is also possible in the conditions of 
hybrid photon – phonon QD control with a sufficiently strong 
electron –phonon interaction.

5. Polarisation conversion of a weak laser field 
in steady-state regime

The steady-state regime of propagation of an optical field thr­
ough a quantum system is usually used to monitor its spectral 
properties. In addition, maintaining electromagnetic energy 
in the MC for a long time at a certain constant level, deter­
mined by the pulse energy of the control laser and the dissipa­
tion rate in the MC [20], may be of particular interest for opti­
cally controlled transistor circuits. In this case, switching the 
field polarisation may be required if the MC modes with ort­
hogonal polarisations control the energy distribution between 
different subsystems (for example, ensembles of quantum dots 
or defects), for which the pulse selection rules are essential. In 
this case, the small (subphoton) field amplitude ensures high 
sensitivity of measurements of the tested system using trans­
mission spectroscopy and reflectometry methods [8].

Let us select the following parameters of the laser pulse (6) 
that pumps electromagnetic energy into the x mode of the MC: 
t = 104, t0 = 5 ́  104, Dt = 3 ́  105, and WL = 10–3. If the system 
was in a vacuum state, this energy would be redistributed bet­
ween the QD and MC modes. At the initial stage of pulse 
action, the populations of states oscillate, which indicates a 
coherent nature of evolution; however, with increasing time, 
dissipative processes begin to prevail. As a result, the system 
passes over into a steady state and the populations take sta­
tionary values (Fig. 10). After the pulse is turned off, they 
decrease exponentially to zero. Thus, the calculations confirm 
the possibility of converting the radiation polarisation also in 
the steady-state regime. Thus, the calculations confirm the 
possibility of the radiation polarisation conversion in the ste­
ady-state regime. However, unlike the coherent mode, the MC 
contains both x and y field components. In this case, the aver­
age number of photons of the original and transformed fields 
is approximately the same: á nx ñ » á ny ñ £ 0.2. Since in the MR 
based on a defect in a two-dimensional PC, the radiation of 
modes with orthogonal polarisations propagates in different 
directions, spatial separation of these components can be att­
ained. We emphasise that both components contain informa­
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tion about the internal structure of the QD and the MC. Fur­
ther use of these stationary incoherent subphoton fields dep­
ends on the objectives of the experiment. As a rule, they are used 
for quantum measurements in transmission spectroscopy and 
reflectometry.

How will the populations of modes behave when the con­
trol pulse energy increases? The answer to this question is 
given by the dependences shown in Fig. 11. For the interac­
tion energies of laser radiation and x mode, which are close to 
the interaction energies between the subsystems, close popu­
lations of two optical and mechanical modes are also observed 
in the range 0.15 – 0.2. As the WL energy increases, the x mode 
population tends to an equilibrium value of 0.5 (similar to the 
|x ñ excited state population in a QD), while the populations 
of the y mode and mechanical mode decrease to zero. We can 
speak of a dynamic blockade of the mechanical mode and, as 

a result, the termination of the energy supply into the y mode. 
This behaviour of populations is stipulated by the velocity 
imbalance caused by increasing interaction of the x mode with 
the transition |g ñ « |x ñ in the QD, while in its absence (Wcx 
= 0), a linear increase in the average number of photons á nx ñ 
is observed in this mode.

The mechanical mode population as a function of the 
laser pump energy first reproduces a similar dependence for 
the x mode, and then, for the y mode. We should add that the 
practical use of a QD for the generation of electromagnetic 
radiation was demonstrated in the works of the team led by 
Zh.I. Alferov, dedicated to semiconductor long-wavelength 
lasers (see, for example, [21, 22]).

6. Conclusions

Studies on various optomechanical systems, including those 
based on a semiconductor QD in thin plates, which, thanks to 
correctly selected geometric parameters, are capable of con­
centrating single-photon and single-phonon fields, indicate the 
prospects for using these devices in modern nanoelectronics. 
The inclusion of a new element – mechanical mode – in the 
traditional optical design of an MC-based quantum chip, wave­
guides and lasers, opens up new possibilities for controlling 
the state of quantum systems that are part of the chip struc­
ture. As shown in the present work, the mechanical mode can 
play the role of an intermediary in the coherent energy exch­
ange between two orthogonal optical modes of the defective 
PC region of a photonic crystal due to the interaction of pho­
non and electron in the QD.

This modification of the chip ensures a relaxation of the 
selection rules, facilitating optical control of the qubit state 
based on a single-electron QD, generation of stationary sub­
photon radiation, and polarisation conversion of the initial 
laser beam. These processes are very important for executing 
quantum algorithms and reading qubit states. Note that, as in 
purely optical schemes, for the successful implementation of 
these operations, it is necessary to properly select the coeffi­
cients of interaction and frequency detunings of the subsys­
tems, and also strive to minimise dissipative effects.
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