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Abstract.  Some collective excitations of an ensemble of closely 
spaced (two-level) atoms can be characterised by extremely low 
rates of radiation decay, which is of considerable interest for stor-
ing quantum information. Such (dark) states are realised, for 
example, in planar geometry when atoms are located at the nodes 
of a regular polygon. However, the decay rate of such excitations 
increases markedly when the geometry deviates from ideal. Using 
the example of small deformation of a square in a rhombus, we 
show that an increase in the decay rate of the dark state due to sym-
metry breaking can be compensated for by adjusting the transition 
frequency of some atoms exposed to external laser radiation.

Keywords: atomic ensembles, spontaneous decay, subradiative 
states, quantum information.

1. Introduction

A system of several identical atoms enclosed in a volume with 
a linear size r < leg (leg is the wavelength of the transition 
from the excited state | e ñ of a single atom to the ground state 
| g ñ) was first considered by Dicke [1] 65 years ago as an exam-
ple of the formation of superradiant and subradiant states. 
Singly excited states Qn of the system consisting of N nonin-
teracting atoms can be expressed in general form as

| g g e g gQn n n n N1 1 1f f H= - + ,	 (1)

where the atom with the number n is excited, and the remain-
ing atoms are in the ground state. The dipole – dipole interac-
tion between them leads to the formation of N superpositional 
(entangled) states, the expected properties of which can cor-
respond either to the so-called superradiance (spontaneous 
decay that is faster than the | e ñ ® | g ñ transition in a single 
atom) or to subradiance (slow spontaneous decay). This clas-
sification is readily realised at N = 2. In this case, the 
dipole – dipole interaction of the Q1 and Q2 states leads to the 
formation of two entangled eigenstates: symmetric, Qs = 
2–1/2(Q1 + Q2), and antisymmetric,  Qa = 2–1/2(Q1 – Q2) [2, 3]. 

While the Qs state at r << leg decays at a rate Gs » 2G (that is, 
with a double rate of the spontaneous decay of a single atom), 
for the Qa state we have Ga ~ (r/leg)2G. When studying this 
system, the main attention in a number of works (see, for 
example, [4 – 6] and review [3]) was focused on superradiance. 
An interesting effect of switching between the Q1 and Q2 
states, caused by the variation of the spatial structure of the 
exciting laser pulse, was considered by Das et al. [7]. As for 
the subradiant states, an increased interest in them was caused 
by their slow spontaneous decay and the resulting potential 
for long-term storage of quantum information.

In connection with this, the logical question is whether the 
subradiant states of atomic configurations whose decay rate 
in the parameter r/leg is lower than in the above case are pos-
sible. A striking example of this kind was proposed by 
V.S. Letokhov [8 – 10]: two atoms in the 1D case (one-dimen-
sional waveguide or photonic crystal) located at a distance 
equal to an integer number of half-waves, mleg /2. The anti-
symmetric state with an even value of m and the symmetric 
state with an odd value of m are superstable; they are sus-
tained by a field filling the space between the atoms. The 
decay of such states with a small difference in the distance 
from its critical value was studied by Redchenko and Yudson 
[11]. In a one-dimensional waveguide, more complex configu-
rations were also considered (see, for example, [12]). However, 
such schemes can only be realised for spatially separated 
atoms. For two closely spaced atoms in the three-dimensional 
(3D) case, we note two schemes for controlling subradiant 
states [13, 14]. An interesting (although rather complicated) 
scheme for constructing a single-quantum subradiant state in 
an ensemble of a large number of atoms was considered by 
Scully [15], and the possibility of its control was discussed by 
Cai et al. [16]. As for the experiment, some evidence in favour 
of a change in the spontaneous decay rate was obtained, for 
example, by Pavolini et al. [17] for an ensemble of a large 
number of atoms and by DeVoe and Brewer [18] for a system 
of two ions in a trap. Finally, more recently, subradiance 
from a cloud of cold atoms was reliably observed [19]. The 
contribution of this effect was small, but detectable by a nar-
row spectrum of fluorescence delayed by the times signifi-
cantly exceeding the time of superradiance.

In connection with the foregoing, of fundamental impor-
tance is the formation of subradiant states that decay more 
slowly with respect to the r/leg parameter than in a system of 
two atoms [for example, as (r/leg)4, etc.]. More recently, the 
‘theorem of existence’ of such states was proved [20, 21]. This 
is a system that demonstrates the effect of extraordinary sub-
radiance, i.e. ‘quantum emitters’ (atoms?) in the configura-
tion (geometry) of a regular polygon, starting with a square 
(number of atoms N ³ 4).
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In this work, we study modifications of the extraordi-
nary subradiance effect with respect to small changes in the 
optimal geometry. It turns out that changes in shape in the 
particular case N = 4 (from square to rhombus) can be fully 
compensated for by shifting the transition frequency in two 
opposite atoms. In Section 2, we formulate the model and 
present general analytical results that make it possible to 
calculate the rates of spontaneous single-quantum decay of 
atomic systems in arbitrary geometry. Section 3 discusses 
the properties of excited single-quantum eigenstates of 
atomic systems in the geometry of regular polygons. In 
Section 4, we present the results of calculating the spontane-
ous decay rate of the lower state of the system in rhombic 
geometry with finding the frequency shifts that are optimal 
for these structures. Finally, in Section 5, we propose a 
scheme using laser radiation, which allows one to realise the 
necessary energy shifts.

2. Spontaneous emission of atomic systems

We consider a system of N identical atoms localised at the 
points Rn = (xn, yn, zn = 0) on the plane z = 0. For simplicity, 
we assume that the ground state | g ñ of the atom is nondegen-
erate (the total angular momentum Jg = 0), and the excited 
state | e ñ is three-fold degenerate (Je = 1) with projections M = 
0, ±1 on the z axis (for example, atoms of group II, i.e. Be, 
Mg, Ca, etc.). We restrict ourselves to the states with the pro-
jection M = 0, i.e., linearly polarised radiation with the transi-
tion | e(0) ñ ® | g ñ. The Hamiltonian of the subsystem of singly 
excited states has the form:
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where E is the energy of the excited state | e ñ of a single atom, 
which we further consider equal to zero; and Ujk are the 
matrix elements of the dipole – dipole interaction operator, 
which depend on the distance ( ) ( )r x x y yjk j k j k

2 2
= - + -  

between atoms for a given pair of them. In the case under 
study, when the quantisation axis of the angular momentum 
projection is perpendicular to the line connecting the atoms, 
in the expression for the dipole – dipole interaction operator

( ) ( ) ( )
U

r r

d d d r d r
3j k j k

3 5

$ $ $
= -t

t t t t
	 (3)

only the first term remains. Therefore, Ujk = | | | |e gd( )0G H 2z
t

´ rjk
–3, and it is convenient to express these matrix elements in 

terms of the spontaneous emission rate G on the transition  
| e(0) ñ ® | g ñ:

| |e gd
3
32 ( ) ( )

eg

z
3

3
0 2

'
G Hp

l
G = t .	 (4)

Then,

( )
U

kr4
3

jk
jk
3

G
= ,	 (5)

where k = 2p/leg. Next, we will characterise the system of 
atoms using the parameter Ur, which is equal to the value of 
the smallest matrix element Ujk corresponding to the maxi-
mum distance between the atoms in the system.

Having formulated assumptions and limitations, we pres-
ent a formula for the spontaneous emission rates of an arbi-
trary ‘planar’ system of atoms from eigenstates | yj ñ (  j = 1, 2, … , 
N) constructed taking into account the dipole – dipole interac-
tion as a superposition of states (1). The derivation of the gen-
eral formula is given in Appendix 1. In the particular case of 
plane geometry and the transition without changing the angu-
lar momentum projection onto an axis perpendicular to the 
plane z = 0, the spontaneous emission rate from the state | yj ñ 
is expressed in terms of the coordinates Rn of the atoms and 
the projections Cnj of states (1) onto the state | yj ñ as

nj

p2p
( )C exp sini d dkR

8
3( )

j
N

n

N

n
1

2
3

00p q q jG G
=

=

/yy .	 (6)

Here, the components of the vector k are related to the spher-
ical angles q and j by ordinary expressions: k = k(sinq cosj, 
sinq sinj, cosq). Formula (6) is used in further calculations.

3. Regular polygons of atoms as a source 
of extraordinary subradiant states

Let us consider the change in the structure of singly excited 
energy states with an increase in the number of atoms in the 
configuration of a regular polygon. In the trivial case of N = 2, 
the energies E1 = –Ur, E2 = +Ur, while the eigenvectors are 
antisymmetric and symmetric, respectively, since the interac-
tion is a positive quantity. The atomic coordinates are selected 
in the form | | /2,0,0 | |rR1= - , | | /2,0,0 | |rR2 = + . The decay 
rates of the states |1ñ and |2ñ in accordance with (6) are 
expressed as:

p2p
sin sin cos sin d dkr
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00p q j q q jG G
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00p q j q q jG G
= ` jyy ,
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where the subscript at G denotes the state number, and the 
upper one is the number of atoms. When kr << 1, we have

G 1
(2) » 

p
( ) ( )sin dkr kr

16
3

5
12 5 2

0
q qG G=y ,   G 2

(2) » 2G.	 (8)

In the case of N = 3 (an equilateral triangle), nothing funda-
mentally changes. There are two levels: a doubly degenerate 
level with an energy E1 = E2 = –Ur, the decay rate of which at  
kr << 1 is proportional to (kr)2, and a level with an energy E3 = 
2Ur, which exhibits a triple decay rate. However, at N = 4 (a 
square), we observe a new qualitative effect in comparison 
with the previous two cases. The three upper levels form a 
structure similar to that at N = 3: the upper state with 

(4 1)E U2 r4 = +  decays at (kr)2 << 1 at a rate of 4G, the 
next level is twice degenerate (E2, 3 = –Ur) and its decay rate is 
proportional to (kr)2. A significant difference is that the rate 
of spontaneous emission from the nondegenerate lower state 
[its energy is ( 4 1)E U2 r1= - + , and the eigenvector is Cn1 = 
(1/2)(–1)n] is already proportional to (kr)4 at kr << 1; in the 
general case, according to (6), we have
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Then, at kr << 1 we find
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A similar pattern is established with a further increase in 
the number of atoms (Fig. 1). Thus, at N = 5, one more state 
is added to the lower state, so that the lower level becomes 
doubly degenerate, and then at N = 6 a new nondegenerate 
level is added below, the decay rate of which at kr << 1 is 
proportional to (kr)6. Figure 2 shows a series of dependences 
of G1

(N) on the system size r.

4. System of four atoms in the geometry 
of a rhombus: effect of a shift in the energy 
levels of one of the opposite atomic pairs

The lifetime of extraordinary subradiant states turns out to be 
very sensitive to small changes in geometry. This circum-
stance is illustrated in Fig. 3, which shows the dependence of 
the decay rate of the lower state on the angle characterising 
the deviation of the rhombic geometry from the square geom-
etry. One can see that when kr » 1, G increases by 2 – 3 times 
in the transition from a square to a rhombus (with an increase 
in the obtuse angle by about 10°). However, at kr << 1, the 
growth rate of decay G1 increases by orders of magnitude.

Thus, with a relatively small change in structure, the 
‘extraordinary subradiance’ effect is radically destroyed. Its 
restoration (and even some enhancement) is possible by shift-
ing the transition frequency in a pair of atoms located at 
opposite vertices of the rhombus relative to the transition fre-
quency in another pair of atoms. In particular, for atoms 
located at the vertices of an obtuse angle, the shift Dw must be 
negative. The dependences of G1 on Dw, shown in Fig. 4, dem-
onstrate sharp minima at optimal values of the frequency 
shift. The minimum values of G1 for the corresponding opti-
mal Dw are given in Table 1 for various r. Analytical expres-
sions for the eigenstates and energies of the rhombic configu-
ration of atoms are given in Appendix 2.
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5. Inducing a shift by a laser field in the form 
of a standing wave

Of the available scenarios of a frequency shift in two pairs of 
atoms (in obtuse- and acute-angle vertices of a rhombus), we 
consider the use of a standing laser wave (Fig. 5). It is possi-
ble, for example, as shown in the figure, to use a transition 
from the ground state | g ñ into an auxiliary state | a ñ located 
higher in energy than the state | e ñ. This scheme can be of 

purely practical value provided that at 1kr K  the laser wave-
length that is close to the transition wavelength | |g aEH H will 
be able to provide the necessary excess of the amplitude of the 
field acting on a pair of atoms 2 – 4 over the amplitude of the 
field acting on a pair of atoms 1 – 3. We should also note the 
possibility of varying the field difference due to the inclina-
tion of the standing wave with respect to the plane in which 
the atoms reside. In any case, the difference in transition fre-
quencies | e ñ ® | g ñ in this scenario is expressed in terms of the 
difference in energy shifts

( )

( )d

4

E

las ag

ga
2

2

'
.w

w w
D

-
	 (11)

of the ground state of two pairs of atoms due to the difference 
in the squares of the amplitudes of the standing wave field E ; 
here, dga is the matrix element of the dipole moment operator 
for the transition | |g aEH H.

6. Conclusions

We have analysed the properties of subradiant states decay-
ing more slowly than (kr)2G (see Fig. 2) for a system of closely 
spaced (r/l << 1) atoms in the geometry of a regular polygon. 
We have shown that, with a relatively small violation of the 
geometry, the spontaneous decay rate of these states increases 
dramatically (see Fig. 3). However (and this is the main result 
of the work), the situation is corrected due to a shift in the 
transition frequency in certain atoms with respect to other 
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Table  1.  The optimal energy shift of two atoms located at ‘obtuse’ vertices of the rhombus, and the corresponding decay rates of an extraordinary 
subradiant state.

(kr)2
a = 90° a = 100° a = 110°    a = 120°

Dw/Ur G1/G Dw/Ur G1/G Dw/Ur G1/G Dw/Ur G1/G

0.01 0 5.4 ́  10–7 – 0.69 3.9 ́  10–7 –1.91 3.0 ́  10–7 – 4.19 2.5 ́  10–7

0.10 0 5.3 ́  10–5 – 0.67 3.9 ́  10–5 –1.87 3.0 ́  10–5 – 4.13 2.5 ́  10–5

1.00 0 5.2 ́  10–3 – 0.48 3.8 ́  10–3 –1.47 3.0 ́  10–3 – 3.51 2.4 ́  10–3

2
1         3

4

Dw

Rhombus

Mirror

Laser
 light

|añ

| eñ

| gñ

Figure 5.  Scheme for inducing an energy shift of the ground state in a 
pair of atoms located in the obtuse vertices of a rhombus. The laser 
frequency is detuned relative to the frequency of the transition from the 
ground state to the high-lying excited state of the atom to the blue. The 
antinodes of a standing wave are at the position of a pair of atoms 2 – 4, 
the nodes are at the position of a pair of atoms 1 – 3.
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atoms. The calculations have been performed only for the 
geometry of a rhombus (see Fig. 4 and Table 1), but it seems 
that higher-order polygons should also exhibit the observed 
effects. They are especially pronounced when the distance 
between the atoms is much less than the wavelength of the 
transition in use. We can note that the problem of subwave-
length localisation has been developed recently in a number of 
theoretical works. Thus, one of the latest original proposals is 
based on high-frequency modulation of the optical field [22]. 
In addition to laser tweezers and ion traps, the introduction 
to [22] reviews other scenarios considered in the literature. 
For example, Dubetsky and Berman [23] consider the use of 
optical lattices based on multiphoton optical transitions to be 
a promising method. We can also note the idea of a femtosec-
ond trap (see, for example, [24]). The considered trend, as a 
prelude to new interesting physics, is topical and will be 
unconditionally developed. Solving the subwavelength locali-
sation problem will allow one to use the ideas of this work for 
ultra-precise measurements of the characteristics of systems 
of closely spaced atoms. The measurable quantity in the 
experiment does not have to be the decay rate; apparently, it 
is more convenient to diagnose subradiant states by measur-
ing the radiation linewidth.

It should be noted separately a scenario when the fre-
quency shift does not need to be induced, i.e. when it is natu-
ral, for example, in isotopes. Then the control is reduced to 
solving the inverse problem, i.e. manipulation of the geome-
try (with the fine tuning of the laser radiation) to minimise the 
rate of spontaneous emission of a certain superpositional 
(entangled) state.

Appendix 1

We obtain a formula for the spontaneous decay rate of an 
arbitrary singly excited eigenstate of a system of N atoms, 
which is represented as an expansion in many-particle basis 
states similar to (1), without restricting ourselves to consider-
ing plane geometry and sampling of excited states with only 
zero angular momentum projection M: 
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// ,	 (A1.1)

where for definiteness we consider the same particular case  
Jg = 0 and Je = 1, as in the main text. The interaction of each 
atom with a plane wave is described [25, 26] as

| |
( ) ( )exp

e g
i

d
d e kR

4

3
4
3H O Ok0 1 2$ /

G Hp p
G G

= +rlt
t

t t t^ h .

		  (A1.2)

Here, ekr is a pair of orthogonal unit vectors ( r = 1, 2) per-
pendicular to the wave vector k; R is the radius vector of the 
position of the atom; and the subscripts at Ot  correspond to 
the photon polarisation r. It is convenient to choose the vec-
tors ekr in the form, corresponding to expression of the vector 
k in polar coordinates ( , , )sin cos sin sin cosi { i { i| |k =k/ :

( , ,0)sin cosek1 j j= - ,

( , , )cos cos cos sin sine 2k q j q j q= - .

	 (A1.3)

Then we find the scalar products d ke$ r
t  included in formula 

(A1.2):

( ) ( )exp expi i i id dd
2 2k1e$ j j=- - ++ -

t t t` j ,
	 (A1.4)

1 ( ) ( )cos exp cos exp sini i id d dd
2 22 zke$ q j q j q= - + -+ -

t t t t` j .

Next, we write out the matrix elements of transitions from the 
singly excited states of the ith atom:

| | , , ( ) ( )exp expg g i i ikR
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Oi N i
1

1 1 gG Hy j=- t ,

| | , , 0g gOi N
0
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| | , , ( ) ( )exp expg g i i ikR
2

Oi N i1 1 gG Hy j=- -+ t ,

| | , , ( ) ( )cos exp expg g i ikR
2
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	 (A1.5)
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2 1 gG Hy q=-t ,
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2
1Oi N i

1
2 1 gG Hy q j= -+ t .

Finally, we express through these matrix elements the sponta-
neous decay rate of the state (A1.1):
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o// .	 (A1.6)

Here the factor in front of the integral is obtained from the 
golden rule in the form of 2 ( /4 )3 2p pG .

Next, we can perform a numerical calculation for any 
configuration of atoms and any orientation of the axes. In the 
case of plane geometry and taking into account only compo-
nents with M = 0, the terms with the matrix elements of the 
operator O1t  vanish and formula (A1.6) is reduced to formula 
(6) in Section 2.

Appendix 2

We label the vertices of the rhombus sequentially with num-
bers from 1 to 4, assuming that the internal angle a at vertices 
2 and 4 is obtuse. Let the distance between vertices 1 and 3 be 
equal to r. We denote the matrix element of the interaction 
between these vertices by U13 = U (in the text, by definition, 
U13 = Ur; hereinafter, we omit the subscript r). Then the 
remaining elements of the interaction matrix have the form:

( / )sinU U U U U8 212 23 34 14
3 a= = = = ,

( / )tanU U 224
3 a= .

	 (A2.1)
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The frequencies of opposite atoms 2 and 4 are assumed to be 
shifted by Dw with respect to the frequencies of atoms 1 and 3. 
The system of equations for the amplitudes Cj of the eigenvec-
tor | y ñ has the form

( )EC U C C UC1 12 2 4 3= + + ,

( )EC C U C C U C2 2 12 1 3 24 4wD= + + + ,

( )EC U C C UC3 12 2 4 1= + + ,	
(A2.2)

( )EC C U C C U C4 4 12 1 3 24 2wD= + + + .

It is convenient to introduce new variables:

( ), ( )A C C a C C
2
1

2
1

1 2 1 2= + = - ,

( ), ( )B C C b C C
2
1

2
1

2 4 2 4= + = - .

	 (A2.3)

Then the system of equations (A2.2) reduces to the form

(E + U )a = 0,

(E – Dw + U24)b = 0,

(E – U )A – 2U12B = 0,
	 (A2.4)

– 2U12A + (E – Dw – U 24)B = 0.

The four eigenenergies are given by the expressions* 

E Ua =- ,

( /2)tanE U Ub 24
3w w aDD= - = - ,

( ) ( ) 4E U U U U U
2
1

4
1

24 24
2

12
2!w wD D= + + - + +! 	(A2.5)

	 ( / )tanU U2
1 1 23 a wD

= + +8 B$

	 ( / ) ( / )tan sinU4
1 1 2 256 23

2
6! a w aD

- + +8 B 1.

In the case of a general position, when all the eigenener-
gies are different, the eigenvectors are determined by system 
(A2.4). For example, let E = Ea be different from other eigh-
enenergies. Then A, B and b  vanish. For the amplitudes Cj, 
we find: C1 = – C3 = 1/ 2  and C2 = C4 = 0. Adjusting the 
value of Dw allows one to manipulate the eigenenergies and 
eigenstates so as to ensure a minimum decay rate (see Fig. 4 
and Table 1).
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* For the square (a = 90° and Dw = 0) there is a correspondence 
, ,E E E E E E( , ) ( , )a b 2 3 4 1+ + ++ - , if we number the energies in ascending 

order. However, in the general case, such a correspondence may be vio-
lated.


