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Abstract.  We study the process of propagation of high harmonics 
of optical radiation in an active medium of a plasma-based X-ray 
laser, simultaneously irradiated by an intense optical field of funda-
mental frequency. It is shown that for moderate plasma dispersion 
of the active medium at the frequency of the modulating optical 
field, the energy and relative amplitudes of the harmonics at the 
output of the medium are determined by their phases at the entrance 
to the medium, as well as by the time-delay of the harmonics with 
respect to the modulating field. These dependences are due to inter-
ference of high-order harmonics with a set of multi-frequency fields 
generated by each of the harmonics in the process of coherent scat-
tering in a modulated active medium. The possibilities of using 
these effects to increase the efficiency of harmonic amplification, to 
control the harmonic spectrum, and determine the relative phases at 
the entrance to the medium are discussed on the example of the 
active medium of hydrogen-like Li2+ ions (with a 13.5 nm wave-
length of an inverted transition). 

Keywords: quantum interference, plasma-based X-ray laser, strong 
optical fields, high-order harmonics of optical field, amplification 
of X-ray radiation.

1. Introduction 

The control of the electromagnetic radiation – matter inter-
action on a sub-optical-cycle time scale is one of the most 
topical problems of modern optics. In addition to the deep 
fundamental significance, these studies open up the possibil-
ity of extremely fast (three orders of magnitude faster than 
the microwave electronics allows) electronic current control 
in various media. In addition, the study of strongly nonlin-
ear interaction of electromagnetic radiation with matter 
often requires the development of new theoretical 
approaches, the appearance of which, in turn, stimulates the 
search for new regimes of interaction between radiation and 
matter.

Over the past decade, the interaction of noble gas atoms 
with the radiation of high-order harmonics of an optical laser 
field (usually a sequence of attosecond pulses or a single atto-
second pulse) combined with optical radiation of the funda-
mental frequency (a replica of the field used to generate the 
harmonics) has been actively studied [1 – 8 ] (see also review [9]). 
In these studies, the frequency of one of the harmonics is close 
to the frequency of a transition from the ground state to one of 
the low-lying excited energy levels [2 – 5, 7, 8] or to an autoioni-
sation state of the atoms [1, 6]. The intensity of the optical field 
is insufficient for ionisation or multiphoton excitation of the 
atoms from the ground state, but is large enough to substan-
tially couple (‘dress’) the excited states. The excitation and 
ionisation of the atoms occurs with the participation of har-
monics of various orders and with the absorption of a different 
number of photons of the optical field. In this case, the proba-
bilities of ionisation and population of excited atomic states, as 
well as the probability of absorbing radiation of a certain har-
monic, turn out to be periodic functions (generally anhar-
monic) depending on the delay of the harmonic signal relative 
to the optical field of fundamental frequency with a period 
equal to the half-period of optical radiation. This periodicity is 
due to the interference of the excitation and ionisation paths of 
atoms (or absorption of harmonics of a given order) involving 
a different number of optical field photons, which is construc-
tive or destructive depending on the ratio of the phase differ-
ence between harmonics of adjacent orders and the phase of 
the optical field. A shift and broadening of the excited energy 
levels of gas atoms following the oscillations of the optical field 
strength were also observed [5]. 

In later experiments [10, 11], the generation of high-order 
harmonics of the optical field was studied under similar con-
ditions [when both a moderate-intensity laser field of funda-
mental frequency and seed radiation of harmonics of the 
vacuum ultraviolet (VUV) range are initially present]. It was 
shown that the interference of the paths of ionisation of atoms 
and the generation of electronic wave packets in free space 
leads to a periodic dependence of the intensity of the newly 
generated harmonics on the delay between the VUV radiation 
of the seed and the optical field of fundamental frequency. An 
analysis of the properties of harmonics of various orders 
makes it possible to study the subfemtosecond dynamics of 
atoms in a combined VUV and optical fields. 

In addition, in recent years, the possibility of controlling 
the conductivity of dielectrics and semiconductors on a time 
scale of the order of an optical cycle fractions has attracted 
considerable interest [12 – 16]. For this purpose, a solid-state 
sample is irradiated with an intense and extremely short (with 
a few-cycle duration) optical pulse, which transfers electrons 
to the conduction band and creates holes in the valence band, 
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and also causes intraband transitions over a time of a fraction 
of a femtosecond. Additionally, the sample is irradiated by a 
single attosecond VUV pulse, which allows measuring the 
parameters (for example, the absorption coefficient for the 
VUV radiation) of the medium depending on the delay 
between the probing harmonics and the optical field. In par-
ticular, it was shown that in a certain range of laser field 
intensities, the process of electron excitation is reversible, and 
after the end of the optical pulse, the population of the con-
duction band quickly (with a subfemtosecond delay) returns 
to its original value. 

In this paper, we study the role of interference in the pro-
cess of amplifying high-order harmonics of optical radiation 
in the active medium of a plasma-based X-ray laser, addition-
ally irradiated by the laser field at the fundamental frequency. 
This work deals with the same group of problems as the previ-
ous studies of interference effects in a strong laser field com-
bined with the radiation of its high-order harmonics. 
However, it differs by two fundamentally new features. First, 
we consider an active medium, where energy is transferred 
from matter to field, and not vice versa. Second, the medium 
is a plasma of multiply charged ions, which makes it necessary 
to take into account the propagation effects associated with 
the difference in the phase velocities of the optical and VUV 
fields due to plasma dispersion. 

For the first time, the possibility of amplifying sets of high-
order optical harmonics and sequences of attosecond pulses in 
a modulated active medium of a plasma-based X-ray laser was 
demonstrated in Ref. [17]. However, in [17] the plasma was 
assumed dense for the modulating optical field, so that the 
mutual influence of harmonics on each other in the process of 
amplification was suppressed. On the contrary, the present 
work considers the case of a relatively weak plasma dispersion 
at the frequency of the modulating field. We show that in this 
case each harmonic not only is amplified in the medium, but 
also generates a multi-frequency coherently scattered field at 
the frequencies of other harmonics. A change in the initial 
phases of the amplified harmonics and the modulating field, as 
well as a change in the medium thickness, leads to a change in 
the nature of the interference between the harmonic radiation 
and the set of coherently scattered fields. This, in turn, allows 
controlling the energy characteristics of harmonics, namely, 
the total energy density and relative amplitudes of the harmon-
ics at the output of the modulated active medium. 

2. Theoretical model 

Let us consider a hydrogen-like active medium of a plasma-
based X-ray laser, simultaneously irradiated by an optical 
field with a fundamental frequency W and radiation of its 
three neighbouring high-order harmonics. One of them (the 
central one, we number it as 0) is tuned to resonance with the 
active medium transition (with taking into account the time-
average shift of the energy levels of resonant ions under the 
action of the optical field). The other two harmonics (we 
number them as +1 and –1) are detuned from the resonance 
by ±2 frequencies of the modulating field. In the considered 
case of the three harmonics, it turns out to be possible to 
obtain a simple analytical solution for their amplitudes, which 
includes all the interference effects of interest. 

Thus, the resonant component of the incident field is a 
combination of three linearly polarised high-order harmonics 
with the same amplitudes (amplitude moduli) E0, the central 
frequencies of which are separated by 2W: 

( 0, ) ( )exp ix t tE z
2
1

inc0 w= = - ,

 ( ) ( ) . .exp i c cA t M t2M

M 1

1

# W +
=-

-/ , (1) 

where z0 is the unit vector of polarisation of the harmonic 
radiation; AM (t) = E0 exp(ijM)q(t) is the slowly varying com-
plex amplitude of the Mth harmonic at the input to the 
medium; jM is the phase of the Mth harmonic; and q(t) is the 
Heaviside function. Similarly to Refs [17 – 19], as an active 
medium, we consider a plasma of hydrogen-like ions initially 
populating the excited energy level with n = 2 (where n is the 
principal quantum number). We assume that the frequency of 
the central harmonic, winc, is equal to the frequency of the 
transition between energy levels with n = 1 and n = 2, and that 
winc >> 2W. 

At the same time, the active plasma medium is irradiated 
by a replica of the laser field at the fundamental frequency W 
with linear polarisation coinciding with the polarisation of 
harmonics (1) and amplitude Elas, whose magnitude is below 
the ionisation threshold of the medium: 
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where J is the initial phase of the laser field at the front edge 
of the plasma layer; c is the speed of light in vacuum; npl = 
1 4 /( )N e me e

2 2p W-  is the plasma refractive index at the 
optical field frequency; Ne is the concentration of free elec-
trons; and me and e are the electron mass and charge, respec-
tively. Under the influence of the optical field (2), due to the 
Stark effect, the degenerate energy level with n = 2 is split into 
three sublevels. The energies of two of them, corresponding to 
the eigenstates of the Hamiltonian of hydrogen-like ions in 
the parabolic coordinate system |2ñ = (|2sñ + |2p, m = 0ñ)/ 2  
and |3ñ = (|2sñ – |2p, m = 0ñ)/ 2 , where m characterises the 
projection of the orbital angular momentum of ions on the z 
axis, trace the local value of the electric field (2) in space and 
time due to the linear Stark effect. They also experience con-
stant shift due to the quadratic Stark effect
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where F0 = (2/Z)3Elas /Ea is the normalised amplitude of the 
laser field; Ea » 5.14 ´ 109 V cm–1 is the atomic unit of the 
electric field strength; '  is the Planck constant; and Z is the 
charge number of resonant ions. Thus, the energies of the 
states |2ñ and |3ñ turn out to be modulated by the laser field 
(2). Due to this fact, below we will call field (2) a modulating 
field. The third energy level is doubly degenerate and corre-
sponds to the eigenstates |4ñ = |2p, m = 1ñ and |5ñ = |2p, m = –1ñ. 
The energies of these states under the action of a modulating 
field experience only a constant shift due to the quadratic 
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that the ground state |1ñ = |1sñ also experiences a slight shift 
due to the quadratic Stark effect: ( , )t x m ee1
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Note that the dipole moments of the transitions |2ñ ® |1ñ, 
|3ñ ® |1ñ are oriented along the polarisation direction of the 
modulating field, i.e., along the z axis. Accordingly, these 
transitions are resonantly excited by the radiation of harmon-
ics (1), which leads to the appearance of resonant polarisation 
of the medium: 

P(x, t) = Nion(d12 r21 + d13  r31 + c.c.), (4) 

where d12 = z0dtr; d13 = – z0dtr; dtr = (27/35)ea0/Z; a0 is the Bohr 
radius; rij are elements of the density matrix of the medium; 
and Nion is the concentration of resonant ions. The dipole 
moments of the transitions |4ñ ® |1ñ and |5ñ ® |1ñ are oriented 
perpendicular to the z axis; d14 = d15 = iy0dtr. These transitions 
give rise to the generation of amplified spontaneous radiation 
polarised along the y axis, as well as to a decrease in the popu-
lation difference, and hence gain reduction, at the transitions 
|2ñ ® |1ñ and |3ñ ® |1ñ (due to populating the ground state of 
ions). However, as shown in Refs [17, 19], at a sufficiently 
high seeding radiation intensity (1), the influence of amplified 
spontaneous emission can be neglected. Below, in order to 
obtain a sufficiently simple analytical solution, we will con-
sider this condition to be fulfilled and exclude the states |4ñ 
and |5ñ from consideration (in Section 4, we present the results 
of calculations taking these states into account). 

In addition, in order to derive an analytical solution, we 
will assume that the interaction between the electric field of 
harmonics (1) and the medium is linear and the change in the 
population difference at the resonance transitions can be 
neglected (below we present the calculation results taking into 
account the nonlinearity of the medium). We also assume that 
the central frequency of the harmonics radiation is tuned to 
exact resonance with the transitions |2ñ ® |1ñ and |3ñ ® |1ñ, i.e. 
winc = 3me e4Z 2(1 – 109F0

2/64)/(8 3' ) º wz. Then, in the approxi-
mation of slowly varying amplitudes for the resonant field 
E(x, t) and polarisation of the medium P(x, t), as well as in the 
resonant (rotating wave) approximation for the density 
matrix elements, the system of equations describing the trans-
formation of field (1) in the modulated active hydrogen-like 
plasma medium will have the form: 

¶
¶ 4 ( )i
x
E

c
N dion trz z

21 31
p

e
w r r= -

u
u u ,

¶
¶

[ ( )]cosi iKx d n E
2las
tr tr

z z
21

21
't

r
g t J rDD W= - + + + -

u
u u , (5)

¶
¶

[ ( )]cosi iKx d n E
2las
tr tr

z z
31

31
't

r
g t J rDD W= - - + + +

u
u u , 

where Ezu  and i1ru  (i = 2, 3) are the slowly varying amplitudes  
of the harmonic fields and the amplitudes of quantum coher-
ences of the medium; Dlas = 3me e4Z 2F0/(8 3' ) is the modula-
tion depth of the frequencies of transitions |2ñ ® |1ñ and |3ñ ® 
|1ñ due to the linear Stark effect; ( , 0) ( , 0)n x xtr ii 11r t r t= = - =u u  
is the initial population difference at these transitions (i = 2, 
3); /2( )

ionz z
0g g G= +  is the relaxation rate of the resonant 

polarisation of the medium; ( )z0g  is the relaxation rate of reso-
nant polarisation in the absence of a modulating field; 
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is the rate of tunnel ionisation from the excited states |2ñ and 
|3ñ under the action of the modulating field; DK = W (1 – npl)/c 
is the contribution to the wave number of the modulating 
optical field due to plasma dispersion; e = 1 – 4pNee2/(me wz

2) 
» 1 is the plasma permittivity at the central frequency of the 
radiation of harmonics (1); and t = t – x/c is the local time. 
Below we take into account that the relaxation rate of the 
resonant polarisation is much lower than the frequency of the 
optical field, W/gz >> 1. 

We seek a solution for the slowly varying harmonic field 
amplitude Ezu  in the form 
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where ( , )E xM tu  are functions of time slowly varying on the 
scale of the optical field cycle at the fundamental frequency. 
The solution to the second equation of system (5) is sought in 
the form 

[ ( )]exp siniP Kxz21 21r r g t t JDW= - - + +Xu t ,

where PW = Dlas /W is the modulation index (a ratio between 
the amplitude of the shift of the excited energy levels due to 
linear Stark effect and the frequency of the modulating field). 
Then, taking into account Eqn (6), the second equation in (5) 
takes the form: 
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where Jk(PW) is the Bessel function of the first kind of the kth 
order. For brevity, we omit the argument of the Bessel func-
tion: Jk(PW) º Jk. Integrating Eqn (7) in the approximation 
| |EMu  >> ¶ ¶| / )|EM 0t t x=

u , which corresponds to the initial stage 
of field amplification in the medium, and also taking into 
account that W/gz >> 1, we obtain a solution for the coherence  
21ru  in the form 
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Similarly, we obtain a solution for the coherence 31ru : 
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Now substituting Eqns (6), (8) and (9) into the first equation 
of system (5), we obtain equations which describe the trans-
formation of the amplitude of each harmonic of the incident 
field during their propagation through the modulated active 
medium: 
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where 4 /( )g N n d cion tr trz z0
2 'pw g e=  is the gain of the active 

medium in the absence of modulation. Formally, system (10) 
can be rewritten in the integral form: 
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where F = 2DKx is the normalised coordinate characterising 
the phase shift of the modulating field during its propagation 
in plasma; a(t) = g0 [1 – exp(–gzt)] /(2DK) is the ratio of gain 

coefficient for the resonant radiation to the the contribution 
to the wave number of the modulating optical field due to 
plasma dispersion. It is seen that the first term in each of 
Eqns (11) describes the gain of each harmonic propagating 
independently of the others through the medium with the 
effective gain g0J 22M[1 – exp(–gzt)], where M = 0, ±1 is the 
number of the appropriate harmonic [Eqns (11) account for 
the fact that J–2 = J2]. This gain is time-dependent, since a 
finite time of ~1/gz is required to induce the polarisation 
response of the medium to an incident resonant field with a 
sharp leading edge. It also depends of the frequency and 
intensity of the modulating field via the modulation index PW. 
The remaining terms in Eqns (11) characterise the impact of 
the rest harmonics on the amplitude of the Mth harmonic. 

As shown in Ref. [17], if the plasma is dense, so that the 
phase velocity of the modulating laser field in the medium is 
significantly different from the velocity of light in vacuum, 
and g0/(2DK) << 1, then each harmonic in the spectrum of the 
incident resonant radiation is amplified independently of the 
rest ones. In this case, the effect of the terms in (11) containing 
the integrals can be neglected and the relative phases of the 
harmonics do not change during amplification. If, in addi-
tion, the modulation index PW is chosen such that the squares 
of Bessel functions J 22M of different orders are approximately 
equal to each other (in the case of three harmonics J0

2 = J2
2, see 

Fig. 1), then all harmonics of the incident radiation are 
equally amplified, and at the output from the medium, the 
time profile of the harmonic signal does not change. 

On the other hand, if J0
2 ¹ J2

2, then the harmonic gain 
coefficients are different (Fig. 1), which allows controlling the 
relative amplitudes of the zero and ±1st harmonics at the out-
put of the modulated active medium. At the same time, the 
±1st harmonics have the same gain at any modulation indices 
(since J–2

2 = J2
2), and therefore, in the process of amplification 

in a dense plasma, their amplitudes remain equal. 
Now we consider the case of a lower-density plasma, when 

the phase velocity of the optical field is close to the speed of 
light in vacuum. In this case, as shown in Refs [18, 19], when 
a medium is irradiated with a single resonant harmonic, its 
radiation is effectively scattered by a modulation wave travel-
ling with the phase velocity of the optical field in the medium. 

i = 0, j = 0
i = 2, j = 2
i = 0, j = 2

0

0

0.2

0.4

0.6

0.8

– 0.2
1 2 3 4 5 6 PW

Ji Jj

Figure 1. Dependences of the products of the Bessel functions of the 
first kind of orders i and j on the modulation indices characterising the 
gains of the zero (solid curve) and ±1st (dashed curve) harmonics, as 
well as the efficiency of their scattering into each other (dotted line).
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Due to this fact, the harmonic generates in the medium a 
combination of spectral components separated from each 
other by twice the frequency of the modulating field. Under 
certain conditions, namely, at the optimum modulation index 
and at the optimal thickness of the medium, which is deter-
mined by the plasma density and the frequency of the modu-
lating field, the spectral components of the coherently scat-
tered field have the greatest amplitude and are in phase with 
the amplified radiation of the incident (resonant) harmonic. 

If such a low-density active plasma medium is irradiated 
by a set of harmonics, each of which is resonant to the corre-
sponding induced spectral line of the gain [17], then the field 
of each harmonic will not only be amplified, but also effi-
ciently generate coherently scattered radiation at the frequen-
cies of the other harmonics. This scattering is described by the 
integral terms in equations (11).

Let us consider, for example, the second term in the first 
equation (11). It characterises the effect of scattering of 
zero-harmonic radiation with a complex amplitude E0u  on 
the amplitude of the minus first harmonic E 1-

u . The effi-
ciency of such scattering is characterised by the product a(t)
J0 J2 » J0 J2 /L (see Fig. 1), which depends on the amplitude 
Elas and frequency W or, equivalently, on the wavelength L = 
2pc/W of the modulating field. For efficient scattering, it is 
necessary to select the values of these parameters optimally. It 
should be borne in mind that, on the one hand, the use of too 
strong a modulating field is unacceptable because of the fast 
ionisation from the excited states of the active medium. On 
the other hand, increasing the wavelength of the modulating 
field is also undesirable, because it reduces the efficiency of 
scattering of the harmonics into each other due to enhanced 
plasma dispersion at the frequency of the modulating field, 
i.e., a decrease in the parameter a(t). 

In addition, the amplitude of the coherently scattered field 
generated by the zero harmonic at the frequency of the minus 
first harmonic substantially depends on the thickness of the 
medium. This is because this field is a sum of partial waves 
generated in previous layers of the medium due to scattering 
of zero-harmonic radiation by a modulation wave moving 
with the phase velocity of the optical field. Since this velocity 
is different from the propagation velocity of harmonics, each 
partial wave is delayed, which is described by the factors 
exp(iF) in the right-hand sides of Eqns (11). As a result, in a 
sufficiently thin layer of the medium, if amplification can be 
neglected, the resulting amplitude of the coherently scattered 
field from the zero harmonic at the frequency of the minus 
first harmonic will be proportional to sin(F/2). Thus, at a 
thickness of the medium corresponding to F = p, the ampli-
tude of the coherently scattered field will be maximal, and at 
a thickness of the medium corresponding to F = 2p, it will be 
minimal. 

It is also seen from Eqns (11) that the resulting amplitude 
of the Mth harmonic substantially depends on the relative 
phases of the harmonics at the input to the medium jM and 
on the initial phase of the modulating field J. If the relation 
between jM, J, and F is such that all terms in Eqns (11) are in 
phase, then due to the constructive interference of coherently 
scattered fields with the radiation of harmonics, the gain of 
the harmonics increases significantly compared to their inde-
pendent gain in a dense plasma [17]. We call this effect inter-
ference amplification of harmonics. At the same time, it is pos-
sible to choose a phase relationship between jM, J, and F 
such that coherently scattered fields are in antiphase with the 
radiation of harmonics, and this will lead to a decrease in 

amplitudes and the total energy of harmonics, compared with 
the case of their independent amplification. We call this effect 
interference suppression of harmonic amplification. Below, we 
will illustrate both of these cases, both based on an analytical 
solution and by numerical solution of a more general nonlin-
ear system of equations for harmonic amplitudes. 

Thus, in a low-density plasma active medium, where the 
phase velocity of the optical field is close to the speed of light in 
vacuum, the spectral characteristics of amplified harmonics sub-
stantially (in the general case, nonmonotonically) depend not 
only on the modulation index PW, but also on the phase of the 
modulating field, relative phases of harmonics, and the thickness 
of the medium. As a result, the coherent control becomes possi-
ble (i) of the transfer of energy from the medium to the field and 
(ii) of the spectral characteristics of the amplified radiation via 
constructive or destructive interference between the amplified 
incident field and coherently scattered fields.

3. Analytical solution 

This section provides simple analytical estimates that show 
the possibility of interference control of the spectral charac-
teristics of the radiation of three harmonics at the output of 
the modulated active plasma medium. To simplify the analy-
sis, we consider the modulation index PW » 1.84. In this case, 
J0 (1.84) = J2 (1.84) º J (Fig. 1), and in a dense plasma the 
harmonics of the incident radiation (1) will be amplified uni-
formly with the gain g0 J 2. At the same time, in a less dense 
plasma, taking into account coherent scattering of the har-
monics into each other, their complex amplitudes will have 
the following form: 

( , )E x1 t-
u  » ( ) [ ( )]exp expE g xJ 1 z0 0

2q t g t- -" ,

 ( ) 2 ( ) ( /2) ( /2 2 )exp sin expi i i iJ1
2

0# j a t J jF F+ + +-6  

 ( ) ( 4 )sin exp i i iJ2 1a t J jF F+ + + @,

( , )E x0 tu  » ( ) [ ( )]exp expE g xJ 1 z0 0
2q t g t- -" ,

 ( ) 2 ( ) ( /2) ( /2 2 )exp sin expi i i iJ0
2

1# j a t J jF F+ - - + -6  

 ( ) ( / ) ( / 2 )sin exp i i iJ2 2 22
1a t J jF F+ + + @, (12)

( , )E x1 tu  » ( ) [ ( )]exp expE g xJ 1 z0 0
2q t g t- -" ,

 ( ) 2 ( ) ( /2) ( /2 2 )exp sin expi i i iJ1
2

0# j a t J jF F+ - - +6  

 ( ) ( 4 )sin exp i i iJ2 1a t J jF F+ - - + - @. 

These expressions are derived from Eqns (11) using the first-
order perturbation theory with a(t) J 2 as a small parameter. 
The energy densities of the considered harmonics in the 
approximation a(t) J 2 << 1 are written as 

( , ) ( , ) ( ) ( /2)sinW x W x J1 4indep1
2t t a t F= +- 6

 ( / ) ( )cos sin cosJ2 22 1
2

2# a tY Y F Y- + @,

( , ) ( , ) ( ) ( /2)sinW x W x J1 8indep0
2t t a t F= +6

 ( / )cos cos 21 2# Y Y @, (13)
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( , ) ( , ) ( ) ( /2)sinW x W x J1 4indep1
2t t a t F= +6

 ( / ) ( )cos sin cosJ2 22 1
2

2# a tY Y F Y+ + @,

where | | / (8 )W EM M
2 p= u  is the energy density of the Mth har-

monic (M = 0, ±1), while ( , ) / ( ) expW x E g J x8 2dein p 0
2

0
2

#pt = 6 6@   
( ( )exp1 zg t- - @ is the energy density of an individual har-
monic (any of the three) propagating independently in a dense 
plasma. In Eqns (13), we use the notations 

( ) /2, ,1 1 0 1 0j jD DY = + - ,

4 , ,2 1 0 1 0J j jD DY F= + + - - , 

where Dj1, 0 = j1 – j0 is the difference between the initial 
phases of the first and zero harmonics, and Dj–1, 0 = j–1 – j0 
is the difference between the initial phases of the minus first 
and zero harmonics. Note that the intensity of the Mth har-
monic differs from its energy density only by a constant factor 
equal to the speed of light in vacuum, i.e., IM = cWM. 
Correspondingly, Eqns (13) also characterise the phase 
dependences of the intensities of the harmonics. 

Let us analyse the impact of coherent scattering on the 
characteristics of amplified harmonics. For this purpose, we 
introduce the efficiency of interference amplification

 

( )
G

J W

W W

3

3

indep

indepM

M
2

1

1

a t
=

-
=-

/
,

which characterises the contribution to the energy density of 
harmonics from coherently scattered fields, as well as the 
quantities characterising the asymmetry of harmonic amplifi-
cation (normalised differences of the energy densities of the 
harmonics of different orders): 

( )
H

J W
W W

,
indep

0 1 2
0 1

a t
D = - ,   

( )
H

J W
W W

,
indep

1 1 2
1 1

a t
D = -

-
- . 

Substituting expressions (13) into these definitions, we obtain 

( /2) ( /2)sin cos cos sin cosG
3
16

3
4

1 2 2F Y Y F Y= + ,

4 ( /2) ( / ) 2sin cos sin cosH 2,0 1 2 1 2D F Y Y F Y= - - , (14)

8 ( /2) ( /2)sin sin sinH ,1 1 2 1D F Y Y= -- .

It is seen from Eqn (14) that the quantities G, DH0, 1, and 
DH1, –1 depend on the relations between the phases of the har-
monics and the initial phase of the modulating field via 
parameters Y1 and Y2. The last of them also depends on the 
thickness of the medium via the phase incursion F of the 
modulating field in the plasma. Below, we will assume that 
0 £ Y1 < 2p, since the harmonic phase difference multiple of 
2p does not introduce new physical sense, and Y2 can have 
any value, since the thickness of the medium, generally speak-
ing, is not limited by anything. 

From Eqn (14), in particular, it follows that for Y1 = p/2 
and Y2 = p/2, the mutual gain efficiency G of harmonics will 
be zero. This means that the total energy of harmonics will be 
the same as in the case of their independent amplification in a 
dense plasma. In this case, however, the spectrum of harmon-
ics becomes asymmetric, which is directly seen from the val-

ues of the parameters ( /2)sinH 2 2,0 1D F=  and H ,1 1D =-   
4 ( /2)sin2 F- . Thus, for a thickness of the medium satisfy-

ing the condition 2pk < F/2 < (2k + 1)p (k = 0, 1, 2 , … , ), 
W1 < W0 < W–1, while for (2k + 1)p < F/2 < (2k + 2)p, the 
opposite case is realised: W1 > W0 > W–1. If the thickness of 
the medium satisfies the condition F/2 = pk, then the ampli-
tudes of the harmonics will be equal to each other (as in the 
case of their independent amplification), while the amplitudes 
of the coherently scattered fields are equal to zero. 

Next, we find the conditions under which the efficiency of 
interference amplification of harmonics will be maximised or 
minimised. For this purpose, we differentiate G with respect 
to Y1, Y2 and equate the derivatives to zero. Thus, we obtain 
a system of two equations with respect to Y1, Y2: 

( / )sin cos 2 01 2Y Y = , 
(15)

( /2) [ ( / ) ] 0sin cos cos sin2 22 1 2Y Y F Y+ = .

Let us consider the solutions of the system of Eqns (15). If Y1 
= 0, Y2 = 4pk or Y1 = p, Y2 = 2 (2k + 1)p (k is an integer), 
then the efficiency of mutual amplification of harmonics is

( / )sin sinG
3
16 2

3
4

1 F F= + . (16) 

By using Eqn (12), it can be shown that this solution corre-
sponds to the case when coherently scattered fields are in 
phase with the radiation of harmonics, while the harmonics 
themselves are in phase with each other. In this case, the effect 
of interference amplification of harmonics is realised. Note 
that, according to the definition of Y2, such phase matching 
can be realised only for a certain initial phase of the modulat-
ing field J and only for a certain thickness of the medium F, 
which are related as J = –F/4 + Dj–1, 0/2, where the phase shift 
multiple of 2p is omitted, and Dj–1, 0 = –Dj1, 0. 

If Y1 = 0 and Y2 = 2(2k + 1)p or Y1 = p and Y2 = 4pk, 
then

( / )sin sinG
3
16 2

3
4

2 F F= - + . (17) 

In this case, the total coherently scattered field generated by a 
set of harmonics of different orders appears to be in antiphase 
with the radiation of harmonics themselves (which are still in 
phase with each other), which leads to a lower radiation 
energy than in the case of independent amplification of har-
monics in a dense plasma. In this case, the relationship 
between J and F is as follows: J = –p/2 – F/4 + Dj–1, 0/2. 
Thus, a change in the initial phase of the modulating field by 
p/2 relative to case (16) or, similarly, a delay of the harmonic 
signal by a quarter of the period of the optical field at the 
fundamental frequency leads to a transition from maximum 
interference amplification to interference suppression of har-
monics amplification. 

The remaining solutions of system (15) correspond to the 
intermediate efficiency of interference amplification of har-
monics. Thus, if Y1 = p/2, 3p/2 and Y2 = (2k + 1)p, which 
corresponds to Dj1, 0 = –Dj–1, 0 + p and J = –F/4 + Dj–1, 0/2, 
then

sinG
3
4

3 F= - . (18)
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If Y1 = 0 and Y2 satisfies the relation cos(Y2/2) = – 0.5 ´ 
[cos(F/2)] –1, which is realised only when  |cos(F/2)| > 1/2, the 
interference gain efficiency is 

( /2)tan sinG
3
4

3
4

4 F F= - - . (19)

And if Y1 = p and the condition cos(Y2/2) =  0.5/cos(F/2) is 
fulfilled, which again is possible with |cos(F/2)| > 1/2, then 

( /2)tan sinG 4
3
4

5 F F= - . (20)

The dependences of the gain efficiency of harmonics on 
the thickness of the medium in the found ‘ultimate’ interfer-
ence amplification regimes (16) – (20) are shown in Fig. 2. It is 
worth noting that each point on the curves corresponds to 
certain (and, generally, different) values of the initial phase of 
the modulating field and the phases of harmonics at the input 
to the medium, which are interrelated by the appropriate val-
ues of Y1 and Y2 (16) – (20). It is seen that during the propaga-
tion of harmonics through the modulated active medium, the 
effect of their mutual amplification is periodically replaced by 
the effect of interference suppression of amplification. At the 
same time, it should be noted that for any possible (including 
negative) value of the coefficient G, the energy is transferred 
from matter to field, i.e., the radiation of harmonic is ampli-
fied as it propagates through the medium. The coefficient G 
characterises the difference in the spatial dependence of the 
total energy density of harmonics from the exponential func-
tion. The minimum thickness of the medium at which the 
mutual amplification of the three harmonics is greatest cor-
responds to Fopt » 0.76p, with G1(Fopt) » 5.87, G2(Fopt) » 
– 4.12, and G3(Fopt) » – 0.91, while G4 and G5 are not deter-
mined. 

The efficiency of interference amplification of harmonics, 
as well as the asymmetry of their spectrum [see Eqn (14)], sub-
stantially depend on the initial phase of the modulating field 
J (or, which is the same, on the delay between the modulating 
field and the radiation of harmonics). For two ‘ultimate’ com-
binations of the initial phases of harmonics, i.e. all three har-

monics are in-phase, and the first (or minus first) harmonic is 
in antiphase to the in-phase zero and minus first (or zero and 
first) harmonics, and for the optimal value F = Fopt, these 
dependences are plotted in Fig. 3. It can be seen from Fig. 3,a 
that if the incident harmonics are in phase with each other, 
then during amplification the harmonic spectrum remains 
symmetric, i.e., the amplitudes of the ±1st harmonics are 
equal to each other for any value of the parameter J. At the 
same time, depending on the value of J, the amplitude of the 
central component is either greater or smaller than the ampli-
tudes of the ±1st harmonics. Thus, in the case of the most 
efficient interference amplification of harmonics, which is 
realised at J = – 0.19p, Y1 = Y2 = 0 and Dj–1, 0 = Dj1, 0 = 0, 
we have DH0, 1(Fopt) »  2.35 and DH1, –1(Fopt) = 0, i.e., W0 > 
W1 = W–1. When the initial phase of the modulating field 
changes by p/2 namely, at J = 0.31p, the opposite case is 
realised, i.e., the interference suppression of amplification. In 
this case, DH0, 1(Fopt) » –5.09 and DH1, –1(Fopt) = 0, i.e., W0 < 
W1 = W–1. If one of the side harmonics of the incident radia-
tion (1) is in antiphase with respect to other harmonics, for 
example, Dj1, 0 = p and Dj–1, 0 = 0 (Y1 = p/2, Fig. 3b), then 
the dependence of harmonics spectrum asymmetry upon the 
initial phase of the modulating field is more complex. For 
example, if J = – 0.19p (Y2 = p), then DH0, 1(Fopt) » 5.09 and 
DH1, –1(Fopt) = –7.44, i.e., W–1 > W0 > W1; if  J = 0.31p (Y2 = 
3p), then DH0, 1(Fopt) » –2.35 and DH1, –1(Fopt) = 7.44, i.e., 
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Figure 2. Dependences of the mutual amplification efficiency of three 
harmonics on the normalised thickness of the medium F for Y1 and Y2 
corresponding to (solid black line) Eqns (16), (solid grey line) (17), 
(dashed line) (18), (dotted line) (19) and (dot-and-dash line) (20).
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Figure 3. Characteristics of harmonic interference amplification de-
pending on the initial phase of the modulating field J. The solid curves 
correspond to the mutual amplification efficiency; the dashed and dot-
ted curves correspond to the normalised differences of energies between 
the zero harmonic and the first one, as well as between the first har-
monic and the minus first one [see Eqns (14)]. The dimensionless thick-
ness of the medium is Fopt = 0.76p; Fig. 3a corresponds to the case of 
in-phase harmonics, Y1 = 0, Fig. 3b corresponds to Y1 = p/2; in this case 
one of the side harmonics (+1st or –1st) is in antiphase with the other 
two harmonics.
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W–1 < W0 < W1. Correspondingly, in this case, a change in 
the initial phase of the modulating field by p/2 leads to a mir-
ror reflection of the harmonic spectrum with respect to the 
zero component. Thus, if the incident field of harmonics (1) is 
not in-phase, interference gain or suppression of amplifica-
tion of harmonics is accompanied by a violation of the sym-
metry of their spectrum. This asymmetry can be of applied 
significance, since it allows correcting the amplitude distor-
tion of the spectrum of harmonics in the process of their 
amplification. 

To conclude this section, we note once again that the best 
conditions for the mutual amplification of three harmonics at 
a modulation index PW » 1.84 are achieved when coherently 
scattered fields constructively interfere with harmonics. This 
is realised when Dj–1, 0 = – Dj1, 0  and J = –F/4 + Dj–1, 0 / 2 
(Y1 = Y2 = 0), and when the amplitudes of the coherently 
scattered fields are maximised, which corresponds to Fopt » 
0.76p (the phase shift by 2p is omitted here). In this case, 
according to Eqn (14), in the regime of the most efficient 
interference amplification, the amplitude of the zero har-
monic will be greater than the amplitudes of ±1st harmonics. 
If the initial phase of the modulating field J is shifted by p/2 
(or, what is the same, the harmonic signal is delayed by a 
quarter of the period of the modulating field), then coherently 
scattered fields will destructively interfere with the radiation 
of amplified harmonics, leading to a decrease in the resulting 
field energy at the output of the medium. Moreover, in the 
regime of interference suppression of amplification at the 
thickness of the medium corresponding to Fopt » 0.76p, the 
amplitude of the zero component will be smaller than the 
amplitudes of ±1st harmonics. 

In Section 4, the results of the analytical theory are com-
pared with the results of numerical modelling, taking into 
account the nonlinearity of the active medium, as well as the 
generation of amplified spontaneous emission from noise. 

4. Results of numerical modelling 

Here we analyse the possibilities of interference control of the 
amplification of high-order harmonics of optical radiation 
based on the numerical solution of Maxwell – Bloch equations 
for the active medium of a plasma-based X-ray laser with 
inversion at the transition n = 1 ® n = 2 in hydrogen-like ions 
Li2+ [20]. For correct description of the amplification of high-
order harmonics in a real active medium, it is necessary to 
take into account the nonlinear effects arising from changes 
in the populations of the ground and excited states of reso-
nant ions. It is also necessary to consider the generation of 
amplified spontaneous radiation of orthogonal polarisation, 
which can overlap in time and space with amplified radiation 
of harmonics and decrease the efficiency of their amplifica-
tion due to an increase in the population of the ground state 
of ions. Both of these factors are taken into account in the 
five-level model of the active medium used below. The model 
is described in detail in Refs [17 – 19] and will not be presented 
here. 

We consider the active medium of a recombination 
plasma-based X-ray laser based on hydrogen-like Li2+ ions 
with a wavelength of oscillation and gain in the vicinity of 
13.5 nm (in the vacuum ultraviolet range). We assume that 
the plasma consists only of resonant ions with a concentra-
tion of Nion = 1.5 ´ 1017 cm–3 and free electrons with a concen-
tration of Ne = 3 ´ 1017 cm–3. We assume the characteristic 
temperature to be 1 eV for ions, and 2 eV for electrons, which 

corresponds to the conditions of the experiment [20] (see also 
[21]). In this case, the characteristic times of collisional and 
radiative relaxation of coherence at the inverted transition of 
the ions are coll

1g-  » 0.425 ps and rad
1G -  » 19.7 ps, respectively. 

Similar to Refs  [17 – 19], we assume that at the initial moment 
of time all resonant ions are equally likely to be in one of the 
excited states with n = 2 with equal probability. In this case, 
the initial population differences between the excited and 
ground state (the difference of the corresponding diagonal 
elements of the density matrix of the active medium) is equal 
to 1/4: ( , 0) ( , 0)n x xtr ii 11r t r t= = - = =u u 25, i = 2, 3, 4, 5. 

Next, we choose the intensity of the modulating field just 
below the tunnelling ionisation threshold from the resonant 
excited states of the ions (so that ionisation does not have a 
significant effect on the amplification of the harmonics sig-
nal), namely: Ilas = 4 ´ 1014 W cm–2. In this case, the charac-
teristic time of tunnel ionisation from the excited states of 
ions is 3.3ion

1G =-  ps. Taking into account all the relaxation 
mechanisms, the characteristic lifetime of the coherences at 
the resonant transitions |2ñ ® |1ñ and |3ñ ® |1ñ, or, what is the 
same, the build-up time of the resonant polarisation of the 
medium z 1g-  appears to be approximately equal to 395 fs. For 
the considered modulating field intensity, the modulation 
index is PW » 1.84, if the wavelength of the modulating field is 
L = 2pc /W » 0.78 mm. 

For the above parameters of the plasma and the modulat-
ing field, the optimal value of the parameter F » 0.76p found 
in Section 3 corresponds to the thickness of the medium L » 
1.8 mm. The radius of the plasma channel R is assumed to be 
50 mm. 

We accepted that the radiation intensity of a single har-
monic at the entrance to the medium is I0 = cE0

2/(8p) = 1.1 ´ 
108 W cm–2; this corresponds to the field energy density of an 
individual harmonic E0

2/(8p) = 3.7 mJ cm–3. In this case, at the 
considered thicknesses of the medium (up to 3 mm), the 
amplified spontaneous emission turns out to be much weaker 
than the total radiation of the three harmonics, and the gain 
saturation effect at the initial time moments (gzt < 1) can be 
neglected. 

Figure 4 shows the results of numerical calculations of the 
total energy density of the three harmonics Wtotal(x, t) = W–1 
+ W0 + W1 depending on the thickness of the medium x at 
time t = 200 fs, satisfying the condition gzt < 1 (Fig. 4a) and 
depending on the time t at the optimal medium thickness x = 
1.8 mm (Fig. 4b) for different combinations of the initial 
phases of the harmonics and the modulating field. The solid 
curves correspond to the interference amplification of har-
monics: Y1 = Y2 = 0. The initial phase of the modulating field 
is determined up to phase difference between the zero and 
minus first harmonics, so that setting Dj–1, 0 = Dj1, 0 = 0 we 
obtain the optimal value J = –Fopt /4 » –0.19p. In the case 
under consideration, the total energy of harmonics turns out 
to be significantly higher than in the case of their independent 
amplification in a dense plasma (the corresponding solutions 
in Fig. 4 are shown by dotted curves) in full agreement with 
the analytical solution obtained in Section 3. At the same 
time, the dashed curves in Fig. 4 correspond to the conditions 
of the interference suppression of amplification: Y1 = 0, Y2 = 
2p (for Dj–1, 0 = Dj1, 0 = 0 the corresponding initial phase of 
the modulating field is J = –p/2 – Fopt /4 » – 0.69p). In this 
case, the energy of harmonics is significantly lower than in the 
case of their independent amplification in a dense plasma. 

Note that for simulating a dense plasma we increased the 
electron concentration by a factor of 10, assuming that non-
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resonant ions (e.g., hydrogen ions [22]) are present in the 
plasma. As it is easy to see from Fig. 4a, the dependence of 
the harmonics energy on the thickness of the medium 
(dashed curve) approaches an exponential function with 
insignificant oscillations due to the mutual influence of har-
monics [in this case, it is weak because the parameter a(t) is 
small]. We assumed Dj–1, 0 = Dj1, 0 = J =0 (in a dense plasma, 
the values of these parameters do not play a significant role). 
Note that the characteristic scale of spatial energy oscilla-
tions (‘steps’) in Fig. 4a corresponds to a change in the 
parameter F by 2p. Moreover, the higher the electron con-
centration, the proportionally shorter the period of spatial 
oscillations of the harmonics energy. Thus, in the case of a 
dense plasma (dotted line in Fig. 4a), the concentration of 
electrons is 3 ́  1018 cm–3, and the spatial period of the energy 
oscillations is approximately 0.5 mm. For other solutions, 
this scale is of the order of 5 mm, and the corresponding 
oscillations are shown in Fig. 4a only partially (since the 
maximum considered thickness of the medium is 3 mm). 
Note that the scale of spatial energy oscillations can be used 
to determine the concentration of free electrons in the 
plasma. 

Figure 5 shows the spectra of harmonics in the medium 
having the optimal thickness x = 1.8 mm at the time near t = 
200 fs. They clearly show the possibility of interference con-
trol of the relative amplitudes of harmonics in the process of 
amplification by changing the initial phase of the modulating 
field and/or the initial phases of harmonics at the input to 
the medium. Thus, under conditions of maximum interfer-
ence amplification of harmonics at Dj–1, 0 = Dj1, 0 = 0 and 
J = –Fopt /4 » –0.19p (Fig. 5a) the zero harmonic acquires the 
largest amplitude, while the amplitudes of ±1st harmonics 
are equal to each other: W0 > W1 = W–1. At the same time, in 
the case of interference suppression of harmonic amplifica-
tion at Dj–1, 0 = Dj1, 0 = 0 and J = –p/2 – Fopt /4 » –0.69p 
(Fig. 5b) the situation turns out to be opposite: the amplitude 
of the zero harmonic is significantly smaller than the ampli-
tudes of ±1st harmonics, W0 < W1 = W–1. It is also possible 
to minimise the amplitude of the first or minus first harmonic. 
Thus, if Dj–1, 0 = 0, Dj1, 0 = p and J = –Fopt /4 » –0.19p 
(Fig. 5c), the amplitude of the first harmonic is smaller than 
the amplitude of zero harmonic, which is in turn smaller than 
the amplitude of the minus first harmonic: W–1 > W0 > W1. 
And if Dj–1, 0 = p, Dj1, 0 = 0, and J = –Fopt /4 » –0.19p, the 
opposite result is achieved, i.e., W–1 < W0 < W1, and the 
ratios of amplitudes of the most intense harmonic, which 
experienced average amplification, and the weakest harmonic 
will remain unchanged. Figure 5d shows the spectrum of har-
monics in the case of their amplification in a dense plasma 
(when the electron concentration is 10 times higher than in 
Figs 5a – 5c). As expected, in this case all harmonics are ampli-
fied uniformly. Note that the dependence of the asymmetry of 
the amplified harmonics spectrum on the distribution of their 
initial phases can be used not only to control the amplitudes 
of harmonics (in particular, to compensate for initial spec-
trum asymmetry), but also to determine the relative input 
phases of harmonics from their output amplitudes. 

To observe the interference effects discussed in the paper 
experimentally, it is, first of all, necessary to ensure the unifor-
mity and invariance of the concentration of free electrons, the 
amplitude and initial phase of the modulating field, and the 
initial phases of harmonics, since these parameters primarily 
affect the interference of multifrequency coherently scattered 
fields with the radiation of harmonics. However, the change in 
the role of interference effects (shift of interference maxima and 
minima, changes in the spectral and energy characteristics of 
harmonics), due to the dependence of these parameters on time 
and longitudinal coordinate, can be described in terms of Eqns 
(5) with variable parameters. In this case, of course, the solu-
tion of these equations will have a more complex form than 
(12). As for the transverse inhomogeneities of the concentra-
tion of free electrons, the amplitude and the initial phase of the 
modulating field and the initial phases of harmonics, they will 
lead to a change in the interference characteristics in the cross 
section of the harmonics beam. These effects can be theoreti-
cally simulated using a spatially non-one-dimensional model 
and investigated experimentally by measurements with trans-
verse resolution. Nevertheless, under optimal experimental 
conditions it is desirable to reduce the role of these effects by 
using a sufficiently short pulse of harmonics radiation and a 
sufficiently long pulse of the modulating field (to minimise the 
influence of time dependences of the characteristics of the 
medium and the modulating field). The harmonics should be 
focused into a spot of small diameter (to improve transverse 
uniformity of electron concentration and amplitude of the 
modulating field) and the sample should be sufficiently short 
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Figure 4. Dependences of the total energy density of three harmonics 
on (a) the thickness of the medium at a time moment of 200 fs and (b) 
on local time for the thickness of the medium 1.8 mm. The solid curves 
correspond to J = – 0.19p; dashed lines to J = – 0.69p. The dotted curves 
characterise a plasma in which the concentration of free electrons is in-
creased by a factor of 10 and J = 0. In all cases, it is assumed that Dj–1, 0 = 
Dj1, 0 = 0 (the incident harmonics are in phase with each other). Vertical 
dashed lines in panels (a) and (b) indicate the medium thickness and the 
time, for which panels (b) and (a) are drawn.
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compared to the Rayleigh length of the optical and VUV fields, 
and located at their focus (to ensure longitudinal uniformity of 
the field characteristics). 

5. Conclusions

Thus, we have investigated the interference effects arising in 
the process of amplification of a set of three neighbouring 
high-order harmonics of optical radiation in the active 
medium of a plasma-based X-ray laser, simultaneously irradi-
ated with a replica of the optical field of fundamental fre-
quency. It is shown that in a medium with not too strong 
plasma dispersion at the frequency of the optical field, each of 
the harmonics during amplification generates a coherently 
scattered field at frequencies of other harmonics. The interfer-
ence of coherently scattered fields with the radiation of har-
monics significantly affects the efficiency of energy transfer 
from the active medium to resonant radiation, as well as the 
energy distribution between harmonics of different orders. In 
particular, under certain conditions, the effect of interference 
amplification of harmonics is realised, and due to construc-
tive interference of the radiation of harmonics with coher-
ently scattered fields, the total energy of the amplified radia-
tion appears to be greater than in the case of independent 
amplification of each harmonic in a dense plasma. It is also 
possible to realise the opposite effect, i.e., interference sup-
pression of gain. In this case, coherently scattered fields inter-
fere destructively with radiation of harmonics, and the total 
energy of resonant radiation decreases, as compared to the 
case of independent amplification of harmonics in a dense 
plasma. The considered interference effects substantially 
depend on the relative phases of harmonics at the input to the 
medium and on the initial phase of the optical field of funda-
mental frequency (equivalent to a delay of the harmonics with 
respect to the optical field by a fraction of its period). In par-

ticular, the phases of input harmonics determine the degree of 
asymmetry of the spectrum of amplified output harmonics, 
which can be used both to control the spectrum of harmonics 
during amplification and to determine the initial phases of 
amplified harmonics. In addition, the role of interference 
effects periodically changes with the thickness of the medium, 
which is due to a change in the phase difference between the 
modulating optical field and the radiation of harmonics due 
to plasma dispersion at the optical frequency. In particular, 
the growth of the total energy of harmonics is accompanied 
by its periodic oscillations in space, the scale of which allows 
assessing the concentration of free electrons in the active 
medium. This work is the first study of the interference effects 
arising from the optical (on the scale of an optical field cycle) 
modulation of the parameters of the active medium of a 
plasma X-ray laser in a strong laser field. The results can be 
used both to control the characteristics of high-harmonic 
radiation in the process of amplification, and for diagnostics 
of the parameters of amplified radiation and active medium. 
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