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Abstract. Using the discrete nonlinear Schrödinger equation, we 
study the laser radiation self-action dynamics in a nanostructured 
waveguide system. It is shown that for a laser pulse energy exceed-
ing the critical value, the nonlinear evolution of the wave field 
markedly differs from the corresponding process in a continuous 
medium. While the pulse propagates in a discrete medium, its length 
decreases to values comparable to the scale of the structure and the 
velocity decreases to zero. The system parameters are determined 
at which the wave field after the laser pulse termination begins to 
propagate in the opposite direction in a compressed form. The pro-
cess of slowing down and stopping the pulse is accompanied by 
strong radiation losses, so that about a third of the energy of the 
initial field distribution remains in the final compressed state.

Keywords: self-compression, nanostructured waveguide medium, 
laser pulses.

1. Introduction

One of the main tasks of laser physics is the elaboration of 
methods for increasing the intensity of electromagnetic 
radiation. At first, success in this direction was largely due 
to the development of active laser elements and, then, due 
to technological progress, with approaches related to pulse 
compression turning out to be more promising [1, 2]. In 
this case, wide use was made of the approaches based on 
the spectral and temporal transformation of pulses during 
their propagation through a nonlinear media, which was 
facilitated, especially recently, by the development of fibre 
technology and nanooptics. Optical fibres are widely used 
as nonlinear media. They ensure high nonlinearity and 
make it possible to control dispersion due to the waveguide 
contribution (spatial boundedness of the system). With the 
development of nanotechnology, progress in this direction 
has continued. A technique is being developed for fabricat-
ing waveguide systems from a set of microresonators [3, 4]. 
A review of modern methods for the synthesis of plasma 
nanoparticles is presented in book [4]. Peculiarities of opti-
cal microresonators are considered in [3]. Various artificial 
nanostructures are produced to use their unique optical 
properties.

Periodic systems of coupled nanophotonic structures are a 
special class of systems in which wave excitations of new types 
propagate. The peculiarities of their theoretical description 
based on the model of discrete systems are considered, for 
example, in [5]. In particular, within the framework of this 
model, the possibility of using a waveguide system of micro-
resonators to slow down the light and control the velocity of 
its propagation was studied [6, 7]. In this paper, we continue 
to study nonlinear processes in similar systems based on the 
nonlinear Schrödinger equation. Section 2 presents the state-
ment of the problem for studying the characteristic features of 
the laser pulse self-action in systems that are highly nonuni-
form in the direction of the pulse propagation. They are due 
to the fact that in a discrete system the pulse propagation 
velocity is not a constant value, but changes during the evolu-
tion of the wave packet in a self-consistent regime. In the fol-
lowing sections, it is analytically and numerically shown that, 
as a result of nonlinear control of the pulse velocity, one can 
not only stop it, but also force it to move in the opposite direc-
tion. In this case, it is natural to expect self-compression of a 
laser pulse as it propagates in a medium.

2. Statement of the problem

Let us consider the structural changes of a laser pulse in the 
process of its self-action in nanostructured media. One of the 
simplest nanostructures is a linear cluster of identical (for 
example, spherical) nanoparticles [4, 8, 9], the geometry of 
which is shown in Fig. 1.

Due to the interaction of nanoparticles in a linear metal 
cluster, there is one mode with a longitudinal orientation of 
dipole moments and two modes with a transverse one. The 
propagation of linear excitations in such systems in various 
approximations was studied in [4, 8]. It was shown that the 
processes occurring in the system can be described with fairly 
good accuracy by a model in which only the dipole moment is 
associated with each particle, and higher moments are not 
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Figure 1. Geometry of a linear cluster consisting of identical nano-
spheres.
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taken into account. Thus, under the conditions where the 
interaction of only neighbouring dipoles dominates, we con-
sider the self-action dynamics of the transverse mode in ques-
tion by using the equation
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Here, the second term on the right-hand side describes oscil-
lations of the field fn of the nth dipole of a single spherical 
nanoparticle with a frequency w0, and the first term is respon-
sible for the propagation of excitation in the system. The 
intensity of interaction is determined by
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The conditions of the linear model applicability were dis-
cussed in [4]. In the quasi-static approximation under consid-
eration, we do not take into account the radiation losses asso-
ciated with the excitation of a synchronous electromagnetic 
wave in a vacuum. An analysis of the dispersion relation 
obtained in [8] with allowance for the finite speed of light 
propagation shows that the losses are small at w0d/c << 1 on 
the paths in question.

To study the nonlinear dynamics of the system, the last 
term is additionally introduced into equation (1). The mecha-
nisms of cubic nonlinearity of a plasma cluster were discussed 
in [10]. In this case, we can make use of the value of the char-
acteristic nonlinear field Enl = mw0

2q/e, where m is the mass of 
the electron, and e is its charge. As a result, for the parameter 
a in equation (1) we can give the following estimate: a = 
– w0

2e2/(m2w1
4q2).

For w0 >>  w1, which is easily satisfied for q < d, as a result 
of truncation of Eqn (1), we arrive at the discrete nonlinear 
Schrödinger equation (DNSE) [5], well known in the theory 
of nonlinear waves, in dimensionless variables for the wave 
field envelope yn (fn µ yn exp(iw0t)):
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Here, the evolutionary variable is normalised to w1
2/(2w0).

A somewhat more complex system of equations was used 
in the problem of the maximum possible light slowdown in 
coupled optical microresonators (Fig. 2) [6, 7]:
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In this case, the field envelope yn of the central chain of oscil-
lators (microresonators) is related to the field envelope bn of 

lateral oscillators, detuned in frequency by D. In the absence 
of coupling (d = 0), the nonlinear evolution of the laser pulse 
in the chain is described by DNSE (3). At t = 0, a wave pulse 
described by the complex function yn(n, t = 0 )exp(ign) is 
defined, which then propagates along the chain in one direc-
tion with a group velocity determined by the dispersion rela-
tion in the linear case. In contrast to [6, 7], in the nonlinear 
self-action regime under consideration, we have an additional 
possibility of controlling the speed of the light pulse by means 
of a nonlinear shift of the field frequency fn in the central 
waveguide system.

This possibility is best explained by equation (3). It has an 
integral
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which describes the conservation of energy of a localised wave 
packet. Below, we will consider it as a control parameter. The 
velocity of the energy centre of the wave packet in the discrete 
case has the form
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Using the continuity equation, expression (7) can be repre-
sented as
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Using the Poisson summation formula, expression (8) is con-
veniently written in the form:
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Consider the wave packet of a Gaussian shape:
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where a is the effective width of the wave packet; x0 is the 
position of the energy centre; and g and b describe linear and 
quadratic phase front corrections, respectively. Then for the 
group velocity we find the expression
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In deriving it, we actually used relation (9) for n = 0. Estimates 
show that this is justified for pulses with a length a >> /2 p , 
i.e., even for wave packets with a width comparable to the cell 
size.

It follows from expression (11) that, in the nonlinear 
regime, the pulse velocity in a discrete medium is not a con-
stant value. Its change is determined by the behaviour of the 
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Figure 2. Geometry of coupled optical microresonators.
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wave beam parameters (a,  b,  g) during the system evolution. 
We obtain the corresponding equations in the next section. 
Based on them, we will perform a qualitative study of the 
characteristic features of the laser pulse self-action in the dis-
crete case. The results of a numerical study of processes using 
the original equation (3) are presented in Section 4.

3. Qualitative study of the self-action dynamics 

To describe the dynamics of a self-consistent system, we use 
the aberrationless approximation. The original equation (3) 
was studied in relation to the spatial evolution of wave beams 
in a coupled system of nonlinear fibres [11]. Based on the spa-
tio-temporal analogy, i.e., replacing the evolution variable z 
by a time variable (z ® t), we can present the system of equa-
tions describing the dynamic self-action of Gaussian laser 
pulses (10) in a discrete medium as
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It should be noted that the system of equations (12a) – (12d) 
was obtained in the framework of an approximate variational 
approach, when only the terms with n = 0 are taken into 
account in the Lagrangian of the original equation (1) written 
using the Poisson summation formula. This greatly simplifies 
the situation, since the coefficient g responsible for the linear 
phase correction becomes the integral of the problem ( g = g0). 
As a result, the displacement of the position of the energy cen-
tre x0 does not affect the time evolution of the internal struc-
ture of the Gaussian pulse, defined by equations (12a) and 
(12b) with the initial value of g equal to g0:
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No less important is another fact. The group velocity of 
the laser pulse, which is described by expression (12c) that 
coincides with (11) for g = g0, substantially depends on the 
behaviour of a(t) and b(t). Here we come across an unusual 
situation when the evolution of the internal structure of the 
wave packet controls its propagation velocity. Finally, this 
affects the propagation path of a laser pulse in a discrete 
medium. We will show below that the length of the path can 
be finite.

A detailed analytical study of the system of equations 
(13a) and (13b) was performed in [11, 12]. It should be noted 
that in the case of self-action of laser pulses in question, the 
system of equations (12) has a much wider range of applica-

bility. The description of the evolution of wave beams is lim-
ited by the approximation of paraxial optics (g << 1). The 
interval of variation of g in this problem is determined by the 
Brillouin zone (0 ≤ g ≤ p).

Based on the results obtained in [11, 12] and the spatio-
temporal analogy, we can argue that the field evolution and 
the propagation of a pulse with a constant velocity, character-
istic of a continuous medium, are realised only when the wave 
packet energy W is less than the critical value Wc. When the 
laser pulse energy exceeds the critical value (W  >  Wc), the spa-
tial length of the wave packet decreases as it propagates in the 
chain up to values of the order of the characteristic scale of a 
discrete medium. In this case, the self-action dynamics leads 
to a strong spatial localisation of the laser pulse.

To estimate the critical energy of the wave packet that is 
initially smooth on the scale of the structural element of the 
medium, we proceed as follows. Note that the limiting pas-
sage from equations (13a) and (13b) to their analogues for a 
continuous medium is carried out under the simultaneous ful-
filment of two conditions: a ® ∞ and ab ® 0. As a result, to 
describe the behaviour of the pulse length, we arrive at the 
equation
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This equation, and even more so equations (12) show that the 
self-action dynamics in a discrete system differs significantly 
from the situation described by the continuous nonlinear 
Schrödinger equation. Even in the case of wide wave packets 
(a ® ∞), equation (14) ‘remembers’ (g0 ≠ 0) the dispersion 
relation of waves in a discrete medium.

Equation (14) is well known and is used to describe self-
focusing in the aberrationless approximation. Its solution has 
been analysed in many books on the theory of nonlinear 
waves. A phase portrait of the system is given, for example, in 
[13]. The equilibrium state of the system on the phase plane 
has the coordinates a' = /cos W8 0p g  and da/dt = 0. The 
integral of equation (14) for fields with an initial plane phase 
front (da/dt = 0 at t = 0),
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describes a periodic change in the spatial length of the pulse 
from the initial value  a(t = 0) = a0 <<  a’ to amin < a’. Based on 
the fact that amin becomes equal to the size of the structural 
element of the medium (amin = 1), we find

8 cosWc 0p g=  » 5cos g0. (16)

At this value of the critical pulse energy Wc, the coordinate 
corresponding to the equilibrium state becomes equal to the 
size of the structural element of the medium (a' = 1). For this 
reason, expression (16) gives a somewhat overestimated esti-
mate for Wc compared to the value obtained as a result of a 
rather sophisticated analysis of the dynamics of the system 
based on equations (13) [11, 12]. The analysis shows that at a 
pulse energy W > Wc, a periodic change in the wave packet 
width a is replaced by the localisation of the wave field in the 
structural element of the medium (a » 1).

From expression (15), one can estimate the self-compres-
sion time. In the supercritical regime, to change the spatial 
pulse length, we have the relation
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Based on Eqn (17), for the pulse collapse time we can obtain 
the expression
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Another important estimate can be found from (12c). The dis-
tance travelled by the pulse during self-localisation till it stops 
is described by the expression
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Thus, a laser pulse with an energy exceeding the critical value 
(16) propagates in a discrete medium to a finite distance (19). 
It is maximum at W » Wc and increases in proportion to the 
initial pulse length to the power of 3/2. In the region of zero 
discrete dispersion (g0 ® p/2), the critical value of energy (16) 
decreases (Wc ® 0), and the distance xs travelled by the pulse 
increases infinitely (xs ® ∞).

It is also interesting to note that the length of the pulse 
propagation path at W > Wc decreases with increasing 
energy. This means that there is another critical energy value:
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above which the field is localised near the boundary of the 
discrete medium.

4. Numerical simulation

The above picture of dynamic self-action in discrete systems is 
generally confirmed by the results of a numerical solution of the 
original equation (3). Next, we graphically illustrate those new 
processes that accompany spatial self-compression of laser 
pulses using the DNSE. Under the conditions we are discussing, 
it is convenient to use the initial field distributions in the form
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where 1/s defines the characteristic size of the field localisa-
tion region; n0 is the number of the central cell; and N is the 
estimate of the number of solitons contained in the initial field 
distribution. The quantity g0 characterises the initial propaga-
tion velocity of the pulse. In these notations, the energy of the 
wave packet is expresses as

W = 4sN 2. (22) 

Comparing (22) and (16), we can estimate the critical value of 
the number of solitons:
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above which the discreteness of the medium significantly 
affects the self-action dynamics of pulses.

In contrast to [11], we study in more detail the character-
istic features of the self-action dynamics in the case of finite g. 

Figure 3 shows one of the variants of numerical calculation 
(for g < p /2) of the radiation self-action dynamics in the 
supercritical regime. One can see that the process of rather 
strong spatial self-compression (the pulse length decreased by 
an order of magnitude) is accompanied by radiation losses. 
As a result, more than a third of the energy of the initial pulse 
remains in the field localisation region. It is important to note 
the following. In a continuous medium, the possibility of self-
localisation is limited by the development of modulation 
instability, which leads to the splitting of the field distribution 
into solitons. In a discrete medium, despite the existence of 
this instability [8, 14], we did not notice its manifestation. The 
process of spatial localisation of the field at nine solitons in its 
initial distribution proceeds in the same way as with a smaller 
number of them (the field is localised on one cell and loses two 
thirds of its energy).

Another important characteristic of the self-action 
dynamics in a discrete medium is that due to the asymmetry 
of radiation losses (along the pulse propagation and in the 
opposite direction), the compressed pulse (as a rule) begins to 
move in the opposite direction. This effect manifests itself 
more pronouncedly for the parameter g related to the region 
of zero discrete dispersion ( g » p/2). One can see from Fig. 4 
(g = 1.5) that the compressed pulse returns to the input of the 
waveguide system. At the same time, its temporary duration 
decreases three times. Radiation losses of the wave field in the 
region of laser pulse reflection occur mainly in the direction of 
its initial propagation.

In a more complex system of coupled optical microreso-
nators, such a simple analytical study of the processes, with 
the exception of the case d = 0, cannot be carried out. 
However, under conditions when the central waveguide – res-
onator structure is dominant, and the side structure at d ≠ 0 
determines only an additional delayed response, a numerical 
study shows that the self-action dynamics proceeds in a simi-
lar way. For the same parameters of the wave packet as in 
Fig. 4 and coefficients d = 0.03, D = –1 in equations (4) and 
(5), the picture is almost the same. The main difference from 
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Figure 3. Evolution of the wave packet (21) (s = 0.05, g0 = 0.5, N = 6), 
calculated using equation (3).



365Self-compression of laser pulses in a discrete medium

the results obtained above is a slightly higher level of radia-
tion losses. This reduces the efficiency of self-compression of 
laser pulses in this system.

5. Conclusions

We have studied the self-action dynamics of laser pulses in 
two systems belonging to different frequency ranges. It is 
assumed that the scheme in Fig. 2 consists of nonlinear opti-
cal microresonators [6, 7], and the system of coupled metal 
clusters (Fig. 1) is waveguiding for radiation with a frequency 
close to the field oscillation frequency of 5 ́  1015 s–1 in a metal 
cluster [4, 8, 9]. It has been shown that a laser pulse with an 
energy exceeding the critical value (16) propagates in the sys-
tem with a velocity decreasing to zero. In the process of stop-
ping the pulse, it is localised in the structural element of the 
medium with an energy efficiency of about 30 %. Moreover, 
when setting the initial parameters of the system near the zero 
group velocity dispersion, the laser pulse not only stops, but 
also returns back in a compressed form. Here we are dealing 
with a rather specific radiation self-action dynamics. An ini-
tially smooth (on a characteristic scale of the medium) laser 
pulse is reflected from a discrete medium. The nonlinear pro-
cess is controlled by means of a self-consistent strong change 
in the group velocity of the wave packet. As a result, the laser 
pulse self-action dynamics at an energy exceeding the critical 
value becomes spatio-temporal. It is premature to draw more 
definite conclusions because of insufficient data on system 
parameters (especially nonlinear ones).
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