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Abstract.  The three-body Förster resonances 3 ́  nP3/2(| M |) ® nS1/2 + 
(n + 1)S1/2 + nP3/2(| M* |), controlled by a constant electric field, 
were realised earlier by the authors in an ensemble of several cold 
Rydberg Rb atoms. One of the drawbacks of such resonances for 
potential application in three-qubit quantum gates is the proximity 
of the two-body Förster resonance  2 ́  nP3/2 ® nS1/2 + (n + 1)S1/2, 
as well as the possibility of their implementation only for states 
with values of the principal quantum numbers n £ 38. A three-body 
resonance of a new type, 3 ́  nP3/2 ® nS1/2 + (n + 1)S1/2 + nP1/2, 
which can be realised for arbitrary n, is proposed and analysed. Its 
specific feature is also that the third atom transits into a state with 
a different total angular momentum J = 1/2, which has no Stark 
structure, so that the two-body resonance is completely absent. 
Numerical calculations showed that for not too strong interaction, 
it is possible to observe coherent three-body oscillations of the popu-
lations of collective states, which is of interest for developing new 
schemes of three-qubit quantum gates controlled by an electric field.

Keywords: Rydberg atoms, interaction, Förster resonance.

1. Introduction

Atoms in highly excited Rydberg states with principal quan-
tum numbers n >>  1 have large dipole moments growing like 
n2, and hence experience strong long-range interaction [1]. 
This is especially attractive for developing quantum comput-
ers and simulators with qubits based on single alkali metal 
atoms trapped in arrays of optical dipole traps or in optical 
lattices [2, 3]. In particular, quantum simulators based on 
Rydberg atoms can directly simulate various objects in solid-
state physics due to the ability to simulate all possible interac-
tions between their components, if such interactions in a 
quantum simulator are appropriately controlled [4].

The interactions between Rydberg atoms can be con-
trolled using a dc electric field. Since the polarisabilities of 
Rydberg states grow as n7, even a weak electric field causes 
large Stark shifts of the energies of Rydberg states. As an 
example, Fig. 1a shows the calculated Stark diagram of Rydberg 
states of Rb atoms near the 37P state. Rydberg S, P, and D 
states have large quantum defects and experience the qua-
dratic Stark effect. States with large orbital angular momenta 
(L > 2) are degenerate in energy and experience the linear 
Stark effect. 

Electrically adjustable Förster resonances correspond to 
Förster resonance energy transfer [5]. They arise due to the 
crossing of collective energy levels of Rydberg atoms at a cer-
tain value of the electric field. Förster resonances are tuned by 
the electric field according to the interaction strength and dis-
tance and can be either a resonance dipole – dipole interaction 
(with exact resonance) or nonresonance van der Waals inter-
action (with a large detuning from the resonance) [6]. Förster 
resonances can be either two-body, when the states of only 
two atoms in the ensemble change due to interactions, or 
many-body, when the states of more than two atoms change 
simultaneously. This is of interest, e.g., for the implementa-
tion of three-qubit quantum gates used in error correction 
algorithms in quantum computing [7].

As an example, Fig. 1b shows the calculated Stark struc-
ture of the Förster resonance 3 ́  37P3/2 (|M|) ® 37S1/2 + 38S1/2 + 
37P3/2 (|M *|) for three Rydberg Rb atoms. The dependences 
of the energies W of various three-body collective states on 
the control electric field are presented. The crossings of collec-
tive states 2 – 7 are actually two-body resonances that do not 
require the presence of a third atom. Crossings 1 and 8 cor-
respond to three-body resonances, possible only in the pres-
ence of a third atom, which takes away an energy defect that 
impedes two-body resonance. Figure 1c shows a simplified 
diagram of the three-body Förster resonance for three Rydberg 
atoms. The initial collective state is state 1. Intermediate state 2 
corresponds to two atoms in the S-states and one atom in the 
initial P-state. The final state is state 3, which has a different 
projection of the atomic angular momentum in the P-state. 
The detunings D1 and D2 are controlled by the electric field. 
Three-body resonance occurs at D1 = D2, and two-body reso-
nance at D1 = 0.

Three-body Förster resonances were first proposed and 
realised in a gas of cold Rydberg Cs atoms by the French 
team [8]. In such three-body resonances, one of the atoms 
takes away an excess of energy, which prevents the two-body 
process; this leads to the Förster energy transfer of the so-
called ‘Borromean’ type. A Borromean transition is charac-
terised by a strong isolated three-body energy transfer with a 
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negligible contribution from the two-body effect. This allows 
studying the three-body effect, which is usually impossible to 
observe in other systems, since it turns out to be hidden by the 
strong signal from the two-body effect. The experiment [8] 
was performed with an ensemble of ~105 Cs atoms in the 
interaction volume with a characteristic size of ~200  mm. 
Therefore, a three-body resonance was actually observed for 
a large number of atoms i >> 1.

On the proposal of the French group, we recently per-
formed a similar experiment for i = 1 – 5  Rydberg Rb atoms 
randomly located in the volume of laser excitation with a 
characteristic size of ~15 mm [9]. Figure 1d shows experimen-
tal records of the Förster resonances ri observed for different 
numbers of atoms and their initial states 37P3/2 (|M| = 1/2) or 
37P3/2 (|M| = 3/2) at the interaction time 3 ms ( ri is the popu-
lation of the final collective state for a certain number of 
interacting atoms i ). Two-body resonances 3 and 6 are absent 
for i = 1, which confirms their two-body nature. Three-body 
resonances 1 and 8 are absent for i = 1, 2, which confirms 
their three-body nature. Thus, clear evidence was found that 
the three-body resonance 3 ́  nP3/2 (|M|) ® nS1/2 + (n + 1)S1/2 + 

nP3/2 (|M *|) for n = 36, 37 (|M| is the projection of the angular 
momentum J on the quantization axis Z ) does not manifest 
itself for two interacting Rydberg atoms, while it is present 
for three or more atoms. A theoretical analysis of three-body 
Förster resonances was performed by us in Ref. [10], where it 
was shown that for fixed positions of three atoms it is possible 
to observe coherent oscillations in the populations of interact-
ing atoms and control the phase of the collective wave func-
tion. Based on such three-body resonances, we proposed a 
scheme for executing the three-qubit quantum Toffoli gate 
with a fidelity of more than 98 % [11]. 

The above three-body Förster resonances 3 ´ nP3/2 (|M|) ® 
nS1/2 + (n + 1)S1/2 + nP3/2 (|M *|) corresponded to the two-stage 
process 3   ́nP3/2 (|M|) ® nS1/2 + (n + 1) S1/2 + nP3/2 (|M|) ® n S1/2 + 
(n + 1)S1/2 + nP3/2 (|M *|), in which each of the stages was not 
energy resonant, and there was resonance only between the 
initial and final collective states (Fig. 1c). For such reso-
nances, two of the three interacting atoms in the initial state 
nP3/2 (|M|) transited to the neighbouring states nS1/2 and 
(n + 1)S1/2, and the third atom remained in the state nP3/2, but 
changed the projection of the angular momentum (if the ini-
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Figure 1.   (a) Calculated Stark diagram of Rydberg states of Rb atoms with the projection of the angular momentum | M | = 1/2 near the state 37P, 
(b) calculated Stark structure of the Förster resonance 3 ́  37P3/2 (| M |) ® 37S1/2 + 38S1/2 + 37P3/2(| M* |) for three Rydberg Rb atoms, (c) simplified 
scheme of the three-body Förster resonance for three Rydberg atoms and (d) experimentally recorded Förster resonances ri observed for different 
numbers of atoms (i = 1 – 5) and their initial states 37P3/2 (| M | = 1/2) or 37P3/2 (|M| = 3/2) at an interaction time of 3 ms in a single excitation volume 
with a characteristic size of ~15 mm with a random arrangement of atoms. Numbers 1 – 8 denote the crossings of collective states corresponding to 
Förster resonances of various nature.
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tial projection was |M|= 1/2, then it changed to |M*|= 3/2, 
and vice versa). In this case, the usual two-body Förster reso-
nance corresponds to the case 2 ́  nP3/2 ® nS1/2 + (n + 1)S1/2, 
when the third atom does not change the projection of the 
angular momentum; therefore, this resonance occurs in a 
slightly different electric field.

The first transition is an ordinary two-body resonance, 
while the second transition occurs due to a nonresonant 
exchange interaction corresponding to excitation jumps 
between Rydberg atoms in the S- and P-states. The first and 
second transitions occur simultaneously, which implies their 
Borromean nature, while the third atom compensates for the 
energy of the nonzero defect of the two-body Förster reso-
nance. Therefore, three-body resonances are less efficient 
than two-body resonances in the case of a weak dipole – dipole 
interaction. However, when the three-body resonance is pre-
cisely tuned by the electric field, its contribution to the popu-
lation transfer in the general case exceeds the contribution of 
the two-body interaction, which in this case turns out to be 
nonresonance. Thus, the condition of the Borromean nature 
of three-body interactions is fulfilled [10].

In the case of Rydberg Rb atoms, one of the drawbacks 
of the above three-body resonances 3 ´ nP3/2 (|M|) ® nS1/2 + 
(n + 1) S1/2 + nP3/2 (|M *|) when used to implement three-qubit 
quantum gates is the proximity of the two-body resonance 
2 ́  nP3/2 ® nS1/2 + (n + 1)S1/2, which partially overlaps with 
the three-body one [9]. Another drawback is that, due to the 
specific values of quantum defects and polarisabilities of 
Rydberg states nP and nS in Rb atoms, the crossing of collec-
tive energy levels in a control electric field corresponding to 
three-body Förster resonances is possible only for states with 
values of the principal quantum number n £ 38. However, to 
increase the accuracy of quantum operations, it is necessary 
to perform them with higher Rydberg states with long life-
times and large transition dipole moments. 

Therefore, the aim of this work was to search for other 
possible three-body resonances for Rydberg Rb atoms in the 
states nP and nS, which have a simple structure of Stark sub-
levels. States with higher orbital angular momenta have a 
complex Stark structure with many sublevels (Fig. 1a) and 
in the general case are not suitable for high-fidelity quantum 
gates.

2. Three-body Förster resonances
in an ensemble of three Rydberg atoms

A theoretical analysis of three-body Förster resonances 
3 ́  nP3/2 (|M|) ® nS1/2 + (n + 1)S1/2 + nP3/2 (|M *|) was performed 
by us in Ref. [10]. For the transition diagram in Fig. 1, in 
the case of three fixed Rydberg atoms in a triangular con-
figuration, the following analytical solution was obtained 
for the line shape and time evolution of three-body Förster 
resonances:
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due to nonresonant intermediate interactions with the 
matrix elements of the dipole – dipole interaction operators 
W1 = V1/'  and W2 = V2/'  for the transitions1 ® 2 and 2 ® 3; 

V1 and V2 are the dipole – dipole interaction energies; and 
4 / 260 1 2 2 1W W W D W= +^ h is the oscillation frequency of 

the populations of collective states under exact resonance. 
This formula is identical to Rabi oscillations for a two-pho-
ton transition in a three-level system with a detuned interme-
diate level 2, which is not populated, and population oscilla-
tions occur only between levels 1 and 3. The required interac-
tion time t for long-lived Rydberg states can be set either by 
the Stark switching method in a pulsed electric field, as in our 
work [9], or by the time between laser excitation and the sub-
sequent deexcitation of given Rydberg states. From Eqn (1), 
several important conclusions can be drawn.

First, the three-body resonance experiences a dynamic shift 
D0, consisting of two parts: the part with –2W 2 arises due to 
always resonant exchange interactions of atoms in the S- and 
P-states, and the other part is a dynamic Stark shift caused by 
intermediate nonresonant interactions. Therefore, the posi-
tion of the three-body resonance in the scale of the controlling 
electric field depends on the interaction energy and the ratio 
of the energies of the intermediate transitions 1 ® 2 and 2 ® 3. 
In real Rydberg atoms, there is a Zeeman structure of Rydberg 
levels, which gives rise to multiple interaction channels with var-
ious matrix elements of dipole – dipole interaction. Therefore, 
due to the dynamic shift, they should demonstrate a set of 
individual resonances arising at slightly different values of the 
electric field rather than single three-body resonances. If the 
difference is large enough, it is possible to manipulate with 
individual channels of interaction. By choosing the spatial 
configuration of the three atoms, some channels can be sup-
pressed. Note that the line shape defined by Eqn (1) for a 
fixed interaction time differs from what we observed in the 
experiment (Fig. 1d) in a single excitation volume with a char-
acteristic size of ~15  mm with a random arrangement of 
atoms. This is because for a random arrangement of atoms all 
interaction channels are realised. This leads to an effective 
broadening of the three-body resonance.

Second, for immobile atoms, Eqn (1) demonstrates the 
possibility of coherent oscillations of populations appearing 
at exact resonance (D = D0). The frequency of these oscilla-
tions W0 depends on the specific interaction channel. The 
maximum resonance amplitude for r3 is 1/3 (in the experi-
ment, the amplitude is defined as the population of the final 
state nS, which is recorded by the selective field ionisation of 
Rydberg atoms [9]). The resonance width is determined by the 
combination of the Fourier width of the interaction pulse and 
the value of W0.

Third, each minimum of population oscillations corre-
sponds to a phase shift p for the collective wave function. 
Since such oscillations are controllable and reversible, they 
can be used to implement three-qubit quantum gates with 
Rydberg atoms, in particular, the Toffoli gate [11].

At the same time, as already indicated, the three-body 
Förster resonances 3 ́  37P3/2 (|M|) ® 37S1/2 + 38S1/2 + 37P3/2 (|M *|) 
have the following disadvantage from the point of view of 
their similar use: they work only for low Rydberg states and 
can partially overlap with two-body Förster resonances, since 
there are two possible final states of the triatomic system in 
the Stark diagram in Fig. 1b, corresponding to two- and 
three-body resonances.

We performed an extended analysis of other possible 
three-body Förster resonances tuned by an electric field upon 
excitation of higher Rydberg states nP3/2. One of the possible 
options was the case when three atoms are excited into differ-
ent initial Rydberg states rather than the same ones. For 
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example, in Ref. [11], to implement the fast three-qubit Toffoli 
quantum gate we proposed to use the three-body Förster res-
onances for the initial collective state |80P3/2(M = +3/2); 
81P3/2(M = +3/2); 81P3/2(M = –3/2)ñ and showed the possi-
bility of achieving high fidelity of the operation. However, 
this scheme is hard to implement experimentally, because it 
requires several different-frequency exciting laser radiations 
rather than one. Therefore, in this work, we found a new 
simpler three-body resonance 3 ́  nP3/2 ® nS1/2 + (n + 1)S1/2 + 
nP1/2, in which three atoms are excited into identical Rydberg 
states, and there is only one final state. This resonance 
turned out to be realisable for arbitrary initial Rydberg 
states nP3/2.

For example, Fig. 2 shows the calculated Stark diagram 
of Rydberg states of Rb atoms near the 70P state and the 
calculated Stark structure of the new-type Förster resonance 
3 ́  70P3/2 ® 70S1/2 + 71S1/2 + 70P1/2 for three Rydberg Rb 
atoms. For this resonance, the crossings of collective states 
(indicated by numbers) correspond only to three-body Förster 
resonances, when all three atoms change their states, and 
there are no two-body resonances at all. A distinctive feature 
of this resonance is that the third atom transits to a state with 
different total angular momentum J = 1/2 having no Stark 
structure rather than to a state with a different projection of 
the same angular momentum. Therefore, the experimental 
study of such a three-body resonance should be much sim-
pler, since two-body resonance is completely absent. At the 
same time, such a resonance may be noticeably weaker due to 
significantly larger detunings of intermediate levels (about 
200  MHz) than in the case of the three-body resonance 
3 ́  37P3/2 (|M|) ® 37S1/2 + 38S1/2 + 37P3/2 (|M *|) (about 10 MHz). 
On the other hand, for high Rydberg states, the dipole 
moments of transitions are much greater. For example, for 
transitions from the 70P state to neighbouring states 70S 
and 71S, the radial part of the dipole moments is about 5 000 
a.u., while similar transitions from the 37P state have radial 
parts of about 1 300 a.u. As a result, the value of W0 for the 
resonance of a new type is of the same order of magnitude as 
for the resonances of the old type.

3. Results of numerical calculations 
for three-body Förster resonances
of a new type

As already discussed, in real Rydberg atoms, due to the pres-
ence of several interaction channels, a set of several reso-
nances corresponding to different channels should be observed 
instead of a single three-body Förster resonance. In Ref. [10], 
we showed that in order to reduce the number of such chan-
nels, the optimal geometry of the three atoms is their uniform 
location along the quantisation axis Z, which is chosen along 
the direction of the control electric field. In this case, only two 
well-separated three-body Förster resonances corresponding 
to two interaction channels remain.

Nevertheless, analytical calculations for such a geometry 
turn out to be impossible; therefore, we performed numeri-
cal calculations in the same way as it was done in Ref. [10] 
for three-body resonances 3 ́  37P3/2 (|M|) ® 37S1/2 + 38S1/2 + 
37P3/2 (|M *|). However, in Ref. [10], all magnetic sublevels 
of Rydberg states were taken into account, which for the 
three-body Förster resonance in atoms in the 37P3/2 states 
required 160 collective states with all possible values of the 
angular momentum projections to be taken into account. For 
the 70P3/2 state, such calculations would require taking into 
account a much larger number of collective states. Therefore, 
to reduce the number of basis states and save computing time, 
we used a simplified model in which the signs of the angular 
momentum projections were not taken into account (i.e., a 
simplified model was constructed for Stark Rydberg sublevels 
rather than Zeeman ones). Its operability was checked earlier 
in calculations for the 37P3/2 state, which showed satisfactory 
agreement with the results of Ref. [10] regarding the positions 
and amplitudes of three-body resonances. 

Figure 3 shows the results of numerical calculations of the 
three-body Förster resonance of a new type, 3 ́  70P3/2 (|M| = 
1/2) ® 70S1/2 + 71S1/2 + 70P1/2 , for three Rydberg Rb atoms 
in several spatial configurations. Figure 3a corresponds to the 
case when three atoms are uniformly located along the Z-axis 
spaced by R = 10 mm, the interaction time being 0.35 ms. At 
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such a distance, the interaction of neighbouring Rydberg 
atoms is relatively weak, and the three-body resonances do 
not broaden. As expected, only two resonances arise in this 
configuration, which correspond to two interaction channels. 
Their resonance electric fields of 0.1247 and 0.140 V cm–1 are 
close to the calculated value of 0.135 V cm–1 for the crossing 
of collective levels in Fig. 2b in the absence of interaction, tak-
ing into account additional dynamic shifts. The resonance 
amplitudes tend to the maximum possible value 1/3, and their 
width when converted to the frequency scale corresponds to 
the Fourier width of the interaction pulse (about 3 MHz). The 
resonances are well resolved, and by tuning the electric field, 
one can select a specific three-body interaction channel.

With a decrease in the interatomic distance to R = 7 mm 
(Fig. 3b), the effective three-body interaction energy W0, 
which depends on the distance as R–6, increases by 8.5 times. 
As a result, the calculated spectra begin to noticeably broaden, 
shift, and partially overlap in the presence of population 
oscillations. In this case, one of the resonances shifts toward a 
smaller electric field, and its wing has a nonzero width even in 
a zero field. A further decrease in the distance to R = 6 mm 
(Fig. 3c) increases the energy of three-body interaction by 
another 2.5 times, which is accompanied by a complete over-
lap of the two resonances and their considerable broadening. 
The observed oscillations of the populations at the wings of a 
three-body resonance have a period that increases with 

decreasing electric field, which is explained by the quadratic 
nature of the Stark effect. 

We also calculated the case when three atoms were ran-
domly located in a cubic interaction volume V = 14 ́  14 ́  14  mm 
averaged over 100 realisations at an interaction time of 2 ms, 
which approximately corresponded to the conditions of our 
experiment in Ref. [9] during recording three-body Förster 
resonances (see Fig. 1d). In this case, due to the uncertainty of 
the distance between the atoms and their mutual orientations, 
all the interaction channels are involved, the population oscil-
lations are completely washed out, and the spectrum of the 
resonance approximately corresponds to the resonance enve-
lope in Fig. 3c. The resonance amplitude also decreases 
noticeably, which is associated with the presence of zeros in 
the interaction energy for certain spatial configurations of 
atoms [12]. In this case, the three-body interaction is also 
present in the zero electric field, which can be explained by 
those random configurations of atoms, in which they are 
located close to each other and have large interaction energies 
comparable with the energy in Fig. 3c.

Based on the results of calculating the spectra of three-
body Förster resonances of a new type (Fig. 3), we can draw 
the following conclusions. First, the spectra are highly sensi-
tive to interatomic distances, and when a certain threshold 
value is reached, they begin to broaden, and individual inter-
action channels become indistinguishable. This leads to a loss 
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Figure 3.  Results of numerical calculations of the three-body Förster resonance spectra of a new type 3 ́  70P3/2 (|M| = 1/2) ® 70S1/2 + 71S1/2 + 70P1/2, 
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of coherence and the absence of full population oscillations at 
high interaction energies. Second, with a random arrange-
ment of three atoms in a single volume of laser excitation, 
coherence is completely lost, and the three-body interaction 
takes place even in a zero electric field, which complicates its 
observation under the conditions of our experiment [9] for 
old-type resonances. Therefore, experiments must be per-
formed with single atoms in separate optical dipole traps with 
minimal fluctuations in their spatial position, as was done, 
e.g., in Ref. [13]. Third, for high Rydberg states, the values of 
the resonant electric field are rather small, therefore, to 
observe narrow three-body resonances, a high-stability source 
of the electric field is required, and all possible spurious fields 
must be carefully compensated to less than 1 mV cm–1.

Our calculations also showed that, under the conditions 
of good spatial localisation of atoms and minimisation of 
the electric field noise, experimental realisation of coherent 
population oscillations at the three-body Förster resonance is 
possible. Figure 4a shows a magnified image of the spectrum 
from Fig. 3a. There are two well-resolved peaks of three-body 
resonance at electric fields of 0.1247 and 0.140  V  cm–1. 
Fine tuning to one of the peaks (the required accuracy is 
~0.1 mV cm–1) allows switching on the coherent three-body 
interaction, accompanied by population oscillations. The cal-
culated population oscillations when tuning the electric field 

to a three-body resonance in an electric field of 0.1247 V cm–1 
are presented in Fig. 4b. The contrast of oscillations exceeds 
95 %, which allows considering them as the basis for three-
qubit quantum gates, by analogy with the three-body reso-
nances that we examined in Refs [10, 11]. 

At present, we are performing more accurate theoretical 
calculations in the full interaction model (taking into account 
the Zeeman structure) in order to find an optimal Rydberg 
state for implementing three-qubit quantum gates based on 
the new type of three-body Förster resonances discussed in 
this paper.

Note also that the many-body electrically controlled Förster 
resonances for large ensembles of Rydberg atoms were stud-
ied experimentally in recent work [14, 15], in which the possi-
bility of observing four-particle and higher resonances was 
noted, which, however, requires significantly higher interac-
tion energies. 

4. Conclusion

Three-body Förster resonances of a new type, 3   ́nP3/2 ® nS1/2 + 
(n + 1)S1/2 + nP1/2, which can be implemented with Rydberg Rb 
atoms in arbitrary nP3/2 states, have been theoretically investi-
gated. Unlike other three-body resonances 3 ́  nP3/2 (|M|) ® nS1/2 
+ (n + 1)S1/2 + nP3/2 (|M *|) studied by us previously and observed 
only for low-lying states with n £ 38, such resonances can be 
observed for arbitrary states. One more specific feature of 
these resonances is that the third atom transits to a state with 
a different total angular momentum J = 1/2 having no Stark 
structure rather than to a state with a different projection of 
the same angular momentum. Thus, the experimental study of 
such three-body resonances should be much simpler, since in 
this case two-body resonance is completely absent.

Our numerical calculations using the example of the three-
body Förster resonance 3 ́  70P3/2 (|M|) = 1/2) ® 70S1/2 + 
71S1/2 + 70P1/2 for three Rydberg Rb atoms in several spatial 
configurations showed that for not too strong interaction, 
when various interaction channels are well resolved in the 
spectra, it is possible to observe high-contrast population 
oscillations. Since such oscillations are accompanied by oscil-
lations of the phase of the collective wave function of three 
atoms, it is possible to develop new schemes of three-qubit 
quantum gates controlled by an electric field based on them. 
This is of interest for quantum informatics with qubits based 
on neutral atoms in arrays of optical dipole traps.
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