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Abstract. We report a theoretical study of the dependence of the 
beat frequency of counterpropagating waves on the rotation veloc-
ity in a gas ring laser with a periodic alternating frequency bias. 
Rectangular biases of two types are considered: with constant 
amplitude and with periodic amplitude modulation. We have found 
dynamic zones for locking-in the counterpropagating wave frequen-
cies and determined deviations of the frequency response from the 
ideal one that arise when measuring frequency nonreciprocities, 
close in magnitude to the amplitude of an alternating frequency 
bias. It is shown that in the case of a rectangular bias with periodic 
amplitude modulation, nonlinear distortions of the frequency 
response can be reduced by an order of magnitude.

Keywords: ring laser, laser gyroscope, frequency bias, dynamic 
lock-in zones, frequency response.

1. Introduction

Intracavity scattering of light in a gas ring laser (GRL) leads 
to the emergence of a zone of insensitivity to rotation and to 
a nonlinear dependence of the GRL frequency response on 
rotation. To exit the insensitivity zone and to reduce nonlin-
ear distortions of the frequency response, an alternating fre-
quency bias is used [1 – 4]. In Zeeman laser gyroscopes, when 
a magnetic field is applied to an active medium, a rectangular 
frequency bias (meander) is formed. The frequency response 
of a GRL with an alternating frequency bias was theoretically 
and experimentally investigated in a number of papers [1 – 13]. 
These studies showed that in the presence of a periodic alter-
nating bias in a GRL, there are dynamic zones for locking-in 
frequencies of counterpropagating waves, which turn out to 
be the widest when the measured frequency nonreciprocity, 
determined by the rotation velocity, approaches the ampli-
tude of the bias. In the region of a rotation velocity close to 
the amplitude of the frequency bias, there occur the largest 
deviations of the GRL frequency response from the ideal one 
[4, 11 – 13].

In this paper, we theoretically study the frequency 
response of a GRL when use is made of a periodic rectangular 
frequency bias with slow modulation of its amplitude. 
Rectangular biases of two types are considered: with constant 

amplitude and with periodic amplitude modulation. For 
biases with constant amplitude, the obtained results are con-
sistent with the already known data. In this case, the removal 
of the constraints previously used in the analysis [see inequal-
ity (6) below] has made it possible to find a new feature that 
characterises the behaviour of the widths of the dynamic lock-
in zones with a change in the bias period. For biases with low-
frequency periodic amplitude modulation, a new possibility 
has been revealed for reducing nonlinear distortions of the 
frequency response.

2. Rectangular frequency bias

We will study the frequency response of the GRL by using the 
differential equation for the phase difference F of the coun-
terpropagating waves:

F = W + WB(t) + W LsinF, (1)

where W = KJo  is the frequency nonreciprocity of the resona-
tor, proportional to the angular velocity of the GRL rota-
tion Jo ; K is the scale factor; WB(t) is the alternating fre-
quency bias; and W L is the half-width of the static lock-in 
zone.

First, consider a rectangular periodic alternating bias:
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where W p and Tp are the amplitude and period of the bias.
For periods of time when the frequency bias is constant, 

equation (1) is solved analytically, and the phase difference F 
of the counterpropagating waves can be calculated for each 
such interval using the formulae that determine this solution. 
Using an analytical solution has significantly reduced the 
time spent on calculations. In this work, we studied the fre-
quency response of the GRL (the dependence of the average 
beat frequency fb of counterpropagating waves on the mea-
sured frequency nonreciprocity W/2p). In the presence of a 
frequency bias, the beat frequency contains an alternating 
part oscillating with a frequency of 1/Tp. To eliminate these 
pulsations, the beat frequency was averaged. The change in 
the phase difference DF of the counterpropagating waves was 
calculated over a time equal to the integer np of the bias peri-
ods Tp. The average value of the beat frequency fb was deter-
mined by the expression
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In the calculations below, the average value of the beat 
frequency was calculated at np = 3000.

In a GRL with a periodic alternating bias, there arise 
dynamic lock-in zones of the frequencies of counterpropagat-
ing waves. Inside the dynamic lock-in zones, the average cir-
cular beat frequencies are constant and are determined by the 
formula

2 /n TpG H pF =o ,  (4)

where n = 0, 1, 2, 3, . . . is the serial number of the zone.
The widths of the dynamic zones in the case of a rectangu-

lar bias are determined by the approximate expressions (see, 
for example, [5]):
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where /2Tp p L
2 2 pg W W= - .

Figure 1 shows the normalised frequency response fbTp of 
a GRL with a rectangular frequency bias, calculated at W L/2p 
= 300 Hz, a bias amplitude W p /2p = 56888 Hz, and a bias 
period Tp = 0.004 s. The straight line corresponds to an ideal 
frequency response G HF W=o  (in the absence of nonlinear dis-
tortions).

The frequency response is shown in a small range of W 
values close to the amplitude of the bias. In this range, there 
are wide dynamic lock-in zones, following each other with an 
interval of 250 Hz (with a magnetic field switching frequency 
1/Tp ). The largest dynamic zones have a width close to that of 
the static lock-in zone W L.

Figure 2 shows the normalised frequency response fbTp of 
a GRL with a rectangular frequency bias, which was calcu-
lated for the same parameters as in Fig. 1, with the exception 
of the bias period Tp, which in this case is 0.04 s. The straight 
line in Fig. 2 corresponds to the frequency response in the 
absence of nonlinear distortions. As in Fig. 1, the widest 
dynamic zones are observed in the range of W values close to 
the amplitude of the bias; however, the widths of these zones 
are much smaller than those in Fig. 1.

The widths of the dynamic lock-in zones in Fig. 1 are in 
good agreement with the results of calculations by formula 

(5), while in Fig. 2 they are significantly smaller than those 
predicted by this formula. This is due to the fact that the theo-
retical dependence defined by formula (5) is valid only when 
the inequality

W L /2p < 1/Tp (6)

is met.
This inequality holds for the case of Fig. 1 and does not 

hold for Fig. 2. One can see from Fig. 2 that despite the small 
widths of the dynamic lock-in zones, nonlinear distortions of 
the frequency response turn out to be significant. Figure 3 
shows the deviations of the frequency response from the ideal 
one, df = fb – W/2p, in the range of W values close to the 
amplitude of the bias. Here, curve ( 1 ) corresponds to Fig. 1, 
and curve ( 2 ) corresponds to Fig. 2. As can be seen from 
Fig. 3, the maximum deviation df is independent of the bias 
period Tp.

3. Rectangular bias with periodic  
amplitude modulation

In this paper, we have studied the possibility of reducing non-
linear distortions of the frequency response of a GRL using a 
periodic rectangular bias with slow amplitude modulation. 
Let us consider the frequency bias shown in Fig. 4. The bias 
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Figure 1. Normalised frequency response (dependence of fbTp on the 
measured frequency nonreciprocity W/2p) for a rectangular frequency 
bias with a period Tp = 0.004 s. The straight line corresponds to an 
ideal frequency response G HFo  = W.
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Figure 2. Normalised frequency response for a rectangular frequency 
bias with a period Tp = 0.04 s.
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Figure 3. Nonlinear distortions of the frequency response for biases 
with a period Tp = ( 1 ) 0.004 and ( 2 ) 0.04 s.
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period is Tp = 40 ms; each period has ten rectangular links 
with a duration of 4 ms. For the first five links, the amplitude 
of the alternating bias in each subsequent link increases in 
6 kHz steps from the initial value of 30 kHz to the final value 
of 60 kHz; for the next five links, the amplitude decreases in 
6 kHz steps from the initial value of 60 kHz to the final value 
of 30 kHz.

At time intervals of 2 ms duration, the frequency bias is 
constant, and equation (1) is solved analytically. The phase 
difference F of the counterpropagating waves was calculated 
at each of these intervals using formulae that determine the 
analytical solution of equation (1). Figure 5 shows the devia-
tions of the frequency response from the ideal one, df = fb – 
W /2p, in the range of W values corresponding to the largest 
distortions of the frequency response. As can be seen from 
Fig. 5, the maximum deviation df for the frequency bias in 
question decreased fivefold as compared to the case of a peri-
odic rectangular bias.

Consider another similar bias with slow amplitude modu-
lation. The bias period is Tp = 80 ms; each period has twenty 
rectangular links with a duration of 4 ms. For the first ten 
links, the amplitude of the alternating bias increases in 6 kHz 
steps from the initial value of 30 kHz to the final value of 
90 kHz, for the next ten links, the amplitude decreases in 
6  Hz steps from the initial value of 90 kHz to the final value 
of 30 kHz.

Figure 6 shows the deviations of the frequency response 
from the ideal one, df = fb – W /2p, in a wide range of W values. 
One can see that the maximum deviation df for the frequency 
bias in question decreased tenfold as compared to the case of 
a periodic rectangular bias with constant amplitude.

Thus, the performed studies of the frequency response of 
GRLs with a periodic rectangular bias have shown that the 
largest dynamic lock-in zones have a width close to that of the 
static lock-in zone W L when the inequality W L /2p < 1/Tp is 
fulfilled. At W L /2p >> 1/Tp, the widths of the dynamic lock-in 
zones are much smaller; however, despite this fact, the nonlin-
ear distortions of the frequency response turn out to be sig-
nificant. We have found that the use of a rectangular fre-
quency bias with slow amplitude modulation can markedly 
reduce the nonlinear distortions of the frequency response.
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Figure 4. Shape of a rectangular bias with slow amplitude modulation.
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Figure 5. Nonlinear distortions of the frequency response df = fb – 
W/2p in the case of the bias shown in Fig. 4.
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Figure 6. Nonlinear distortions of the frequency response df = fb – W/2p 
in the case of a bias with a period Tp = 0.08 s (other values of the bias 
parameters are given in the text of the paper).


