
Quantum Electronics  50 (4)  392 – 400  (2020)	 © 2020  Kvantovaya Elektronika and IOP Publishing Limited

Abstract.  We report a theoretical analysis and numerical simula-
tion of the dynamics of transverse emittance of an electron bunch 
during its acceleration in wake fields generated by a laser pulse in a 
weakly nonlinear mode. Analytical expressions are obtained for the 
main factors affecting the emittance growth during acceleration 
and the case is considered when the characteristic transverse size of 
the injected bunch exceeds the matched radius determined by the 
focusing force at the injection point, the initial emittance and the 
electron bunch energy, and the resulting value of emittance is much 
larger than the initial one. The dynamics of the emittance growth 
during acceleration as a function of the length of the electron bunch 
is described, and the length of the bunch is found at which there 
occurs a complete phase mixing of betatron oscillations of electrons 
and the emittance increases to its maximum value determined by 
the bunch parameters and the focusing force at the injection point. 
Analytical expressions are in good agreement with the results of 
numerical simulation.

Keywords: laser-plasma electron acceleration, wake fields, electron 
beam emittance, betatron oscillations.

1. Introduction

Laser-plasma electron acceleration in guiding structures (in a 
plasma channel or in a capillary), based on the interaction of 
electrons with fast electromagnetic waves excited in a plasma 
by a short intense laser pulse, has attracted the attention of 
many researchers in recent decades as a promising direction 
for designing compact sources of accelerated electron 
bunches. It has been shown both theoretically [1, 2] and exper-
imentally [3] that at a relatively short (~10 cm) capillary 
length, a propagating laser pulse of sufficient power can cap-
ture and form a bunch from background electrons, which will 
then be accelerated to an energy of ~8 GeV in the wake field 
of the laser pulse.

However, even such an impressive result today is still ins
ufficient to satisfy the needs of high-energy physics, which req
uires sources of high-quality (compact, monoenergetic, with a 

sufficiently large charge) electron bunches with an energy of 
1 TeV, i. e. two orders of magnitude higher than the experi-
mentally obtained values, to study the fundamental proper-
ties of matter. One way to solve this problem is to use multi-
cascade acceleration schemes in accelerators that boost elec-
trons to such high energies, when a bunch of electrons is 
accelerated many times, passing one acceleration cascade 
after another, each of which giving an increment of electron 
energy by ~10 GeV. The possibility of multistage accelera-
tion has already been experimentally confirmed [4].

When using a multistage accelerator, there arise a number 
of new problems, for example, the need to ensure fairly accu-
rate matching of cascades with each other in time, the effi-
ciency of electron bunch transfer from cascade to cascade 
without loss of bunch quality [5, 6], which should be solved in 
the future for such acceleration schemes to be put into prac-
tice. One of the most important problems that must be solved 
when developing an accelerator with a large number (up to 
one hundred) of accelerating cascades is to maintain the min-
imum emittance of an electron bunch during its acceleration 
in each cascade. Indeed, the emittance of an electron bunch 
determines the angular and spatial spread of its particles, and 
the large emittance of an electron bunch in the space between 
the cascades means a large spread in the electron scattering 
angle, so that even when use is made of additional focusing by 
active plasma lenses [4, 7], the entire bunch cannot reach the 
next acceleration cascade [8].

To solve this problem, it is necessary to determine the 
main factors affecting the emittance of accelerated electron 
bunches and analyse the emittance dynamics in the accelera-
tor cascade. The emittance of an electron bunch at the end of 
the acceleration stage is specified by both its initial value and 
phase mixing of the electrons in different sections of the 
bunch under a nonuniform focusing force of the wake fields 
generated by a laser pulse in a weakly nonlinear mode [9]. 
Under the assumption of complete phase mixing of the bunch 
electrons, by calculating the envelope for different phase ell
ipses [10] in different cross sections (slices) of the electron 
bunch, Mehrling et al. [11] determined the normalised emit-
tance of the entire bunch at the end of the acceleration stage.

Apart from the growth of the normalised emittance of an 
electron bunch due to phase mixing of particles, an increase in 
emittance can also be caused by the nonlinearity of transverse 
focusing forces, the development of various instabilities and 
dissipative processes associated with electron acceleration 
[10]. In addition, a growth of emittance is possible, which is 
determined by the delay of a group of particles with high 
transverse velocities (for example, injected away from the axis 
of the accelerating structure), compared with a group of par-
ticles with lower transverse velocities, which is due to the 
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limitation of the total velocity of particles by the speed of 
light. Such a delay, in particular, was analysed in recent work 
[12], in which the energy spread of accelerated electrons asso-
ciated with this delay was calculated. Apart from the reasons 
mentioned above, a growth of the emittance can result from 
the violation of cylindrical symmetry due to inaccurate focus-
ing of the electron beam along the axis of the plasma channel 
or inaccurate focusing of the laser radiation generating the 
wake field into the plasma channel. This growth was studied 
by Thévenet at el. [13], and before that by Veisman et al. 
[14,  8], who also considered the emittance growth due to the 
misalignment of the accelerated electron beam and the capil-
lary waveguide in which it is accelerated.

In this work, we study the dynamics of the transverse 
emittance of an electron bunch accelerated in wake fields that 
are generated by a laser pulse in a weakly nonlinear mode. It 
is assumed that the laser pulse and the generated wake fields 
as well as the electron bunch are cylindrically symmetric and 
propagate collinearly (without displacement of the axes). We 
neglect the influence of the bunch charge on the generated 
wake fields and, as a result, on the acceleration of the bunch 
itself, which is valid at least for bunches with charges not 
exceeding several picocoulons for the weakly nonlinear reg
ime in question [15]. In addition, we neglect the loss of elec-
tron energy stemming from synchrotron radiation during 
their betatron oscillations, as well as the possible emittance 
growth caused by this loss. This loss is proportional to the 
square of the gamma factor of electrons [16] and for the wea
kly nonlinear regime become noticeable only at accelerated 
bunch energies exceeding 1 TeV [17].

In solving the problem under consideration, it is assumed 
that the size of the bunch in the longitudinal direction is suf-
ficiently small (significantly less than the plasma wavelength), 
since it is known (see, for example, [18 – 21] that only bunches 
with a length that is much shorter than the wavelength of the 
plasma accelerating field can be accelerated in it more or less 
monoenergetically, which is the necessary prerequisite for an 
accelerated bunch in many applications. The transverse size of 
the electron bunch is also assumed to be quite small, much 
smaller than the characteristic transverse size of the nonuni-
form wake field, which is an order of the laser spot size. This 
allows one to use the approximation of the transverse focus-
ing force linearity and to neglect the effect of transverse oscil-
lations of electrons on their longitudinal acceleration.

The case is considered when the initial characteristic tra
nsverse size of the injected bunch rb(t = 0) exceeds the matched 
radius rbm = e /( )kn e0 g b  determined by the initial normalised 
emittance en0, the electron bunch gamma factor ge and the 
focusing force at the injection point, which defines the modu-
lus wave vector of betatron oscillation kb [10, 16]. According to 
the above expression for the radius rbm, the condition rb (t = 
0) > rbm will be most relevant for relatively small initial values 
of the emittance en0 of electron bunches at the entrance to an 
accelerator cascade and for large gamma factors of bunches 
ge. In this case, the emittance can markedly increase during 
acceleration, which allows one to neglect its initial value. An 
increase in emittance results from the phase mixing of the 
electrons due to the nonuniformity of the focusing force along 
the length of the accelerated electron bunch and, accordingly, 
due to a change in the frequency and phase of betatron oscil-
lations in different cross sections of the bunch. In this case, in 
contrast to [11], where the emittance was determined at the 
end of acceleration as a result of complete phase mixing, we 
obtained analytical expressions for a change in the emittance 

during acceleration as a function of the bunch length and the 
parameters of accelerating and focusing wake fields, as well as 
found the conditions under which complete phase mixing 
takes place, leading to a maximum increase in the emittance 
of a bunch of accelerated electrons.

This work is aimed at a theoretical analysis of the emit-
tance dynamics of electron bunches during their laser-plasma 
acceleration in wake fields. Section 2 presents the basic equa-
tions. An analytical model using the adiabatic approximation 
to solve the equations of electron motion is formulated in 
Section 3. The results of numerical simulation of the emittance 
dynamics using the initial equations and comparing them 
with the obtained analytical dependences are presented in 
Section 4.

2. Basic equations

Let us consider a bunch of electrons accelerated in a wake 
plasma wave. We assume that both the electron bunch and the 
wake wave are cylindrically symmetric with respect to their 
common propagation axis z.

The quantity characterising the transverse spatial distri-
bution of electrons in the bunch and their angular divergence 
is the transverse emittance, which can be described using its 
components ex, ey along the x, y axes in a plane perpendicular 
to the electron bunch propagation axis z. According to 
[10,  11], for the component ex, the expressions

ex = x x xx2 2 2
-l l ,	 (1)

are valid, where

X = {x, x', xx' };   X2  = ( )N X Xb i
i

1 2-- r/ ;

Xr  = N Xb i
i

1- / ;   x' = dx/dz = /x zo o  = px /pz,

Here, xi and x'i  are the coordinate and slope of the trajectory 
of the ith electron of the bunch, respectively; Nb is the number 
of electrons in the bunch; px i is the x-component of the 
momentum of the ith electron, normalised to mc; m is the rest 
mass of the electron; c is the speed of light; and xo  and zo  are 
the time derivatives. Formula (1) with the replacement x ® y 
gives an expression for the component ey, which in the case of 
a cylindrically symmetric electron bunch accelerated in cylin-
drically symmetric fields coincides with the component ex.

To compensate for the adiabatic decrease of emittance with 
increasing bunch energy during acceleration, we introduce 
normalised transverse emittance [10, 22]

exn = e eg br r ex,	 (2)

where

egr  = Ne bi
i

g/

is the gamma factor of the bunch;

eig  = p p p1 xi yi zi
2 2 2+ + +  

is the gamma factor of the ith electron; and

ebr  = 21 eg- -r  » 1



	 M.E. Veisman, N.E. Andreev394

is the beta factor for the bunch of relativistic electrons dis-
cussed below.

The transverse normalised emittance for the entire xy 
plane can be described by the expression

en = e e2( )n nx y
2 2+ ,	 (3)

with en = 2ex n = 2ey n for the cylindrically symmetric case 
investigated below.

To determine the coordinates, momenta and gamma fac-
tor of the ith electron of the accelerated bunch, we need to 
solve the relativistic equations of motion in the wake wave 
fields [23, 24]. For cylindrically symmetric wake fields, these 
equations in Cartesian coordinates have the form (the sub-
script i for the ith electron is omitted hereinafter for brevity)

dpz /dt = ¶x f,	 (4)

dx/dt = e
1g- pz – 1,	 (5)

dpx /dt = ( /x ru )∂r f,   dpy /dt = ( /y ru )∂r f,	 (6)

dxu/dt = e
1g- px,   dyu/dt = e

1g- py,	 (7)

where  f = f(x, r, t) is the wake potential normalised to mc2/e 
[25]. Hereinafter, we use the dimensionless time t = wpt and 
coordinates x = kp(z – ct), r = x y2 2+u u , xu  = kp x, yu  = kp y, 
where kp = wp /с; wp = 4 /e n me

2p  is the plasma frequency; ne 
is the concentration of background electrons in the plasma; 
and e is the electron charge.

3. Analytical model

If the radius of the accelerated electron bunch is much smaller 
than the characteristic transverse scale of the wake field, then 
in expanding the potential of the wake field near the axis, we 
can confine ourselves to the quadratic term, which corres
ponds to a linear increase in the radial focusing force with inc
reasing distance from the axis. Moreover, according to equa-
tions (6) and (7), the electron trajectory in the transverse plane 
xy is determined by the equations:

( )ln

d
d

d

d

d
dx x xe

2

2
2

t t
g

t
W+ +

u u
u  = 0,	 (8)

W (x, t) = ( , ) / ( , , )ea x t g x r t ,   a(x, t) = – r–1¶r f.	 (9)

The equation for the y coordinate coincides with equation (8) 
when a replacement xu ® yu is made. These equations describe 
the betatron oscillations of electrons in the transverse plane 
xy, the frequency of which W (9) is different in different sec-
tions of the bunch and changes with time with increasing 
gamma factor as the electron gains energy during acceleration 
and with increasing focusing force when the wake wave phase 
‘lags’ behind an ultrarelativistic electron moving at a velocity 
that practically coincides with the speed of light.

Equations (8) for xu and yu coordinates are related to equa-
tions describing the longitudinal motion of electrons, which 
follow from (4) and (5). For ultrarelativistic electrons acceler-
ated along the z axis, when calculating the gamma factor, we 
can neglect the transverse momentum of the electrons com-
pared to the longitudinal one, the condition for which is the 
inequality |px /pz| » |dxu/dt| » W|xu| << 1 and a similar ine
quality for |py /pz |. In this case, we obtain the expressions for 

the gamma factor and the corresponding coordinate x of the 
electron in question at some point in time t:

ge (x, r, t) = g0 + 
t
¶ ( , , )d

0
f x r t txy ,	 (10)

 dx/dt = – e
2g- (x, r, t)/2,	 (11)

where g0 is the initial value of the gamma factor of the elec-
tron at the moment of bunch injection. The dependences of ge 
and x on r determine the relationship between the transverse 
and longitudinal motions of the electron, which are respec-
tively described by equation (8) for the xu and yu coordinates 
and equations (10), (11).

Below, we restrict ourselves to the case of sufficiently com
pact electron bunches, the transverse size of which is small 
compared to the characteristic scale of changes in the wake 
field, which allows us to neglect the differences in the electron 
energies in the given transverse cross section of the bunch, 
i. e., the influence of the transverse motion on the electron 
energy gain:

ge (x, r, t) » ge(x, r = 0, t) = ge(x, t).	 (12)

Since for ultrarelativistic electrons (ge >> 1) the difference 
between the longitudinal velocity and the speed of light is very 
small [see (11)], we assume that all the electrons of the bunch 
move at the same velocity equal to the speed of light, which 
corresponds to a constant value of the accompanying longitu-
dinal coordinate of the electron x, equal to its initial value at 
the time of injection x0, and, accordingly, the constant length 
of a bunch of accelerated electrons. Moreover, all the coeffi-
cients in equation (8) depend only on the time t and the initial 
coordinate of the injection x = x0, and the slope of the electron 
bunch trajectory is equal to the transverse velocity of the elec-
tron, normalised to the speed of light:

x' = dx/dz = /x zo o  = dxu/dt.

For typical laser-plasma acceleration parameters, the per
iod of betatron oscillations is much shorter than the charac-
teristic time of the change in the betatron frequency and the 
electron relativistic gamma factor:

W  –1|¶ lnW /¶t| << 1,   W  –1|¶ ln ge /¶t| << 1.	 (13)

Under the conditions corresponding to the adiabatic approxi-
mation, the slice emittance in each transverse cross section of 
the electron bunch is preserved [10, 22, 26] for an arbitrary 
bunch radius [with a linear dependence of the focusing force 
on the radius (8), (9)]. However, if the radius of the bunch is 
not consistent with the values of the emittance and focusing 
force, the bunch radius will oscillate at a doubled betatron 
frequency [10, 16, 22]. Due to a change in the betatron fre-
quency along the bunch length (due to the nonuniformity of 
the focusing force in a plasma wake wave), the electrons in 
different sections of the bunch oscillate with different phases. 
In this case, phase mixing leads to an increase in the emittance 
of the entire bunch, since the region of the phase space (x, px) 
occupied by the electrons of the entire bunch is the combina-
tion of the phase space regions occupied by electrons from 
individual transverse cross sections (slices) and exceeds each 
of these regions in area [11, 10]. An increase in the emittance 
of an electron bunch during acceleration can be quite signifi-
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cant if the initial radius of the bunch noticeably exceeds the 
matched one. This case is considered below, when the trans-
verse momenta of the electrons of the injected beam, deter-
mined by the initial emittance, are much smaller than the 
characteristic transverse momenta acquired by the electrons 
under the action of the focusing force (8). In this case, the 
emittance of the entire bunch due to mixing of the phases of 
the betatron oscillations (for a sufficiently long bunch and 
acceleration lengths) is much larger than the initial emittance 
of the injected beam. This allows us to neglect the initial emit-
tance of the bunch and write the solution of equations (8) in 
the form

xu(xu0, x, t) = xu0 Z(x, t),   yu(yu0, x, t) = yu0 Z(x, t),

Z(x, t) = 
t

( , ) ( , )

( )
( , )cos d

e

0 0

0x t g x t
x g

x t t
W

W
W l l; Ey ,	

(14)

where xu0 and yu0 are the initial (at the moment of injection at 
t = 0) electron coordinates; Z is the solution to equations (8) 
with the initial conditions Z(t = 0) = 1 and d Z/d t(t = 0) » 0; 
W (x, t) is defined in (9) with ge (x, t) (12); W0(x) = W(x, t = 0); 
and the dependence of ge on x is neglected (i. e. the injected 
bunch is monoenergetic). Expression (14) is written in the 
adiabatic approximation up to terms of the main order in 
small parameters (13).

We will assume below that the electron distribution in the 
injected bunch is Gaussian:

nb(x, r0, t = 0) = n||(x)n^( r0),   r0 = x y0
2

0
2+u u ;

n||(x) = p–1/2
z

1s- exp(– x2/ z
2s ),

n^( r0) = p–1
r0
2s- exp(– 0

2r / r0
2s ),	

(15)

where the distributions in (15) are normalised to unity; sr0 is 
the initial dimensionless rms radius of the bunch; and sz is its 
characteristic length. Moreover, for each transverse cross sec-
tion of the bunch with coordinate x we find the cross section 
average values:

2( , )x x t  = 
3

( , , ) ( )d d
k

x x n x y1

p
2

2
0 0 0 0x t r

3
=

-

u u u uyy

	 = 
k2
1

p
2

[sr0 Z(x, t)]2,	 (16)

2( / )d dx t  = 
k2
1

p
2

[sr0dZ(x, t)/dt]2.	

Then from (1) – (3) for the normalised transverse emittance we 
obtain the expression

en(t) = kp
1- ge r0

2s Z Z Z Z( / ) /d d d d2 2 2t t-x x x ,	 (17)

where averaging over the electron bunch length is determined 
by the formula

áAñx º 
3

( )A x
3-

y n||(x)dx.	 (18)

It follows from (14), (16) and (17) that the temporal change 
of the emittance and rms radius of the bunch is described by 
the expressions

en(t) = 
k2
1

p
2 r0

2s g0W0[(1 + ácos Y ñx)(1 – ácos Y ñx)

	 – sin 2Y x ]1/2,	 (19)

rb(t) = x y2 2+ x  = )1 +
( ) ( )

( cos
r

2

/
b0 0 0

1 2

g t t
g

W
W

Y x= G ,

rb0 = sr0 /kp,	
(20)

where

Y = Y (x, t) = 2
t
( , )d

0
x t tW l ly .	 (21)

Since for practically important cases of acceleration of elec-
tron bunches with a small energy spread, their length should 
be much shorter than the wake plasma wavelength, in deriv-
ing expressions (19) and (20) we take into account changes in 
the focusing force and electron energy along the bunch length 
only in oscillating terms containing Y. In the remaining fac-
tors, both the betatron frequency and the gamma factor are det
ermined by their values in the bunch centre: W (t) = W (xc, t), 
g(t) = g (xc, t), where xc is the coordinate of the bunch centre.

It follows from expressions (19) – (21) that at a constant 
betatron frequency along the bunch length [i. e., at W and, 
accordingly, the phase of betatron oscillations (21), indepen-
dent of x], the emittance of the entire bunch coincides with the 
slice emittance and, therefore, is preserved, remaining equal to 
the initial value, taken as zero. The radius of the bunch oscil-
lates at a doubled betatron frequency from the maximum val
ue to zero. With increasing focusing force and electron energy, 
this maximum value adiabatically decreases.

The nonuniformity of the focusing force along the bunch 
length, which causes phase mixing of the electron trajectories, 
leads to an increase in emittance during acceleration up to an 
asymptotic value

ent  = k r
2
1

p b0
2

0 0g W ,	 (22)

corresponding to complete mixing, when the phase difference 
of betatron oscillations along the bunch length becomes much 
greater than p, i. e.

sz|¶Y (x, t)/¶x|x = xc
 >> p,	 (23)

and ácos Y ñx » ásin Y ñx » 0. Obviously, a necessary (but not 
sufficient) condition for inequality (23) to hold is the require-
ment that the considered acceleration time t be much longer 
than the period of betatron oscillations of electrons in the 
bunch centre at x = xc. The radius of the electron bunch when 
inequality (23) is satisfied, approaches, according to (20), the 
value of

rbt (t) = 
( ) ( )

r

2

/
b0 0 0

1 2

g t t
g

W
W

= G 	 (24)

slowly decreasing with increasing energy and focusing force. 
This expression for the average radius of the electron bunch is 
equal to the radius rbm, which is matched with the constant 
asymptotic value of emittance (22), as well as with the energy 
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of the bunch electrons and the focusing force acting at a given 
moment of time [16]:

rbt (t) = rbm(t) = 
e

( ) ( )k

/

p

n
1 2

g t tW

t
= G  º 

e

( ) ( )k

/
n

1 2

g t tb

t
= G ,	 (25)

where kb(t) = kpW (t) is the wavenumber of betatron oscilla-
tions. Therefore, after reaching the values of (22) as a result of 
mixing of the phases of the betatron oscillations of the bunch 
electrons, the emittance remains constant.

To determine the emittance dynamics and specific condi-
tions for achieving the asymptotic value (22), we consider the 
acceleration of an electron bunch in a quasi-stationary wake 
wave generated by a short intense laser pulse in a matched 
plasma channel with a given parabolic radial plasma concen-
tration profile:

ne(r) = ne0[1 + (r/Rch)2],	 (26)

where ne0 is the plasma concentration on the channel axis, and 
Rch is the channel radius. For a Gaussian radial distribution 
of the laser pulse field, the condition for matching the channel 
radius with the size of the focal spot of the laser radiation is 
determined by the equality Rch = kp r2

0/2, where r0 is the expo-
nential (in the laser field amplitude) transverse half-width of 
the laser spot, and the wavenumber of the plasma wave kp = 
wp /c is determined by the electron concentration ne 0 on the 
channel axis [25, 27 – 30]. Moreover, if the laser pulse power 
does not exceed the critical self-focusing power, the laser pul
se propagates in a channel with an almost constant amplitude 
and generates a quasi-stationary wake wave propagating with 
a phase velocity determined by the group velocity of the laser 
pulse, so that for the phase wave velocity uph, the relativistic 
gamma factor gph = (1 – ph

2b )–1/2 » k0 /kp, where bph = uph /c, 
k0 = w0 /c and w0 is the laser frequency.

The potential of the wake field generated by a laser pulse 
with a focal spot size exceeding the plasma wavelength (r0 > 
2p /kp) can be represented in the approximation linearised by 
the wake wave amplitude as

f(x, r, t) = f0 exp(– r2/r2
0) sin[x + (1 – bph) t],

1 – bph » 0.5 ph
2g- ,	

(27)

where r0 = kp r0 / 2  is the dimensionless characteristic radius 
of the region occupied by the plasma wake wave, and the 
potential amplitude f0 is determined by the laser pulse inten-
sity and duration [9, 25] in the case when the effect of ionisa-
tion on the wake field generation can be neglected [31].

Moreover, according to (9), (10) and (12), we obtain the 
expressions

a(x, t) = (2f0 /r2
0) sin(x + tu), tu  = (1 – bph) t,

ge(x, t) = g0 + 2 ph
2g f0[sin(x + tu) – sin x].	

(28)

We assume that an electron bunch is injected into the 
focusing phase of the wake wave (27) in the vicinity of the 
maximum of the accelerating force; i.e., at x ³ 0. In this case, 
bearing in mind that the bunch length is much shorter than 
the wake wavelength, the expression for the betatron fre-

quency (9) in the region x << 1, where the bunch electrons are 
located, can be written as

W (x, t) = 
[ ( ) ]

( )

sin cos

sin cos

2 1

/
max

ph0
2

0

1 2

g g f t t x

a t x t

+ - -

+

u u

u u
) 3 ,

amax = 2f0 /r2
0.	

(29)

According to (28), the maximum energy increase in one sec-
tion of a laser-plasma accelerator (in the weakly nonlinear 
regime of wake wave excitation) Dgmax = 2 ph

2g f0 corresponds to 
tu  = p/2, at which the electron, injected at t = 0 to the maximum 
of the accelerating force at the focusing phase boundary, 
reaches a maximum of the potential (27) at x = 0. The accelera-
tion length corresponding to tu  = p/2 is equal to half the length 
of dephasing (at which the electron passes through the entire 
accelerating phase, i. e. from a minimum potential to a maxi-
mum one): Lph = kp

1- p/(1– bph) = lp ph
2g  = l0 ph

3g , where l0 =  
2p/k0 and lp = 2p/kp are the wavelengths of the laser radiation 
and the plasma wave wake, respectively. For electrons injected 
with an energy exceeding the maximum energy gain  ( g0 >> 
Dgmax), taking into account W(x, t) » Wmax(sintu  + xcostu)1/2, we 
obtain the expression for the phase of the betatron oscillations 
of the bunch electrons (21), decomposed along the short length 
of the bunch near the position of its centre xc, with a not too 
short acceleration length, when tu  > x:

Y (x, t) = Y (xc, t) + 2(x – xc) y0 (t),

y0(t) = 2 ph
2g Wmax[sin1/2 ( tu  + xc) – sin1/2xc],	 (30)

Wmax = [2f0 /( r2
0 g0)]1/2.	

Averaging over the bunch length (18) in formulae (19) and 
(20) yields the expressions

en(t) = ent [1 – A2(t, sz)]1/2,

A2(t, sz) = exp{–2[y0(t)sz]2},	

(31)

rb(t) = rbt (t){1 + A(t, sz) cos[Y (xc, t)]}1/2,	 (32)

for the emittance dynamics and the average radius of the 
bunch as a function of its length sz, where the phase Y (xc, t) 
is determined by formulae (21) and (29) for the bunch centre 
at x = xc. Calculating the corresponding integral in the app
roximation of low energy gained by the electrons, compared 
with their initial energy, which is valid in accordance with (28) 
under the condition µ = 2 ph

2g f0 /g0 < 1, and also using the 
expansion of the term sin(tu  + xc) in a Taylor series with reten-
tion of the first three terms of the series, we can write an 
approximate expression for Y (xc, t) in the form
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Y (xc, t) = 4 ph
2g Wmax(1 – µ sin xc)–1/2 [Ib( tu  + xc) – Ib(xc)],

Ib(t) = t3/2 b t b t
3
2

5 42
9 12

2- + -c m,	 (33)

b = 
sin1 cm x

m

-
,   µ = 

2 ph

0

2
0

g
g f

 º Dgmax /g0.

Formula (31) shows that in order to increase the emit-
tance to its maximum value (22), determined by the radius of 
the bunch, its energy and focusing force at the injection point, 
the exponent in the expression for A2(t, sz) should become 
greater than unity over time, for which the condition

sz > [ 2y0(t)] –1 = {2 2 ph
2g Wmax[sin1/2( tu  + xc)

	 – sin1/2 xc]}–1 º zsu (t)	 (34)

should be met. For the betatron oscillations of electrons to be 
phase mixed at a maximum acceleration length (at tu  + xc = 
p/2), the length of the electron bunch should exceed a mini-
mum value

smin = (2 2 ph
2g Wmax)–1 = 

k

k

2 2

1
max

p
ph
2g

b

- ,	 (35)

where kb max = kpWmax is the wavenumber corresponding to 
the maximum frequency of betatron oscillations in (30). For 
shorter bunches (sz < smin), as well as for shorter acceleration 
times, when the inequality opposite to (34) holds, the emit-
tance of the bunch increases to a value (31) that is less than 
the asymptotic one (22):

en(t) = ent [sz / zsu (t)].	 (36)

For bunches whose length exceeds the minimum one (35), 
inequality (34) can be written as a condition for the accelera-
tion length zacc = ct = t/kp for a given bunch length sz depend-
ing on the electron energy and the wake field parameters (the 
maximum focusing force and the wake phase velocity):

zacc /Lph > p –1 arcsin( /min z
2 2s s ),   sz > smin.	 (37)

Finally, we note that the adiabaticity conditions (13) with 
allowance for (27) and (28) can be represented in the form of 
restrictions on the wake potential amplitude, electron energy 
and electron bunch injection coordinate (phase) xc:

4 ph
2

0

g

r
( tu  + xc)–3/2 << 

2 /

0

0
1 2

g
fc m  << 2

0r ( tu  + xc)1/2.	 (38)

While for typical parameters (2 f0 £ 1, g0 > 103 and r0 » 3) 
the right-hand inequality in (38) is satisfied, with the excep-
tion of a small time interval when an electron bunch is injected 
directly onto the boundary of the focusing phase (xc ® 0), the 
left-hand inequality can impose very significant restrictions 
on the injection coordinate and electron bunch energy.

4. Numerical calculations

The dynamics of the emittance of an electron bunch during its 
acceleration in wake fields generated by a laser pulse in the 
weakly nonlinear regime in the plasma channel (26) was simu-
lated by numerically solving electron motion equations (4) –
(7) with the wake potential (27). The dimensionless amplitude 
of the wake potential is f0 = 0.095, and its characteristic rad
ius is r0 = 3.47, which corresponds to a maximum ‘focusing 
force rigidity’ amax = 0.0158 in (29) and a maximum electron 
energy increase ∆gmax = 1216. The plasma concentration ne0 
on the channel axis [see ( 26)] was chosen such that the deter-
mined gamma factor of the plasma wave is gph = k0 /kp = 80 
and the dephasing length is Lph = 41 cm. At a laser radiation 
wavelength of l0 = 0.8 mm, the radius of the matched plasma 
channel is Rch = 123 mm for a characteristic size of the laser 
focal spot r0 = 50 mm. The amplitude of the potential f0 = 
0.095 corresponds to resonant excitation of the wake wave by 
a laser pulse of duration tFWHM = 80 fs with a dimensionless 
amplitude a0 = eEmax /(m w0 c) = 0.5 [9].

The injected electron bunches had a Gaussian particle dis-
tribution in the longitudinal and transverse directions (15) 
with dimensionless half-widths sz and sr 0, respectively: in the 
calculations, sz are different, and sr 0 = 0.212. Electron bun
ches were injected at various displacements of the position of 
the electron bunch centre xc relative to the position of the 
maximum accelerating force. In this case, the transverse nor-
malised emittance was determined by formulae (1) – (3).

We emphasise that in simulating the particle motion by 
equations (4) – (7) with potential (27), the radial force is ass
umed to be nonlinear, the dependence of the electron gamma 
factor ge on the radial ( r) and accompanying (x) coordinates 
is not neglected and adiabaticity conditions (13) are consid-
ered unfulfilled.

The simulation results are shown in Figs 1 and 2 (solid 
curves) in comparison with analytical expressions (31) for the 
normalised emittance and with (32) for the rms radius of the 
accelerated electron bunch with an approximate phase value 
(33) (dashed curves).

In accordance with formulae (30) – (35), at low injection 
energies Einj = mc2g0, the value of smin is quite small, and the 
values of the phase y0, on the contrary, are quite large. The
refore, under the condition sz > smin, the oscillations of the 
rms radius of the electron beam rapidly decay and the nor-
malised emittance quickly reaches an asymptotic value (22) 
(Fig. 1a and the lower curves in Fig. 2) with increasing accel-
eration length zacc. With an increase in the injection energy 
(Figs 1c and 1d and Fig. 2), smin grows and y0 decreases. 
Under the condition sz > smin, the oscillations of the rms 
radius of the electron beam decay, but more slowly than in the 
case of relatively low injection energies (cf. Figs 1a and 1c). 
Due to the decrease in Wmax µ /

0
1 2g- , the phase mixing pro-

ceeds more slowly with increasing injection energy, which 
also manifests itself in a slower increase in the normalised 
emittance with an increase in the acceleration length, as com-
pared with the case of small g0.

For sz < smin, the oscillations of the rms radius of the elec-
tron bunch weakly decay with increasing acceleration length. 
In this case, the normalised emittance at the end of accelera-
tion reaches values that are less than or equal to those in the 
linear limit (36) (Figs 1b and 1d and Fig. 2). In this case, we 
observe incomplete phase mixing of electrons initially injected 
into different phases of the wake wave.
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Note that in accordance with formulae (22) and (36), the 
asymptotic value of the normalised emittance is proportional 
to 0g , i. e., it increases with increasing injection energy, 
while in the linear limit, which is realised at sz < smin, the 
value of the normalised emittance at the instant of time t is 

proportional to / ( )e0g g t , i. e., it does not increase with inc
reasing injection energy (see also Fig. 2 for small sz). This sit
uation may be favourable for accelerator cascades with high 
injection energies if it is possible to ensure a sufficiently short 
length of the accelerated electron bunch.
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Figure 1.  Dependences of the normalised emittance en and rms dimensionless radius of the electron bunch kp rb on the dimensionless acceleration 
length zacc /Lph for various injection energies Einj, various dimensionless lengths sz and smin and for the injection point of electron bunches xc = 0.2. 
The dot-and-dash lines show the asymptotic limit. The calculation parameters are presented in the text.
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Results shown in Figs 1 and 2 show that the analytical 
model is in good agreement with the results of numerical sim-
ulation.

5. Conclusions

We have analysed the dynamics of the normalised emittance 
of a short electron bunch accelerated in the wake plasma 
fields generated in guiding structure (plasma channel) by an 
intense laser pulse in the weakly nonlinear regime. For the 
case, when the characteristic transverse size of the injected 
bunch exceeds the matched radius determined by the value of 
the focusing force at the injection point, the initial emittance 
and the electron bunch energy, and when the initial emittance 
is much smaller than the final one, we have considered the 
mechanisms of the normalised emittance growth caused by 
the phase mixing of electrons due to the focusing force non-
uniformity along the length of the accelerated electron bunch 
and, therefore, due to a change in the frequency and phase of 
betatron oscillation in different transverse cross section of the 
bunch.

The obtained analytical expressions (31) and (32) deter-
mine the dependences of the normalised emittance and the 
rms radius of the electron bunch on the acceleration length 
(time), the parameters of the accelerating and focusing wake 
fields, and the characteristics of the electron bunch at the 
injection point: its length, radius, energy and injection phase. 
We have found the length of the electron bunch (34), (35) at 
which there occurs complete phase mixing and the emittance 
increases to its maximum value (22), which is determined by 
the radius of the bunch, its energy and focusing force at the 
injection point.

We emphasise that for relatively long electron bunches, 
the normalised emittance caused by complete phase mixing 
increases with increasing injection energy (the gamma factor 
of the bunch g0), while this growth is not observed for rela-
tively short bunches. This peculiarity is especially important 
for multistage laser-plasma accelerators of electron to high 
(up to several terawatt) energies.

The results of a numerical simulation of particle motion 
using the equations of relativistic dynamics (4) – (7) (without 

assuming linearity of the radial force, independence of longi-
tudinal and transverse movements, and without fulfilling the 
adiabaticity condition) are in good agreement with the obt
ained analytical expressions (31) and (32) for the dependences 
of the normalised emittance and the rms radius of the electron 
bunch on the acceleration length (time) and the parameters of 
the wake fields and the accelerated bunch (Figs 1 and 2).

A discussion of the dynamics of the emittance en(t) of 
electron bunches, taking into account its final value en(t = 0) 
at the time of injection, as well as of a practically important 
issue of maintaining the emittance values during multistage 
acceleration, is the subject of our next work.
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