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Abstract. By the example of an experiment that implements, 
according to its authors, Wigner friends’ paradox, the impossibility 
of measuring the state vector collapse of a remote localised system 
is shown. It is also found that the objectivity of the results of quan-
tum measurements is not violated in this case.
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1. Introduction

Recently, there has been sparked a noticeable growth of inter-
est in elucidating the ontological status of the wave function 
and the quantum state vector, which belong to the basic con-
cepts of quantum mechanics. Manifestations of so-called 
quantum nonlocality and many quantum paradoxes do not 
find indisputable and generally accepted consistent interpre-
tations. In this regard, more and more adherents of informa-
tional interpretation appear, the origins of which were out-
lined by Niels Bohr [1] and further developed, for example, in 
work [2, 3].

As one of the arguments in favour of this interpretation, 
the so-called Wigner friends’ paradox is put forward, which, 
according to Proietti et al. [4], has received experimental con-
firmation.

From the very beginning, after physicists became con-
vinced that entangled states and related nonlocality phenom-
enon exist in nature, attempts were made to use them to trans-
mit information (see, for example, paper [5] and references 
therein). These attempts were based on the existence of quan-
titative characteristics of the entanglement value (Schmidt 
parameter, Bell inequalities of the Clauser – Horne – Shimony – 
Holt type (CHSH) [6], the Perez – Gorodetsky criterion, etc.). 
It was assumed that by measuring the values of these param-
eters, it would be possible to obtain information about the 
processes occurring with different parts of the entangled state, 
and use them to transfer information over macroscopic dis-
tances. The development of this direction went along the way 
of increasing the number of entangled particles and detectors 
and complicating the processes of interaction between them. 

Over the past more than 30 years, a number of principal 
schemes aimed at implementing such ideas have been theo-
retically analysed and experimentally verified, starting with 
Aspect’s classic works [7 – 10] on verification of the Bell 
inequality [11].

Proietti et al. [4] describe an experiment that raises a num-
ber of questions related not only to the possibility of quantum 
information exchange, but also to the objectivity of the results 
of quantum measurements in general. Is it possible to trans-
mit a signal by making a collapsing measurement of one of a 
pair of entangled particles without a classical communication 
channel? Can remote observers get different measurement 
results for the same quantum object? This paper attempts to 
answer these questions.

2. Experiment reproducing Wigner friends’ 
paradox [4]

A pair of photons entangled by polarisation is sent to Alice 
and Bob’s friends, each to his own, to a separate laboratory. 
Alice and Bob themselves, who are also located at different 
places, can either get the same result in a nondemolition way, 
i.e. the values А0 and В0 of dichotomous variables which are 
equal to +1 or –1 depending on the polarisation state of the 
recorded photons, or, according to the authors, measure 
whether a collapse of the superposition state of entangled 
photons has occurred. To do this, both Alice and Bob using 
the same detectors with a small upgrade of the experimental 
setup, which consists in the introduction of additional beam 
splitters into the scheme, also obtain dichotomous values of 
А1 and В1, equal to +1 or –1.

Thus, in each act of measurement, there are well-defined 
values А0 and В0, i.e., the collapse objectively took place. 
However, Alice and Bob, while recording А1 and В1, observe 
quantum interference, which supposedly indicates the oppo-
site. How do authors propose to verify this [4]? From the val-
ues Аi and Вi they compose the Bell inequality of the CHSH 
type [6],

S = |á А1В1 ñ + á А1В0 ñ + á А0В1 ñ – á А0В0 ñ| ≤ 2, (1)

and it is violated in the experiment, which indicates the absence 
of certain values of A0, A1, B0, B1 simultaneously, although 
they are all measured and known, including A0 and B0.

Thus, during the same experiment, there are certain mea-
sured values of А0 and В0, but statistical observations of the 
mean values included in (1) indicate that certain values of А0 
and В0 cannot exist simultaneously with А1 and В1. But they 
are measured and exist! Based on this apparent contradiction, 
Proietti et al. [4] conclude that there is no objective reality. 

Is a nondemolition measurement of the quantum state vector collapse 
of a remote localised system possible?
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After all, the same experiment cannot give mutually exclusive 
results. Is everything correct here?

3. Features of the CHSH inequality 

To find out the consequences of violating the CHSH inequal-
ity, we should turn to its simplest derivation [12, 13]. Let all 
four values Аi, Вi simultaneously have definite values a0, a1, 
b0, and b1 equal to +1 or –1. Then one can derive from them 
the expressions:

a1b1 + a1b0 + a0b1 – a0b0 = a1(b1 + b0) + a0(b1 – b0)

 = b1(a1 + a0) + b0(a1  – a0) = ±2, (2)

from which inequality (1) follows.
It is important to note that the concept of definiteness of 

values a0, a1, b0, b1 in the derivation of the Bell inequalities, 
including those of the CHSH type, makes sense not in their 
determinism, because they are random, but of the fact that 
they exist simultaneously in each act of measurement. Bell 
inequalities are violated when not all four values are mea-
sured simultaneously, but only two of them, or three of six or 
four of eight, as in the Greenberger – Horne – Zeilinger (GHZ) 
paradox [14]. This is due to the fact that the root cause of 
violation of classical Bell inequalities is the description of the 
observables entering these inequalities by noncommuting 
operators in the framework of the quantum-mechanical 
approach [12]. Therefore, simultaneous direct measurements 
of them are not performed, while inequalities are constructed 
from pairs (CHSH), triples or quadruples (GHZ) of the val-
ues included in them.

At the first stage of the experiment [4], all the observers 
(Alice, Bob, and their friends) measure the same values A0 
and B0, and, of course, obtain the same results. Of these, the 
average value á A0B0 ñ is compiled. Then, Alice and Bob install 
additional beam splitters in their meters and proceed to mea-
sure A1 and B1. In this case, all four values A0, B0, A1 and B1 
are measured simultaneously (Alice and Bob measure A1 and 
B1, and A0 and B0 are measured by their friends) and simulta-
neously have certain values a0, a1, b0, and b1. If we compose 
the averages from them, which appear in inequality (1), then 
it will certainly not be violated by virtue of (2), since the 
simultaneous existence of certain values a0, a1, b0, and b1 is a 
sufficient condition for fulfilling (1). Even if the beam splitter 
is only installed for Alice or Bob, three of the four values A0, 
B0, A1 and B1 will be measured simultaneously, and again, by 
virtue of (2), inequality (1) cannot be violated, since one of the 
brackets in (2) will vanish. Why ever this inequality turned 
out violated in work [4]?

If we discard the possibility of some kind of experimental 
error in work [4], the only explanation for the resulting incon-
sistency is that the average á A0B0 ñ at the first stage of the 
experiment is not identical to the average á A0B0 ñ at its subse-
quent stages. Why can this happen? The fact is that in work 
[4], the recording of all six photons is only considered infor-
mative. Other implementations are simply discarded. Thus, 
when Alice’s and/or Bob’s measurement conditions are 
changed (by installing beam splitters), a selection of the mea-
suring counts of their friends occurs, and the average á A0B0 ñ 
may change.

Does this mean that there is no objective measurement? 
No. After all, a change in the meter can naturally cause a 
change in the measurement results. Objectivity could only 

suffer in the case of a truly nondemolition measurement, 
when the Alice’s and/or Bob’s results would have in no way 
affected the results of their friends. However, as will be shown 
in the following sections, this is hardly possible. But at the 
beginning, we should give additional arguments in favour of 
the considerations presented here.

There is another proof of inequality (1) based on a weaker 
assumption, which consists not in the simultaneous existence 
of all four values a0, a1, b0, and b1, but only in the existence of 
all elementary four-dimensional probabilities P(A0, A1, B0, B1) 
[15]. Indeed, assuming all of them to be nonnegative and giv-
ing unit in the sum proceeding from the normalisation condi-
tion for all possible probabilities of the experiment’s outcome, 
and also representing the averages in (1), for example, as

Pa b0 0 (++) = (++++)+(+++–)+(+–++)+(+–+–),

we find that the sum of all averages in (1) is exactly equal to 
the doubled expansiom of unit, i.e., the double sum of all pos-
sible P(A0, A1, B0, B1), from which, again, inequality (1) neces-
sarily follows [15]. However, for (1) to be violated, it is suffi-
cient that not all but only some of the values P(A0, A1, B0, B1) 
do not exist. 

Indeed, if we calculate the quantum averages of these ele-
mentary probabilities as applied to the case of measuring the 
polarisation state of an entangled pair of photons, as is the 
case in the experiment [4], only some of them will turn out to 
be negative [15], similarly to what happens in the Wigner dis-
tribution.

But what do these joint negative probability distributions 
mean? They relate observable values, some of which are 
described by noncommuting operators, for example, A0 and 
A1, in the case when (1) is violated [15]. Therefore, their direct 
measurements, as well as measurements of their probability 
distributions, are impossible. In this sense, such elementary 
probabilities are devoid of operational meaning, similarly to 
negative probabilities in general.

How did the authors of [4] manage to obtain contradic-
tory and mutually exclusive results? Obviously, this hap-
pened because the average values of á A0B0 ñ were different at 
different stages of the experiment. Indeed, when additional 
beam splitters are installed and all four observables are mea-
sured simultaneously, it is clear that they are all described by 
the commuting operators and inequality (1) cannot be vio-
lated. A violation can occur only if the operator of the 
observable A0 at the first stage of the experiment does not 
commute with A1 at the subsequent stages. A similar situa-
tion is observed with B0 and B1. If the observables are 
described by different operators at different stages of the 
experiment, it is clear that the observables themselves differ 
from each other.

It should be emphasised that two-particle states are used 
in the derivation of the usual Bell inequalities of the CHSH 
type. And these inequalities are formulated from the correla-
tion functions E(a, b), to calculate which it is necessary to per-
form a series of measurements, followed by the subsequent 
averaging of their results. These are the correlation functions 
that appear in Eqn (1). In the analysed experiment, six-parti-
cle states are used, which significantly distinguishes this situa-
tion from the usual consideration, since both the measure-
ment protocol and the procedure for processing the results 
change. In particular, it is possible to obtain all four measured 
values in a single measurement. This is precisely the reason 
why the authors of the experiment [4] incorrectly used the Bell 
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inequality of the CHSH type. From these simple consider-
ations, it clear that the violation of Eqn (1) does not at all 
indicate the absence of both objectively existing А0 and В0, as 
well as the collapse of the original quantum state vector. 
Stronger arguments would have been required to prove this 
point.

4. Some general considerations

The very fact that it is possible to measure in a nondemoli-
tion way the presence or absence of a state vector collapse 
in a remote localised system raises some difficult questions. 
If the collapse occurs instantly (and there is experimental 
confirmation of this, at least, the collapse rate in [16, 17] 
exceeds c by several orders of magnitude), then, having the 
ability to produce such a measurement, I can instantly 
transmit information using a superlight telegraph, since 
the presence and absence of the collapse I can encode by 
dichotomous values corresponding to 1 bit. However, this 
is prevented by the so-called ‘no communication theorem’ 
[5], which is very general in nature, and therefore it seems 
unlikely to be violated.

Indeed, let us assume that in experiment [4] Alice and Bob 
conduct an interference experiment before their friends record 
an entangled pair of photons, i.e. before the collapse. 
Naturally, they would receive interference confirming its 
absence. But what if the collapse happens before Alice and 
Bob perform a measurement? In full accordance with the ‘no 
communication theorem’, nothing had to change; otherwise, 
they and their friends would have established an instanta-
neous superlight communication channel.

Thus, without even delving into the subtleties of the 
experiment and the features of the Bell inequality of the 
CHSH type, we can conclude that the denial of the existence 
of objective reality cannot be proved on the basis of Wigner 
friends’ paradox. 

It should also be noted that in the experiment [4], only 
simultaneous recording of all six photons by Alice, Bob, 
and their friends is considered informative, or, in other 
words, there is no remote observation of a localised quan-
tum system of friends. But it is precisely such a nondemoli-
tion measurement that is supposed in Wigner friends’ para-
dox. These considerations explain the possibility of obtain-
ing different averages á A0B0 ñ at different stages of the 
experiment [4] and should be taken into account when 
planning such experiments. Let us explain this with a par-
ticular example.

5. About a failed attempt of superlight 
communication

Attempts to implement superlight communication based on a 
remote nondemolition measurement of the instantaneous col-
lapse of the state vector have been made repeatedly. In works 
[18 – 20], a scheme shown in Fig. 1 is proposed, which, it 
would seem, allows implementation of this opportunity. 
However, more detailed calculations, as shown below, indi-
cate the opposite. We give them here because they are directly 
related to the issue of Wigner’s nondemolition observation of 
his friend.

Consider the principle of the scheme operation. During a 
certain time interval, a pair of entangled photons is sent to 
observers A and B from a source of parametric scattering of 
biphotons, which is illuminated by laser pumping, i.e., the 

laser pumping falls on a piezocrystal, and a pair of entangled 
photons is born in it. One of them is sent to observer A, while 
the second one, to observer B. The photons are entangled in 
polarisation. Observers have polarising Wollaston prisms, to 
which photons are directed, i.e. each to his own prism. In 
principle, the polarisation state of these photons can be mea-
sured using Xb and Yb detectors. But it is observer B who 
decides whether to perform such a measurement or not. If he 
has performed a measurement, then this event is assigned a 
unit value, and if not, to zero. The angles a and b of rotation 
of the Wollaston prisms are chosen the same, i.e. they are 
equally oriented in space relative to each other.

Then, the photon of observer A, divided into two chan-
nels, falls into a medium with cubic nonlinearity. The test 
photon P, also divided into two channels, is directed towards 
this photon and, for photon P, these channels are the 
Mach – Zehnder interferometer’s arms. The test photon P 
exits the interferometer and is recorded by detectors D1 or 
D2. The difference scheme makes it possible to measure the 
cosine of the phase difference in the interferometer arms with 
allowance for nonlinear interaction of entangled and probe 
photons. After this measurement, observer A records the 
entangled photon using the detectors Xa or Ya.

The physical principle of the scheme is based on the fact 
that the measurement (by observer B) of one of the photons 
of this pair leads to the collapse of the quantum state vector 
of the entire system of two entangled photons. The collapse 
occurs instantly, so observer A, equipped with an appropriate 
measuring system capable of recording this collapse (or its 
absence), will know about the actions of observer B almost 
instantly, no matter how far away it is located.

How does the observer’s measuring system work? First of 
all, its actions should not collapse the superposition of the 
polarisation states of the entangled photon coming to it; oth-
erwise, the information on the actions of observer B will be 
lost forever due to the ‘no communication theorem’ [5]. 
Therefore, its measurement should be nondemolition. On the 
other hand, it must somehow ‘feel out’ the entangled photon. 
In work [21], it was strictly proved (as, incidentally, in a num-
ber of other works) that before the collapse, the photon is 
present at once in both spatially separated channels corre-
sponding to orthogonal polarisations. If we make these chan-
nels the Mach – Zehnder interferometer’s arms, the photon 
will be present in both arms at once; otherwise, there will be 
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Figure 1. Diagram of an attempt by observer A to measure the moment 
of the state vector reduction as a result of a collapsing measurement 
by observer B. Observer A can use detectors Xa and Ya to determine 
which of the detectors of observer B (Xb or Yb) is triggered in the case 
of a collapsing measurement. In this case, it is important that observer 
A first makes a measurement using detectors D1 or D2, and only then 
using Xa or Ya.
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no interference of single photons observed experimentally. 
After the collapse caused by the fact of measurement made by 
observer B, the photon will only be present in a single channel 
due to the collapse of the state vector of the entire system of 
two entangled photons.

Further, if nonlinear transparent media with cubic Kerr 
nonlinearity are installed in the interferometer channels, then 
observer A will want to determine whether the entangled pho-
ton coming to him is located in two arms or in a single one, 
without finding out in which particular arm it is located (oth-
erwise, observer A will produce a collapsing measurement 
earlier than observer B, if he has not yet performed it). Thus, 
such a problem of nondemolition measurement, it would 
seem, can be solved by additional illumination of the interfer-
ometer by trial radiation that nonlinearly interacts with an 
entangled photon in the Kerr medium as a result of cross-
interaction.

What is the result? By making a nondemolition measure-
ment of the entangled photon, observer A could find out 
whether observer B has made a collapsing measurement or 
not, which is equivalent to transmitting a single bit of infor-
mation from B to A.

6. Basic relations

We now consider the formal procedure for describing the sys-
tem.

We take a pair of entangled photons correlated by polari-
sation. Their state vector is expressed as

1 1 0 1 10 0 0| (| | | | | | | | )
2
1

x
a

x
b

y
a

y
b

x
a

x
b

y
a

y
by = + . (3)

Here | 1 ñ are the single-photon Fock states; | 0 ñ is vacuum; 
superscripts a and b refer to the first and second photons of 
the entangled pair, respectively; and mutually orthogonal 
transverse directions (subscripts x and y) determine orthogo-
nal polarisation directions. The structure of this state vector is 
such that, although the polarisation directions x and y of each 
of the photons a or b of the pair are equally probable, they are 
strictly correlated with each other, since their polarisation 
planes always coincide during recording. Such states are usu-
ally prepared using parametric light scattering (see, for exam-
ple, [22 – 25] and references therein).

Let us direct each of the photons of the pair to the 
Wollaston prism, which divides the mutually orthogonal 
polarisations into two separate channels. In fact, it works as a 
beam splitter and for photons with absolutely random polari-
sation, as a 50 % beam splitter.

Now we proceed to the nondemolition measurement of 
the first photon. In both output channels, after the Wollaston 
prism, we set media with cubic nonlinearity in which self-
phase modulation (SPM) takes place. Since the operator 
( )n tt  in SPM is a time invariant, the number of photons in 

SPM is a nondemolition observable and can be measured in 
a nondemolition way. Let us send to the inputs of nonlinear 
media with cubic nonlinearity (for example, quartz fibres), 
in addition to the measured signals, also weak probe modes 
p1, p2 of equal average intensity, and by measuring the phase 
difference of which, we will try to determine whether the 
first photon a is in a superposition state before the ‘strong’ 
collapsing measurement of the second photon b, or in one of 
the channels after reduction as a result of such a measure-
ment. 

Let us use the single-photon Fock state | 1 ñp as a probe 
mode. After a 50 % beam splitter, a superposition is formed

1 11| | | | |( )
2
1 0 0p p p p

p 1 2 2y = + ,

where indices 1 and 2 denote the interferometer arms.
The quantum state of the system as a whole, after the pro-

duction of a pair of entangled photons and their separation 
by polarising prisms for observers A and B, is described by a 
pure state with a vector

1 1 1 1 00 0 0 0 12| / [(| | | | | | | | ) | |p p p pa a a a
x
b

y
b

pab 1 1 2 2 1 1 2 2
1y = +

 1 1 1 1 10 00 0 0(| | | | | | | | ) | | ]p p p pa a a a
x
b

y
b

1 1 2 2 1 1 2 2+ + . (4)

The impact of the nonlinearity c described by the operator 
U =t  ( /2)exp i n np pa ac- r t t  in the case of cross-interaction (see, for 
example, [18] and references therein) gives

' 1 1/ [(| | | | ( )exp0 0p pa a
pab 1 1 2 2

1
2 pa 1= /2c-iy| r

 1 1 1 1 1| | | | | | | | | |0 0 0 0 0p p p pa a
x
b

y
b a a

1 1 2 2 1 1 2 2+ + ^h

 1 1 1| | | | ( ))| |exp0 0 0p pa a
x
b

y
b

1 1 2 2 pa 2+ /i 2c- r
@ . (5)

In the Heisenberg representation, the action of the beam 
splitter located in front of the difference scheme detectors is 
described as p ( ) /a a 2p p

1 2!='at t t . The plus sign here corre-
sponds to detector D1, while minus, to D2. Then we obtain 
that the average number of photocounts of detector D1 is

cos cos
4
1 2

2 2
p pa a1 2c c

+ +
r rc m,

and that of D2 is

cos cos
4
1 2

2 2
p pa a1 2c c

- -
r rc m.

In the Schrödinger representation, the quantum state of 
the system at the output of the Mach – Zehnder interferome-
ter after the output beam splitter is described by the vector

1 1| | | | [ ( / ) ]exp i
2 2
1 0 0 2 1a a

x
b

y
b

p pab a1 2 1c= - +| yll r6"

 + 1 1 1| | | | [1 ( /2)] | |exp i0 0 0d da a
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b

y
b

pa1 2 1 22c+ - r @

 + 1 1| | | | [ ( / ) ]exp i0 0 2 1a a
x
b

y
b

pa1 2 1c- -r6

 + 11 0 1| | | | [ ( / )] | |exp i0 0 1 2 d da a
x
b

y
b

pa1 2 1 22c- - r @ ,. (6)

Here, 1 1| | , | |0 0d d d d
1 2 1 2  are the states at the input of the 

detectors located in front of the difference scheme at the 
bottom of Fig. 1, with 1| | 0d d

1 2  and 1| |0 d d
1 2  – D2 corre-

sponding to the triggering of detectors D1 and D2, resepec-
tively. It is seen that when one of them is triggered, i.e., when 
expression (6) is reduced to its two upper or lower rows, the 
superposition 1| (1/ ) (| |2 0b x

b
y
by =  is not reduced to one 

of the components of this state, which is expressed in the fact 
that, in general case, 1 1| | и | |0 0x

b
y
b

x
b

y
b,  1| | )0 x

b
y
b+  is pres-
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ent in each of the rows of (6). Thus, such a measurement is 
truly a nondemolition one. In this case, it is important that 
the numerical coefficients in (6) are not zero. It is best that 
they are equal in absolute value. In this case, the measure-
ment made by D1 or D2 detectors are completely free of 
information about which channel contains a photon of the 
entangled pair. Previous results with cosines also follow eas-
ily from expression (6).

What happens when observer B produces a collapsing 
measurement of the polarisation state? The '' pab|y  state 
reduces either to the first and third rows of (6), or to the 
second and fourth. In this case, the probabilities of trig-
gering the detectors are either / (1 / )cos 2pa 12 ! c1 r , or 
/ (1 /2)cos 2pa2 ! c1 r , where, as above, the plus sign corresponds 

to detector D1, while the minus sign corresponds to detector 
D2. Thus, a pure state transits into a mixed state with equal 
probabilities (1/2) of both outcomes. This means that the 
measurement results do not allow us to distinguish the pure 
state '' pab|y  from the mixed state with the probability
/ (1 / )cos 2pa 12 ! c1 r  or / (12 !1  /2)cos pa 2cr  after the ‘strong’ col-

lapsing measurement performed by observer B, since aver-
aging these probabilities, i.e. summing them with a weight of 
1/2, gives the same probability as in the absence of a collaps-
ing measurement by observer B.

Consider the last opportunity that may lead to the desired 
goal. We perform another subsequent measurement by 
observer A using additional detectors Xa, Ya located in the 
leftmost part of Fig. 1, the implementation of which will allow 
us to determine which of the detectors of observer B (Xb or 
Yb) triggered if it performed a collapsing measurement. 
Tentatively, it is necessary to set the nonlinear phase delays at 
which /2cos pa 1cr  and /2cos 2pacr  differ from each other, and 
herewith, the numerical coefficients in all four summands in 
(6) are equal in modulus. This is achieved with /2cos pa 1c =r  

/22+  and /2/2cos 2pa 2c = -r  (or vice versa). In this case, 
triggering detectors D1, D2 located in front of the difference 
scheme in the lower part of Fig. 1 is probabilistically related 
to triggering detectors Xa and Ya, if, of course, a collapsing 
measurement has been previously performed by observer B. 
And if not, these triggerings will be random. Thus, if those 
detectors are triggered that do not comply with the probabil-
ity law / (1 / )cos 2pa 12 ! c1 r , provided one of the additional 
detectors (Xa) of observer A is triggered, or do not comply 
with the probability law / (1 /2)cos 2pa2 ! c1 r , provided another 
detector (Ya) is triggered, then observer A may conclude that 
observer B has not performed a collapsing measurement. 
However, as calculations show, the probability laws are the 
same in both cases, although the presence and absence of col-
lapse, as shown above, requires different calculation algo-
rithms, which we have reproduced.

This example shows how a seemingly well-founded scheme 
of nondemolition measurement of the collapse of the state 
vector of a remote localised system fails due to the ‘no com-
munication theorem’. 

7. Conclusions

What conclusion can be drawn from the above argumenta-
tion? Does it prove the inconsistency of the informational 
interpretation of quantum mechanics? Not at all. But if it 
were possible to prove the absence of objective reality in rela-
tion to the wave function and state vector, then all other inter-
pretations would have to be archived. However, as follows 
from the above, this would be premature. Informative inter-

pretation remains only one of the contenders along with other 
consistent concepts [26 – 33].

But is Wigner friends’ paradox, in principle, so insoluble 
within the framework of the traditional quantum-mechani-
cal description? It seems to me that this paradox does not 
require any fundamentally new approach and a radical 
change in the concepts of the objectivity of quantum pro-
cesses and measurement results. In fact, Wigner’s friend 
produced a collapsing measurement and quite correctly 
described it using von Neumann’s projection postulate. 
Wigner himself considers the entire experimental setup of 
the friend, including his meter, as a single quantum system. 
In this case, there is no need to expose the measurement pro-
cess to the action of the projection postulate; we should sim-
ply consider it within the framework of the decoherence phe-
nomenon [34, 35]. Thus, the same measurement result is 
obtained in different ways, which exhausts the entire para-
doxicality of the situation.

Thus, remote nondemolition measurement of the collapse 
of the state vector of a quantum system of two entangled par-
ticles is impossible, and the objectivity of the measurement 
results has not been disproved, at least by known methods.

Acknowledgements. The work has been supported by the 
Russian Foundation for Basic Research (Grant No. 18-01-
00598A).

References
 1. Bohr N. Phys. Rev., 48, 696 (1935).
 2. Brukner C., Zeilinger A. Acta Phys. Slovaca, 49, 647 (1999).
 3. Brukner C., Zeilinger A. Phys. Rev. Lett., 83, 3354 (1999).
 4. Proietti M., Pickston A., Graffitti F., et al. Science Advances, 5 (9), 

eaaw9832 (2019); DOI: 10.1126/sciadv.aaw9832.
 5. Peres A., Termo D.R. Rev. Mod. Phys., 76, 93 (2004).
 6. Clauser J., Horne M., Shimony A., Holt R. Phys. Rev. Lett., 23, 

880 (1969).
 7. Aspect A., Grangier P., Roger G. Phys. Rev. Lett., 47, 460 (1981).
 8. Aspect A., Grangier P., Roger G. Phys. Rev. Lett., 49, 91 (1982).
 9. Aspect A., Dalibar J., Roger G. Phys. Rev. Lett., 49, 1804 (1982).
10. Aspect A., in Quantum [Un]speakables – From Bell to Quantum 

Information. Ed. by R.A.  Bertlmann, A.  Zeilinger (Springer, 2002). 
11. Bell J.S. Physics, 1, 195 (1964).
12. Belinsky A.V., Klyshko D.N. Usp. Fiz. Nauk, 163 (8), 1 (1993).
13. Belinsky A.V., Klyshko D.N. Phys. Lett. A, 176 (6), 415 (1993).
14. Greenberger D.M., Horn M.A., Shimony A., Zeilinger A. Am. J. 

Phys., 58, 1131 (1990).
15. Belinsky A.V. Usp. Fiz. Nauk, 164 (4) 435 (1994). 
16. Gisin N. Quantum Chance: Nonlocality, Teleportation and Other 

Quantum Marvels (Berlin: Springer, 2014). 
17. Salart D., Baas A., Branciard C., Gisin N., Zbinden H. Nature, 

454, 861 (2008); DOI:10.1038/nature07121.
18. Belinsky A.V., Zhukovskiy A.K. Vest. Mosk. Univer. Ser. 3. Fiz., 

Astronom., (5), 21 (2016). 
19. Belinsky A.V. Elektron. Tekh. Ser. 3. Mikroelektron., No. 3 (171), 

94 (2019).
20. Belinsky A.V. Vest. Mosk. Univer. Ser. 3. Fiz., Astronom., (6), 127 

(2017). 
21. Belinsky A.V. Vest. Mosk. Univer. Ser. 3. Fiz., Astronom., (4), 12 

(2018).
22. Klyshko D.N. Photons and Nonlinear Optics (Boca Raton: CRC 

Press, 1988).
23. Lariontsev E.G. Quantum Electron., 45, 121 (2015) [ Kvantovaya 

Elektron., 45, 121 (2015)].
24. Kovlakov E.V., Bobrov I.B., Straupe S.S., Kulik S.P. Phys. Rev. 

Lett., 118, 030503 (2017).
25. Belinsky A.V. Kvantovye izmereniya (Quantum Measurements) 

(M.: BINOM. Laboratoriya znanii, 2015). 



 A.V. Belinsky474

26. Frauchiger D., Renner R. Nature Commun., 9, 3711 (2018).
27. Lazarovici D., Hubert M. Sci. Rep., 9, 470 (2019).
28. Sudbery A. Found. Phys., 47, 658 (2017).
29. Pusey M.F. Nature Phys., 14, 973 (2018).
30. Andreev V.A. Teor. Mat. Fiz., 158 (2), 234 (2009).
31. Andreev V.A. Teor. Mat. Fiz., 152 (3), 488 (2007).
32. Andreev V.A., Man’ko V.I., Man’ko O.V., Shchukin E.V. Teor. 

Mat. Fiz., 146 (1), 172 (2006). 
33. Andreev V.A., Man’ko V.I. Teor. Mat. Fiz., 140 (2), 284 (2004). 
34. Mensky M.B. Usp. Fiz. Nauk, 168 (9), 1017 (1998). 
35. Zurek H.W. Los Alamos Science, (27), 1 (2002).


