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Abstract. Dispersion and nonlinear characteristics of microstruc-
tured silica fibres with a thin suspended core surrounded by three, 
four or six air holes have been studied theoretically in the wave-
length range 1 – 2 mm. It has been shown that, owing to strong fun-
damental mode confinement near the core, the Kerr nonlinearity 
coefficient can exceed the nonlinearity coefficient of standard tele-
com fibre SMF28e by two orders of magnitude. The large wave-
guide contribution allows for effective group velocity dispersion 
management. Estimates are presented that demonstrate the feasi-
bility of using suspended core fibre exhibiting Kerr nonlinearity for 
generating non-classical light: a state with squeezed quantum fluc-
tuations in one of the quadrature components of a cw laser signal at 
a wavelength near 1.55 mm.

Keywords: microstructured fibre, Kerr nonlinearity, group velocity 
dispersion.

1. Introduction

In designing waveguide structures, considerable attention is 
paid to the refractive index profile, because most important 
characteristics depend on it. Modern technologies enable one 
to tune dispersion and nonlinear properties of waveguide 
structures in a wide range by producing specialty refractive 
index profiles. Microstructuring is widely used to control 
group velocity dispersion (GVD): one produces ordered struc-
tures of air holes or glasses differing considerably in refractive 
index, with characteristic sizes at a micron or submicron level 
[1 – 8]. In addition to widespread photonic crystal fibre, whose 
core is surrounded by several regular rings of air holes [3], 
there is suspended core fibre (SCF), in which a thin core is 
surrounded by one ring of air holes separated by thin walls 
[9 – 15]. Microstructured waveguide structures are often used 
to produce anomalous dispersion at wavelengths correspond-
ing to normal material dispersion. A large waveguide contri-
bution can considerably shift the zero dispersion wavelength. 
It is also possible to produce optical fibre with two (or three) 
GVD zeros in a particular spectral range [16]. Microstructured 
fibres with controlled dispersion and strong Kerr nonlinearity 

considerably extend the possibilities of nonlinear optical sig-
nal conversion; make it possible to obtain unique characteris-
tics of light, unattainable for lasing, to master spectral ranges 
where no gain media are available [3, 5, 11] and to produce 
a supercontinuum – an ultrabroadband coherent signal with a 
spectral width of the order of an octave or even more [3, 11]; 
and can be used as nonlinear elements in measurements of the 
shape and phase of ultrashort pulses [15]. In addition to the 
above-mentioned classical nonlinear optical effects in micro-
structured fibre, one can observe quantum effects (see e.g. 
Refs [17 – 19]), but these have been the subject of much less 
extensive studies.

In this paper, we present numerical simulation of nonlin-
ear and dispersion characteristics of SCF in a wide range of its 
parameters. These characteristics strongly depend on the geo-
metric dimensions of structural elements of the fibre. Such 
fibre can be used in a wide range of above-mentioned classical 
nonlinear optical problems. In addition, we assess the feasi-
bility of using the fibre under study, with adequately chosen 
parameters, for producing a non-classical state of light with 
squeezed quantum noise (squeezed quantum fluctuations in 
one of the signal quadrature components [20]). In some prob-
lems, e.g. in precision metrology (including laser interferom-
eter gravitational wave detection), there is special interest in 
the ability to suppress noise to below the standard quantum 
limit, i.e. to generate so-called squeezed light.

Since the first observation of squeezed light by Slusher et 
al. [21], higher and higher degrees of quantum squeezing have 
been being reported [22]. The record high value (– 15 dB) [23] 
was achieved under ideal conditions for cw radiation in the 
vacuum state – a so-called squeezed vacuum state of light. It 
is possible to squeeze quantum uncertainty using Kerr nonlin-
earity, which was demonstrated e.g. by Milburn et al. [24]. In 
this case, quantum uncertainty squeezing occurs for a quadra-
ture inclined at some angle in phase space, and it cannot be 
directly measured via simple direct detection (but the problem 
can be obviated e.g. using a phase-shifting cavity). Previously, 
using telecom components and Kerr nonlinearity in fibre, 
Bergman and Haus [25] investigated noise reduction in the 
case of pulsed laser light. They achieved quantum squeezing 
in a nonlinear interferometer. In this process, the squeezed 
Wigner distribution rotated in phase space through a required 
angle, at which the squeezed quadrature could be measured 
by a simple method [26]. Squeezing was brought about for 
soliton pulses in a Sagnac interferometer fabricated from 
standard optical telecom fibre. A nonlinear fibre interferom-
eter was also used to reduce classical noise by 12 dB [27] with-
out reaching a level below quantum noise.
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Note that, for quantum squeezing of light in fibre, use is 
commonly made of all-solid silica fibre [25, 28], but photonic 
crystal fibre also can be used [19, 29]. Owing to the decrease in 
mode diameter, fibre microstructuring ensures higher nonlin-
earity in comparison with standard telecom fibre [3] and dis-
persion management, which is important in dealing with soli-
ton pulses. In this paper, we demonstrate that the nonlinear-
ity coefficient of fibre having a micron-sized suspended core 
can be several tens of times that of standard fibre, which is a 
favourable factor for studying nonlinear-optical and quan-
tum effects.

2. Numerical simulation of dispersion 
and Kerr nonlinearity coefficients

SCF can be fabricated via precision drilling of holes around 
its core in a monolithic cylindrical glass preform, followed by 
fibre drawing at a controlled gas pressure in the holes. SCFs 
can have different numbers of air holes [9, 11 – 15]. We studied 
in detail SCFs having three, four and six air holes: SCF3, 
SCF4 and SCF6, respectively. Their cross sections are shown 
in Fig. 1 (top row). The core size was taken to be the diameter 
d of the inscribed circle. In simulating properties of the SCFs, 
described in terms of Maxwell’s equations [30], we employed 
the finite element method. Using it, we found the propagation 
constant b and field structure of the fibre fundamental modes, 
which allowed us to calculate the second-order dispersion 
coefficient b2 = ∂2b/∂w2 and Kerr nonlinearity coefficient g as 
functions of wavelength l ( l = 2pc/w, where w is the angular 
frequency and c is the speed of light) [16]. For comparison 
and qualitative understanding of the general relationships 
involved, we examined an axisymmetric core in air (SCF0) as 
well. In the case of SCF0, to verify the results obtained by the 
finite element method, we solved the problem using a simpler 
approach as well, in the axisymmetric core approximation. 
For an axisymmetric core, the characteristic equation derived 
for fundamental modes from Maxwell’s equations and the 
continuity condition for tangential field components can be 
written in the form [30]
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where J1 is the first-order Bessel function of the first kind; 
K1 is the first-order modified Bessel function of the second 
kind (Macdonald function); primes denote differentiation of 
a function with respect to its argument; a is the core radius 
(a = d/2); k0 = w/с; and n is the refractive index. In this study, 
the refractive index was determined using the Sellmeier equa-
tion for fused silica [16]:
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where B1 = 0.6961633; B2 = 0.4079426; B3 = 0.8974794; l1 = 
0.0684043 mm; l2 = 0.1162414 mm; l3 = 9.896161 mm; and 
lj = 2pc/wj.

After substitution of (2), the transcendental equation (1) 
was solved numerically by a modified Newton method. The 
results obtained by solving the characteristic equation (1) and 
by the finite element method for SCF0 were found to be in 
excellent agreement. The analytical expressions for the elec-
tric and magnetic fields are rather cumbersome [30], so we do 
not present them here.

The Kerr nonlinearity coefficient was calculated as follows:
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where Pz  is the z-axis projection of the Poynting vector; n2 is the 
nonlinear refractive index of the glass (n2 = 2.6 ́  10–16 cm2 W–1); 
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Figure 1. Cross sections of the microstructured suspended core fibres under consideration (top row) and Poynting vector projections calculated for 
the fundamental modes at a wavelength of 1.55 mm for fibres with d = 2 mm (bottom row).
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and d2r is a cross-sectional area element of the SCF. The cal-
culated Poynting vectors at a wavelength of 1.55 mm for the 
fibres width d = 2 mm are shown in the bottom row in Fig. 1.

Figure 2 shows the calculated group velocity dispersion 
and Kerr nonlinearity coefficient as functions of wavelength 
in the range 1 – 2 mm for all the geometries under consider-
ation. The calculated characteristics of the SCF3, SCF4 and 

SCF6 fibres differ only slightly. The SCF0 fibres differ from 
them more significantly because of the larger waveguide con-
tribution. The calculated dispersion and nonlinearity coeffi-
cients of SCF6 differ least from those of SCF0, which is easy 
to explain: the larger the number of air holes around a core, 
the more similar is its cross section to a circle. For all geome-
tries, the large waveguide contribution strongly shifts the zero 
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Figure 2. Group velocity dispersion and Kerr nonlinearity coefficient as functions of wavelength for SCF3, SCF4, SCF6 and SCF0, differing in core 
diameter.
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dispersion wavelength relative to the material dispersion 
zero, which is at ~1.27 mm in the case of fused silica [16]. 
For the thinnest cores, the sign of the third-order dispersion 
coefficient b3 ( b3 = ∂3

 b/∂ w3) changes, i.e. b2 rises with 
increasing wavelength, whereas thicker cores have third-
order dispersion of the same sign as that of glass and stan-
dard fibre in the wavelength range under consideration ( b2 
decreases with increasing wavelength) [16]. Nonlinearity 
coefficients decrease almost linearly with increasing wave-
length in all the cases analysed (Fig. 2, right panels). At the 
smallest diameter considered (d = 1.2 mm), the nonlinearity 
coefficients are the strongest functions of wavelength. At 
wavelengths near 2 mm, the fundamental mode is less well 
confined near the core in d = 1.2 mm fibre than in the case 
of thicker cores, its size is larger, and its Kerr nonlinearity 
coefficient is smaller.

It is often of special interest to optimise nonlinear and dis-
persion parameters at a wavelength near 1.55 mm, because it 
is close to the emission wavelength of erbium-doped fibre 
lasers, which can be used to pump such fibre for nonlinear 
optical conversion. Figure 3a shows in greater detail b2 at a 
wavelength of 1.55 mm as a function of core diameter d, and 
Fig. 3b shows the Kerr nonlinearity coefficient g as a function 
of d. Dispersion is normal at a core diameter under ~1.3 mm 
and anomalous for thicker cores. Note that, at a wavelength 
of 1.55 mm , the dispersion of standard telecom fibre SMF28e 
is – 25 ps2 km–1 and its Kerr nonlinearity coefficient is 
~1 W–1 km–1. Its material dispersion is about – 28 ps2 km–1. 
The dispersion of SCF3, SCF4 and SCF6 at a wavelength of 
1.55 mm ranges widely, from ~150 to – 200 ps2 km–1, and their 
Kerr nonlinearity coefficients range from ~70 to ~20 W–1 km–1. 
Thus, the magnitude of the dispersion of the microstructured 
fibres under consideration can be increased by an order of 
magnitude, and their nonlinearity can be increased by almost 
two orders of magnitude, which allows such fibre to be used 
in a wide range of nonlinear optical applications. Note that, 
with increasing core diameter d, the dispersion of SCF3, SCF4 
and SCF6 approaches the material dispersion of glass (as seen 
in Fig. 3a, they differ little even at d = 3 mm). The dispersion 
of SCF0 asymptotically approaches the material dispersion at 
much larger core diameters (not shown in Fig. 3a), which is 

easy to account for: with increasing diameter d in SCF3, 
SCF4 and SCF6, the contribution of the glass walls between 
the air holes becomes significant, effectively increasing the 
cross section of the fibres relative to d. At small d, the size of 
the walls is considerably smaller than the wavelength, so their 
effect is not very strong. With increasing d, they scale linearly 
and have a much stronger effect.

3. Assessment of the feasibility 
of using suspended core fibre 
for producing non-classical states of light

The most widespread applications of microstructured fibre 
with a large Kerr nonlinearity coefficient (supercontinuum 
generation, soliton production including wavelength-tunable 
Raman solitons, four-wave interaction, and others [16]) typi-
cally take advantage of classical nonlinear-optical effects. The 
simulation results presented in Section 2 can be useful in 
designing, optimising, and implementing nonlinear optical fibre 
converters. At the same time, as mentioned in the Introduction 
section, Kerr nonlinear fibre can be used to produce non-clas-
sical states of light as well. Kerr nonlinearity is known to offer 
the possibility of squeezing quantum fluctuations in one of 
the signal quadrature components, inclined at some angle in 
phase space, whereas the variance of the other component 
increases, as shown schematically in Fig. 4, where X1 and X2 
denote canonically conjugate field quadratures [19, 20, 22]. 
Such fluctuation squeezing is possible for both cw laser sig-
nals and ultrashort pulses, in particular for optical solitons 
[19, 20, 22]. In the case of cw signals, there is the following 
analytical formula for the variance of fluctuations in one of 
the quadratures [20]:

, 1 2 4sin sinV r r r2 Kerr
2 2q q q= + +Kerr Kerr^ ^ ^h h h, (4)

where q is the angle of rotation in phase space; rKerr = gPz is 
the nonlinear phase shift; z is the fibre length; and P is the 
signal power. The standard quantum limit corresponds to the 
constraint V(q = 0, rKerr) = 1. For V < 1, quadrature compo-
nent squeezing is observed. The maximum squeezing corre-
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Figure 3. Calculated (a) group velocity dispersion and (b) Kerr nonlinearity coefficient at a wavelength of 1.55 mm as functions of SCF fibre diam-
eter. The line labelled SiO2 represents the dispersion of silica glass.
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sponds to the condition (d/d q)V(q, rKerr) = 0, from which it 
follows [20] that the optimal angle of rotation is

arctan r2
1 1

sq =
-

Kerr
c m. (5)

The largest squeezing at angle qs is given by [20]

1 2 2V r r r1 Kerr Kerrs
2 2q = - + +Kerr^ h . (6)

The degree of squeezing is often determined in experiments as 
10log10V (dB), so it was this parameter that we calculated. 
Figure 5 illustrates the effect of fibre length on the optimal 
squeezing of quadrature component quantum fluctuations 
for SCF3, SCF4 and SCF6 with a core diameter of 1.2 mm, 
which ensures maximum nonlinearity ( power P = 10  W). For 

comparison, we evaluated squeezing in a photonic crystal fibre 
with g = 11 W–1 km–1 [31, 32]. It is seen that the expected 
squeezing in the SCFs being analyzed (above – 15 dB at fibre 
lengths over 4 m) considerably exceeds squeezing in standard 
photonic crystal fibres (by more than 10 dB). At the same time, 
in these estimates losses are left out of account: linear absorp-
tion in the fibre (which can reach 0.078 dB m–1 in SCF [9]) and 
Fresnel reflection from the output fibre end (~0.3 dB). At a 
fibre length z = 5 m, the total loss is ~0.7 dB; at z = 10 m, it 
exceeds 1 dB, so at this level of losses the use of microstruc-
tured fibre longer than 10 m may be nonoptimal. Improving 
the SCF fabrication process can lead to a considerable 
decrease in linear optical loss, which would allow one to use 
longer lengths of fibre and increase noise squeezing. Besides, 
the use of higher power signals leads to an increase in nonlin-
ear phase shift rKerr and, hence, to larger squeezing at the 
same fibre length (since losses are independent of power). The 
effect under discussion is also influenced by thermal noise, 
which was left out of consideration here and can be sup-
pressed via cryogenic cooling. More accurate quantum fluc-
tuation squeezing values can be obtained by simulating the 
stochastic generalised nonlinear Schrödinger equation [19], 
whereas the simple estimates made here and demonstrating 
the potential of SCF are useful in choosing the range of 
parameters and evaluating the possible squeezing limit.

4. Conclusions

Dispersion and nonlinear characteristics of microstructured 
silica fibres with a thin suspended core surrounded by three, 
four or six air holes have been studied in detail in the wave-
length range 1 – 2 mm. For comparison and verification of 
results, we have studied characteristics of a thin axisymmetric 
core in air. The number of air holes has been shown to have a 
rather weak effect on characteristics of the fibre (at a given 
core diameter). At a wavelength near 1.55 mm, corresponding 
to the emission wavelength of erbium-doped fibre lasers, the 
dispersion of the SCFs varies from ~150 to – 200 ps2 km–1 
and their Kerr nonlinearity coefficient varies from ~70 to 
20  W–1 km–1 as the SCF core diameter rises from 1.2 to 3 mm. 
The fabrication and use of SCF with thinner cores may be 
severely limited by technological and technical difficulties. 
The numerical simulation results obtained in this study for 
characteristics of SCF can be useful in designing, developing 
and optimising nonlinear optical fibre converters of optical 
signals. Moreover, we have demonstrated the feasibility and 
potential of using SCF exhibiting Kerr nonlinearity for gener-
ating non-classical light: a state with squeezed quantum fluc-
tuations in one of the signal quadrature components.
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