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Abstract. An original technique is developed for spectral broaden-
ing of femtosecond pulses with compensation for the nonlinear spa-
tial phase during the propagation through nonlinear media with 
effective cubic nonlinearity of different signs. It was shown that in 
the region of 1.5 mm, the proposed scheme with BBO crystals at the 
first stage and NaCl at the second stage allows, using chirped mir-
rors, the formation of few-cycle pulses of about 7 fs duration with a 
small B-integral. The possibility of focusing of pulses compressed in 
the proposed scheme with a large Strehl ratio is demonstrated.

Keywords: few-cycle pulses, nonlinear compression, cubic nonlin-
earity, negative cascaded quadratic nonlinearity, multi-element 
spectral broadening, Strehl ratio.

1. Introduction

Currently, work is underway to develop methods for increas-
ing the peak power of radiation pulses of existing and designed 
petawatt and multipetawatt laser systems by spectral broad-
ening in nonlinear optical crystals [1] and in optical solid 
materials with Kerr cubic nonlinearity [2 – 4], followed by 
compression of pulses with chirped mirrors. 

More than 50-fold compression of millijoule pulses (from 
170 to 3.2 fs) as they passed through a sequence of quartz 
plates was experimentally demonstrated [5]. In a similar 
scheme for femtosecond pulses of a microjoule level with 
phase stabilisation between the carrier and envelope, com-
pression from 7 to 3.9 fs [6] and generation of pulses close to 
single-cycle ones (with a pulse shortened from 5.5 to 2.5 fs) [7] 
were experimentally demonstrated. The possibility of pulse 
shortening from 180 to 30 fs by spectral broadening using 
negative cascaded quadratic nonlinearity was also demon-
strated [8]. The main difficulty in generating reproducible 
high-power spectrally broadened femtosecond pulses and 
their subsequent compression to a few optical cycles is related 
to a high level of the arising spatially inhomogeneous spectral 
phase caused by the Kerr cubic nonlinearity [9]. Nevertheless, 
using spatial filtering methods, 2 – 3-fold compression of 
pulses with an energy of up to 12 J to a duration of ~20 fs 
during propagation through media with cubic nonlinearity is 

currently experimentally implemented [10, 11]. An important 
factor characterising the quality of compressed pulses is their 
focusability. In Ref. [12], when focusing pulses compressed by 
less than two times, with energies of about 2 J and an initial 
duration of 55 fs, a decrease in the fraction of energy localised 
in the central spot, i.e., a decrease in the Strehl ratio, was 
experimentally observed. 

In this paper, we present and study the scheme of pulse 
compression in time by phase self-modulation in nonlinear 
media with alternating sign of effective cubic nonlinearity. 
The scheme involves a stage with negative quadratic nonlin-
earity, followed by a stage with positive Kerr cubic nonlinear-
ity. The length of the first medium is chosen such as to maxi-
mise spectral broadening, and the second one to provide opti-
mal compensation of the nonlinear phase incursion. This 
approach allows significant reduction of the residual nonlin-
ear spatial phase in comparison with multi-element spectral 
broadening schemes based on media with positive cubic non-
linearity [13]. Since optically transparent solid-state media 
with negative Kerr cubic nonlinearity are not known, cas-
caded quadratic nonlinearity is the only way to implement it.

2. Negative cascaded quadratic nonlinearity  
in crystals with quadratic nonlinearity

2.1. Analytical formulae for effective cubic nonlinearity

The most common approach to describing the nonlinear 
phase caused by SHG in crystals with quadratic nonlinearity 
is to consider it as the phase induced by the effective cubic 
nonlinearity n2,casc, the magnitude of which depends on the 
wave mismatch Dk and the corresponding coefficient of qua-
dratic nonlinearity [14]: 
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where Dk is the wave mismatch for SHG of the first type; deff 
is the effective coefficient of quadratic nonlinearity; l is the 
centre wavelength; and e0 is the electric constant. 

A more accurate formula for calculating the nonlinear 
cascade phase is presented in Ref. [15]; it is valid for conver-
sion efficiency up to 30 %: 
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where 2 /4Q E k2 2 2s D= + ; E is the electric field; L is the 
length of the crystal; and s = 2pdeff /(ln). From the presented 
formulae, it follows that, in comparison with the Kerr cubic 
nonlinearity, the effective coefficient of cascaded quadratic 
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nonlinearity sharply depends on the wavelength in accor-
dance with the dependence of the wave mismatch. Moreover, 
with increasing conversion efficiency (sE ~ Dk), a depen-
dence on the intensity appears, i.e., the nonlinearity ceases to 
be cubic, and for sE >> Dk the nonlinearity tends to zero with 
increasing intensity. 

As follows from the above formulae, the sign of effective 
nonlinearity corresponds to the sign of the wave mismatch, 
and the maximum nonlinearity is achieved at a small nonzero 
wave mismatch. Approximately, the wave mismatch for max-
imum nonlinearity can be found from Eqn (2), which also 
implies the dependence of nonlinearity on intensity: as the 
intensity increases, the nonlinearity decreases. 

2.2. Calculation of the spectral-angular distributions  
of the effective cubic nonlinearity 

Using formulae (1) and (2), the spectral-angular distributions 
of the effective cubic nonlinearity were studied in various 
crystals. As follows from these formulae, to achieve a larger 
value of effective nonlinearity, a larger value of the coefficient 
deff is needed. The BBO crystal was chosen because of its high 
quadratic nonlinearity (deff = 2.1 pm V–1 at a phase-matching 
angle of 23° for the interaction of the first type). The LBO 
(XY plane), YCOB (XZ plane), and DKDP crystals were cho-
sen because of their large available aperture, and the corre-
sponding biaxial crystal planes were such that the quadratic 
nonlinearity was maximum. Figure 1 shows the spectral-angu-

lar distributions of n2,casc calculated using Eqn (2). As noted 
above, there are regions of positive and negative nonlinearities, 
in accordance with the wave mismatch sign. From the distribu-
tions shown in Fig. 1, it is seen that the spectral dispersion of 
cascaded nonlinearity is significant. Nevertheless, there are 
spectral regions in which this dispersion decreases to zero. 
These are regions where the group velocities of the waves of the 
first and the second harmonic coincide, i.e., the derivative of 
the wave mismatch with respect to wavelength is equal to zero. 
In the XY plane of LBO crystal, such a region is absent, while 
it exists in other planes, however, the value of the quadratic, 
and hence the cascaded quadratic nonlinearity is much smaller. 

Spectral dependences of the total effective nonlinearity, 
i.e., the sum of the effective and Kerr (n2) cubic nonlinearities 
for BBO and YCOB crystals at the propagation angles indi-
cated in Fig. 1, are presented in Fig. 2 (for BBO n2 = 5.7 ´ 
10–16 cm2 W–1, and for YCOB n2 = 7.5 ´ 10–16 cm2 W–1). The 
choice of these crystals is justified by their negative total effec-
tive cubic nonlinearity; this allows realising the nonlinear 
phase compensation at the second stage. We considered two 
values of the propagation angle, which allowed implementing 
effective cubic nonlinearity in the wavelength region near 
0.83 mm, as well as in the spectral regions where the group 
wave velocities of the first and second harmonics coincide. 
For BBO, it is 1.55 mm, for YCOB – 1.6 mm. Figure 2 shows 
the results of calculations performed using both Eqn (1) cor-
responding to the approximation of low-efficiency conversion 
(low intensity or large wave mismatch), and Eqn (2) valid for 
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Figure 1. Spectral-angular dependences on the logarithmic scale of the effective cubic nonlinearity modulus n2, casc calculated using Eqn (2) for (a) 
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high-efficiency conversion (all data are given at a peak inten-
sity of 200 GW cm–2). It is important to note that near the 
nonlinearity transition through zero, Eqn (2) can give a sig-
nificant error. 

The calculated profiles of effective cubic nonlinearity in 
the region of 0.83 mm are characterised by strong dispersion, 
which reduces the potential spectral width of the pulse trans-
mitted through the crystal. The total effective cubic nonlin-
earity for BBO is negative, while in the case of YCOB it is 
positive for the chosen intensity. 

The spectral region of 1.55 – 1.6 mm seems to be the most 
promising for the application of the proposed technique for 
broadening the spectrum of pulses in BBO and YCOB crys-
tals. In this region, the intensity dependence of nonlinearity is 
retained, but the spectral dispersion becomes weak, the value 
of nonlinearity itself is noticeably negative and exceeds the 
Kerr cubic nonlinearity in absolute value. 

3. Phase-compensated spectrum broadening  
in media with an alternating sign  
of effective cubic nonlinearity 

3.1. Numerical modelling technique 

Formulae (1) and (2) are not valid for any intensity and wave 
mismatch; moreover, they do not take into account the effect 
of group velocity dispersion, which is important when gener-

ating few-cycle pulses. Obviously, for complete description of 
the quadratic nonlinearity cascade effects, a numerical simu-
lation of the SHG process is necessary. In the present work, it 
is based on the system of equations: 
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2 (the first and the second harmonic, respectively); km is the 
wave vector; kx and ky are the projections of the wave vector 
on the X (critical to phase matching) and Y axes; km, 0 = 
km(wm, 0, q0); wm, 0 is the centre frequency; q0 is the phase-
matching angle; Em = Em(t, x, y) is the electric field in the 
coordinate – time domain; Em, kw = Em, kw(w, kx, ky) is the elec-
tric field in the Fourier domain; F+ is the direct Fourier 
transform; gm = e0 nm, 0 n2 /2; n2 is the coefficient of the Kerr 
cubic nonlinearity; nm, 0 is the refractive index; and Dk = k2, 0 
– 2k1, 0.
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The system of equations (3) is derived from the unidirec-
tional pulse propagation equation (UPPE) [16] by reducing 
the field equation to the equations for pulse envelopes with 
two carrier frequencies, the first harmonic and the second one 
[17]. The equation takes into account diffraction and beam 
drift due to birefringence. It can be used to describe pulses 
with a spectral width having the order of the central fre-
quency. A specific feature of the application of this approach 
to modelling cascaded quadratic nonlinearity is the necessity 
of using a sufficiently small step, dz << 2p/Dk, due to the large 
value of Dk. 

3.2. Spectral broadening in a BBO crystal near 0.83 mm 

The results of modelling the spectrum broadening of a 
Gaussian pulse with 20 fs duration, a centre wavelength of 
0.83 mm and a peak intensity of 200 GW cm–2 in a 10 mm-long 
BBO crystal are presented in Fig. 3 for two close propagation 
angles 23.5° and 25°. As already mentioned, the effective 
cubic nonlinearity in this case is negative, but it is character-
ised by strong dispersion, as a result of which, at a propaga-
tion angle of 23.5°, the spectra expand significantly, while at 
25° the broadening is weaker and the spectrum is shifted to 
the IR region. Turning the nonlinearities on and off shows 
that the negative effective cubic nonlinearity leads to a nar-
rowing of the spectrum and the main broadening is due to the 
Kerr cubic nonlinearity. Thus, in this case, it is not possible to 
implement the scheme with subsequent compensation for the 
nonlinear phase. However, as shown in Ref. [8], when using 
negative cascaded cubic nonlinearity in a BBO crystal in the 
spectral region of 1 mm, the considered scheme allows longer 
pulses to be compressed from 190 fs to about 30 fs. 

3.3. Spectral broadening in a BBO crystal near 1.55 mm 

For a pulse with the centre wavelength of 1.55 mm, duration 
of 20 fs, and intensity of 200 GW cm–2, a 5-mm long BBO 
crystal with a propagation angle of 19.1° was chosen. At such 
a crystal length, the peak pulse intensity decreases by an order 
of magnitude due to dispersion spreading, after which its 
further increase does not lead to a noticeable broadening of 
the spectrum. For the propagation angle under consider-

ation, as shown in Fig. 2c, at a sufficiently weak dispersion 
and large negative value of the effective cubic nonlinearity, 
there is a noticeable broadening of the spectrum with a small 
pulse duration increase. At the second stage, the pulse passes 
through a compensating NaCl crystal 20 mm long (n2 = 4.35 ́  
10–16 cm2 W–1). This crystal was chosen because of the high 
group velocity dispersion in the considered spectral range 
(359 fs2 cm–1 near 1.6 mm) to prevent the pulse spectrum from 
narrowing down due to the opposite sign of the effective cubic 
nonlinearity.

The simulation results for this case are presented in 
Fig.  4. A significant broadening of the spectrum is observed 
after the BBO crystal, and after the NaCl crystal, the spec-
trum is further smoothed (Fig. 4a). The duration of the 
transform-limited pulse at the output was about 7 fs, while 
the duration of the pulse compressed during phase compen-
sation to the fourth order inclusive increased to 7.2 fs (the 
pulse profiles are shown in Fig. 4b), which corresponds to 
1.5 cycles of the carrier frequency; the field profile is shown 
in Fig. 4c. The criterion for choosing the parameters of the 
spectral phase decomposition, and hence the chirped mir-
rors, was chosen to compensate for the nonlinear phase at a 
minimum pulse half-maximum width, the peak intensity 
being 200 GW cm–2. We also note that, in contrast to pulse 
compression in media with Kerr cubic nonlinearity, in the 
case under consideration, there is an insignificant (within 
1  fs) pulse shift, depending on the intensity (Figs 4d and 4e). 
Note that all calculations of the dependence of parameters 
on intensity were performed without taking the spatial pro-
file of the pulse into account. Similar to the case of the Kerr 
cubic nonlinearity, a dependence of the duration of the com-
pressed spectrally broadened pulse on the intensity is 
observed. The crystal length at the compensating stage was 
chosen so that the spatial dependence of the phase on the 
intensity was minimal (Fig. 4f). In this figure, the phase of 
the pulse is shown at the time corresponding to the maxi-
mum intensity of the pulse at the output of the crystals after 
the spectral phase compensation at the initial peak intensity 
of 200 GW cm–2. For a NaCl crystal as long as 20 mm, the 
phase difference of the intensities, equal to 70 % and 130 % 
of the peak intensity, was about 0.1 rad. Losses of radiation 
power in the process of SHG were equal to 15 % – 20 %.
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3.4. Beam focusability after compensated pulse compression 

The best characteristic of the spatial nonlinear phase compen-
sation quality is the focusability of compressed pulses. This 
property can be quantified by a change in the Strehl ratio, i.e., 
the ratio of the peak intensities of the focused radiation in the 
beams obtained without/with spatial phase compensation. 
Below we consider the focusing of the compressed pulses by a 
90° parabolic mirror with the ratio f /D = 0.5 (  f is the focal 
length and D is the beam diameter); the calculations were per-
formed in the framework of the vector diffraction theory 
described in Ref. [18]. 

The initial intensity profile of the beam was generated as 
shown in Fig. 5, with amplitude inhomogeneities typical for 

high-power laser systems. As in previous calculations, the 
duration of the Gaussian pulse was 20 fs. In this case, the 
simulation was carried out taking into account the spatial 
effects described by Eqns (3), i.e., diffraction, birefringence, 
and self-focusing. Figure 6 shows the simulation results for 
the focusing of beams at different stages of compression. The 
beam profile after crystals and the spectral phase compensa-
tion is shown in Fig. 6a. For comparison of focusability, we 
used a pulse compressed after spectral broadening in a 6 mm-
long quartz crystal to a duration of 7 fs; the spatial profile of 
the phase is shown in Fig. 6c. Modelling was carried out using 
Eqns (3) without terms describing the parametric interaction. 
In this case, the phase difference between the intensities of 
70 % and 130 % of the peak intensity was 1.55 rad. 
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As follows from Fig. 6, the profile of the focused beam is 
symmetric in the case, when it has diffraction divergence 
(Fig. 6d), and when a nonlinear phase appears due to the Kerr 
(Fig. 6c) or cascaded quadratic nonlinearity after the com-
pensation stage (Fig. 6b), the symmetry disappears. In the 
first case, the Strehl ratio (Str) was 0.535, and in the second 
case it was 0.897. Thus, the stage based on the NaCl crystal 
almost completely compensates for the spatial nonlinear 
phase. The spatial distribution of the beam phase is shown at 
the time corresponding to the maximum intensity I of the 
pulse at the crystals output after compensation of the spectral 
phase at the initial peak intensity of 200 GW cm–2. In the 
same way, the phase was determined for calculating the Strehl 
ratio. 

Figure 7 shows the dependences of the phase difference on 
the compensating crystal length L for the intensities of 160 

and 240 GW cm–2, as well as the Strehl ratio. The stage based 
on the NaCl crystal rapidly compensates for the spatial non-
linear phase: e.g., already at L = 0.5 cm, Str = 0.7, and at L = 
2 cm it increases to 0.897. Both the pulse spreading due to 
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240 GW  cm–2 on the length L of the NaCl crystal of the compensating 
stage and (b) Strehl ratio dependence on the length of the compensating 
NaCl crystal. 
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dispersion and the more complex intensity dependence of the 
phase restrict the possibility of further, more complete, com-
pensation of the nonlinear phase. 

4. Conclusions

An original scheme of the temporal compression of femtosec-
ond pulses in nonlinear media with different signs of effective 
cubic nonlinearity is proposed. It is shown that near 1.55 mm, 
the proposed scheme allows generating pulses with a duration 
of a few optical cycles (~7 fs) with a small value of the 
B-integral. In this case, according to the calculations, the 
Strehl ratio for a focused beam can reach 0.897, while for the 
scheme using a medium with Kerr nonlinearity (quartz crys-
tal) it does not exceed 0.535. Thus, the proposed method 
allows improving the focusability of few-cycle pulses, reduc-
ing the level of spatial phase fluctuations caused by changes in 
intensity, and, thereby, facilitating the implementation of 
high-efficiency coherent summation of such pulses.
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