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Abstract. A formula is proposed for calculating the rate of field 
ionisation of an atom or ion, taking into account both tunnel ionisa-
tion and barrier suppression ionisation. Compared with the previ-
ous formula proposed in 2018, it more accurately describes the 
transition region between both ionisations and is determined mainly 
by two parameters: the ionisation potential of an atom or ion and 
the amplitude of an external electric field. This makes the presented 
formula suitable for use in numerical packages simulating the inter-
action of high-power laser radiation with matter by the particle-in-
cell (PIC) method.

Keywords: field ionisation, atoms, ions, tunnel ionisation, barrier 
suppression ionisation, particle-in-cell method.

Ionisation of atoms and ions is one of the key processes that 
accompany the interaction of high-power laser radiation with 
matter. The ionisation-induced mechanisms play an impor-
tant role in many phenomena and applications, such as gen-
eration of high harmonics [1, 2], generation of terahertz radia-
tion [3 – 5], ionisation injection in laser-plasma accelerators 
[6 – 8], initiation of quantum electrodynamic cascades by seed 
electrons generated during ionisation of atoms with large 
charge number [9, 10], etc. Ionisation in laser plasma can 
result from the collision of atoms with energetic particles 
(impact ionisation) or from the action of a strong electromag-
netic field (field ionisation). In a monochromatic electromag-
netic wave with arbitrary polarisation, field ionisation can 
occur in three different regimes depending on the amplitude 
of the electric field and the radiation frequency: in the multi-
photon ionisation (MPI) regime, Emax << EK; in the tunnel 
ionisation (TI) regime, EK << Emax << Ecr; and in the barrier 
suppression ionisation (BSI) regime, Emax ³ Ecr (Fig. 1), 
where Emax is the electromagnetic field amplitude; EK = 
wlas(2 me I i )1/2/e is the threshold field related to the Keldysh 
parameter gK = wlas(2 me I i )1/2/e Emax = EK /Emax; Ecr is the 
critical field above which the atomic potential barrier is sup-
pressed (quantified below); I i is the ionisation potential of an 
atom (ion); w las is the laser radiation frequency; c is the speed 
of light; me is the mass of the electron; and e > 0 is the elemen-
tary charge.

The ionisation rate in multiphoton and tunnel regimes can 
be calculated analytically [11 – 14]. While the multiphoton 
ionisation process requires periodic field modulation, tunnel 
ionisation in a strong field gK << 1 can be calculated in the 
stationary field approximation. In this case, the tunnel ionisa-
tion rate has the form [14 – 16]
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Figure 1. Schematic representations of (a) multiphoton and (b) tunnel 
regimes, as well as (c) the barrier suppression regime for strong-field 
ionisation, which are realised depending on the external field strength. 
The solid curves show the atomic potentials V(x) or superpositions of 
the atomic potential and the external field potential [V(x) + Ex]. Arrows 
show an electronic transition during ionisation; e and x are the electron 
energy and coordinate.
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where F = E/(k3Ea) is the instantaneous normalised electric 
field strength; k2 = I i /IH; n* = Z /k is the effective principal 
quantum number of the ion; Z is the charge number of the 
ion; l * = n* – 1 is the effective orbital quantum number; l and 
m are the orbital and magnetic quantum numbers, respec-
tively; IH = m e e 4/(2 2& ) -13.6 eV is the ionisation potential of 
the hydrogen atom; Ea = m ee

2 5 4&-  » 5.1 ́  10 9 V cm–1 is the 
atomic electric field; wa = m e e 4 3& --  4.1 ́  1016 s–1 is the 
atomic frequency; and Г (x) is the gamma function [17]. To 
calculate the total probability of a single ionisation event, we 
should integrate the ionisation rate:

1 exp dW t w E t ti i= - -
t

3-
l l_ _i i7 A( 2y , (2)

where wi is the ionisation rate (which can be either wTI or 
another formula for the ionisation rate applicable in the case 
under consideration), and the instantaneous value (without 
averaging over the period) of the external field strength E(t) 
should be substituted into the formula.

When the external field is so strong that the maximum of 
the potential barrier formed as a result of a superposition of 
the atomic and external fields is lower than the initial electron 
energy level, the field ionisation develops in the barrier sup-
pression regime, in which the electron becomes free and can 
move above the barrier instead of tunnelling. In the barrier 
suppression regime, the amplitude of the external field exceeds 
Ecr = Ea k 4/(16 Z ). For example, for a hydrogen atom, Ecr = 
Ea /16 » 3.2 ́  108 V cm–1, which corresponds to a laser field 
intensity of 1.4 ́  1014 W cm–2.

It follows from the estimates [18] that for focused short 
subpetawatt laser pulses, full ionisation can be achieved at E 
L  Ecr, when the formulae for multiphoton and tunnel ioni-
sations are not applicable. For field ionization at E L  Ecr, 
many empirical formulae have been proposed [19 – 22], but 
most of them do not provide the proper asymptotic behaviour 
in the high-field limit corresponding to the barrier suppres-
sion regime. Moreover, they are applicable only to a limited 
set of atoms and ions. At the same time, previous theoretical 
calculations of the ionisation rate in the barrier suppression 
regime [23, 24] also yield results that do not coincide with 
those of numerical simulation. Field ionisation models are 
widely used in PIC modelling, which has become an indis-
pensable tool for studying the interaction of laser radiation 
with matter. Some models take into account the energy losses 
associated with ionisation [25, 26], and can also be used to 
simulate many ionisation events within the same time step of 
the main PIC code cycle [10, 26 – 28]. Ideally, the formula for 
PIC codes should be simple and computationally inexpensive, 
while still being valid over a wide range of laser radiation inten-
sities and applicable to many types of atoms and ions. Until 
recently, the field ionisation models used in PIC codes described 
only the tunnel ionisation regime or were based on too simple 
and inaccurate approaches. For example, one of the models is 
based on the use of the tunnel ionisation formula for E < Ecr, 

and at E ³ Ecr the electron is automatically considered com-
pletely free (see, for example, [29]). This model can significantly 
overestimate the ionisation efficiency in the barrier suppression 
regime for a high-power electromagnetic field.

The ionisation rate in the barrier suppression regime was 
recently theoretically calculated in the classical [10] and quan-
tum [18] approaches in the high-field (E >> Ecr) limit:
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In this limit, the ionisation rate linearly depends on the exter-
nal field strength, while the atomic system is characterised by 
the ionisation potential of an atom or ion. A piecewise for-
mula was also proposed for the ionisation rate in the tunnel 
regime and in the barrier suppression regime with correct 
asymptotic behaviour in the high-field limit [18]:
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where the value of E0 is determined from the relation wTI (E0) = 
wBSI (E0).

However, the accuracy of formula (4) is small in the tran-
sition region between both regimes and the corresponding 
field amplitude E L  Ecr. In this paper, we propose an improved 
formula that includes not only the tunnel ionisation rate 
E << Ecr and the barrier suppression ionisation rate E >> Ecr 
in the high-field limit, but also the transition ionisation rate 
E L  Ecr. The ionisation rate near the critical field E L  Ecr can 
be estimated using the empirical formula proposed by Bauer 
and Mulser for the hydrogen atom [21],

wBM  » . w E
E
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Hd dn n . (5)

In contrast to (3), wBM depends quadratically on the laser 
field amplitude. The quadratic dependence of the ionisation 
rate on E and the transition to a linear dependence are seen in 
Fig. 6 in [21], which presents the results of numerical simula-
tion of the nonstationary Schrödinger equation for the hydro-
gen atom. Strictly speaking, formula (5) is a verified approxi-
mation only for a hydrogen atom and hydrogen-like ions hav-
ing one electron, charge number Z and ionization potential 
Ii = Z 2IH. Nevertheless, the formula can be generalised to the 
case of an arbitrary atom or ion by substituting the corre-
sponding ionisation potential Ii in formula (5), and we assume 
that it will give a reasonable estimate for the ionisation rate 
even in this case. The final formula for the ionisation rate, 
including the tunnel regime, the barrier suppression regime 
and the transition regime, can be written in the form
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where E1 and E2 are found from the relations w TI (E1) = 
w BM (E1) and wBM(E2) = wBSI (E2). The proposed formula is 
well suited for use in PIC codes, since the ionisation rate 
depends on the local instantaneous value of the ionising field 
strength, as well as on the ionisation potential.

To begin with, we compare the predictions of the pro-
posed formula (6) for hydrogen with the numerical results 
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obtained in [21] by solving the nonstationary Schrödinger 
equation (see Fig. 2a). The comparison demonstrates that the 
analytical and numerical results agree fairly well. The depen-
dence in the high-field limit is indeed linear in numerical 
simulation, but the proportionality coefficients are different, 
which leads to a small discrepancy between the numerical 
curve and the model in Fig. 2a on a logarithmic scale. This 
difference may be due to inaccurate determination of the ion-
isation rate. In contrast to the tunnel regime, the time depen-
dence of the total ionisation probability in the barrier sup-
pression regime is not exponential even for a static field [18]; 
therefore, the ionisation rate depends not only on the instan-
taneous value of the field, but also on the history of its influ-
ence on the system. Thus, the introduction of the function 
w i (E )  is an approximation used for a qualitative description 
of the ionisation process. Some methods for determining the 
numerical coefficient in this dependence, which lead to slightly 
different results, are discussed in [18]. In addition, the ionisa-
tion condition can be implemented in different ways in numeri-
cal simulation: through the correlation function between the 
wave function of an electron and the states of the discrete 
spectrum, through the flux of the wave function of an electron 
via a surface surrounding a nucleus of an atom or ion at a suf-
ficiently large distance, etc. Different conditions may lead to 
slight differences in the calculated ionisation rate.

A similar comparison was made for the neutral atoms of 
helium, neon and argon (Figs 2b – 2d). Numerical data were 
obtained by integrating the Schrödinger equation in the one-
electron approximation and are presented in [22]. It can be 
seen from the comparison that formula (5) provides a fairly 
good approximation for the ionisation rate in the transition 
region, including for atoms other than the hydrogen atom. In 
addition, the data obtained in [22] do not extend to the high-
field limit E >> Ecr, which does not make it possible to numer-
ically check the linear section of formula (6) corresponding to 
formula (3) for atoms other than the hydrogen atom. This 
section can be seen in the results of numerical simulations pre-
sented in [21] for the hydrogen atom. Since formula (3) is 
obtained from a theoretical consideration of an arbitrary 
atomic system, linear asymptotic behaviour in the high-field 
limit should be observed for an arbitrary atom or ion.

Thus, we have proposed a general formula for the ionisa-
tion rate of an atom or ion in a strong electromagnetic field, 
covering a wide range of laser radiation intensities from the 
tunnel ionisation regime to the barrier suppression regime. 
The formula is well suited for PIC codes because it contains 
dependences on the local instantaneous value of the ionising 
field strength, and the dependence on the type of atomic sys-
tem is expressed in terms of its ionisation potential. Therefore, 
it is applicable for all types of atoms and ions, and also does 
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Figure 2. Dependences of the ionisation rate on the external field strength for atoms of (a) hydrogen, (b) helium, (c) neon and (d) argon in numeri-
cal calculations in ( ) [21] and ( ) [22], as well as dependences calculated by [curve (1 )] equation (6), (2 ) equation (3) for ionisation in the barrier 
suppression regime, (3 ) equation (1) for the tunnel regime, and (4 ) equation (5); (5 ) dependence proposed in [20] and (6 ) dependence corresponding 
to formula (3) with a numerical coefficient of 1.4 instead of 0.8.
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not require significant computational resources. The predic-
tions of the formula are in good agreement with the results of 
numerical simulation of field ionisation for atoms of hydro-
gen, helium, neon and argon; however, additional studies are 
needed to verify the correctness of its use for other types of 
atoms and ions.
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