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Abstract. We consider related problems in quantum communica-
tions: distribution of information and a secret key between a sender 
and several receivers. We study the gain of participants of commu-
nication protocols both from the use of collective measurements and 
from collective actions at the transmitter’s side related to the 
employment of entangled states and various actions on them.

Keywords: quantum information, classically quantum communica-
tion channel, communication protocol, superadditivity, entangled 
state, secret key.

1. Introduction

An important object of research in quantum information is 
an ensemble of two nonorthogonal states, for which the fol-
lowing properties of quantum mechanics are essential:

(i) cloning is impossible for such states [1], and when try-
ing to perform approximate cloning, the output states will dif-
fer from the initial ones [2];

(ii) broadcasting of such states is unavailable [3], that is, it is 
impossible to distribute the initial states to several participants 
(with admissible entanglement between them) so that the par-
tial state of each participant coincides with the initial one;

(iii) transmitting information with the help of such states 
is superadditive [4, 5], that is, collective measurements over 
the entire transmitted sequence give more information than 
individual measurements with subsequent classical processing 
of the results; and

(iv) distributing the secret key according to the B92 quan-
tum key distribution protocol is possible [6].

These phenomena arise from the impossibility of a reli-
able discrimination between nonorthogonal quantum states: 
If it were possible, then, in particular, one could prepare a 
copy of the initial state, and the eavesdropper in quantum 
cryptography could unnoticeably make such a copy for him-
self/herself. At the same time, quantum mechanics makes it 
possible to partially circumvent the prohibition of a reliable 

discrimination between nonorthogonal states, both with the 
help of error-free measurement, which is used in quantum 
cryptography and capable of giving complete information 
about the signal with some probability of success, and with 
the help of collective measurements, which is capable of giv-
ing more information compared with individual measure-
ments, which is the essence of the phenomenon of superaddi-
tivity.

A quantitative description of the relationship of these 
phenomena with the characteristics of an ensemble of quan-
tum states is an important scientific problem to which, as far 
as we know, a complete solution has not yet been obtained, 
despite a number of important results, such as the introduc-
tion of quantum discord as a measure of the ‘quantumness’ of 
correlations that are not always related with entanglement. 
The original definition of discord [7] is related to the phenom-
enon of quantum superadditivity, since it considers the differ-
ence between the maximum of achievable information and 
the maximum of information achievable in individual mea-
surements. Later, other approaches to the definition of dis-
cord were proposed [8], for example, related to various met-
rics on a set of quantum states, but the question of the possi-
bility of a quantitative description of many quantum phenomena 
through discord is still open.

The phenomenon of superadditivity is associated with the 
ability to apply collective measurements, while an ensemble 
of states is a separable product [9]. Of interest is the situation 
when entangled states are also applied to the channel input. 
An important result is that coding using entangled states in 
the general case can give an increase in mutual information 
[10], but it is achieved under rather difficult conditions.

In this paper, we consider simpler situations in which 
entangled states are used to communicate with several receiv-
ers, and entanglement makes it possible to overcome the limi-
tations caused by the independent work of the receivers, as 
well as by their possible mistrust of each other when distribut-
ing secret keys. For various situations we obtained estimates 
for the total public mutual information between a sender and 
several receivers, as well as for the total length of the secret 
key in the case of an ideal channel between the sender and 
receivers.

Section 2 introduces the basic concepts, as well as describes 
the phenomenon of superadditivity and considers the gain 
from the use of collective observables for one of the simple 
situations, that is, the use of the repetition code. In Section 3, 
we consider the problems of distributing public information 
and a secret key between several users, in which the use of the 
repetition code is related to the problem of approximate clon-
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ing of quantum states. Section 4 is devoted to the same prob-
lems, but using entangled states instead of separable ones, 
which corresponds to the approximate broadcasting, and 
Section 5 discusses the use of entanglement distillation to pro-
duce independent ensembles for each participant. The 
Conclusion contains the main results of the work.

2. Gain from using collective observables

Consider a simple binary classically quantum (c-q) channel, 
that is, a channel with quantum states { , }1; ;H Hy y0  at the out-
put, corresponding to the input classical signals 0 and 1, with 
the output states being nonorthogonal and noncoincident: 

(0,1)0 1 d;G Hy y k= . The sender selects the signals, and the 
receiver performs a measurement and concludes what state 
was sent. The observable P  in quantum mechanics is described 
by a set of nonnegative Hermitian operators summing up into 
the identity: { } : 0,M M M *

i i i i HP = =  .M Iii
=/  The prob-

ability of the outcome i when measuring the state r of the 
observable P  is defined as p (i ) = Tr( rMi).

In transmitting information, the key task is to maximise 
the mutual information between the sender and receiver 
under conditions of multiple transmission of states, where the 
use of codewords becomes important (see [9]). In binary cod-
ing, the classical codeword is w = (x1, . . . , xN), where (0,1)xid
is mapped to the product state .Sw x xN1

7 7f; ;H Hy y=  A code 
(W, M ) is a set of K classical codewords {w (i)} of length N and 
an observable M with K + 1 outcomes {0, 1, . . . , K }, where 
outcome 0 corresponds to avoidance of decision-making. The 
code rate R is defined as

log
R N

K
= .

The mutual information between the input and output 
when using codewords of length N is set by

({ }, ) ( )I p M p p k iN i i
i

N
k

;=t t/ /

 [ ( ) ( ) ]log logp k i p k i pN N i
i

; ;# - l l
l

t/ , (1)

where w( ) Trp k i S MN k( )i; =  is the probability of receiving the 
kth outcome when sending the ith codeword, and pit  is the 
probability of sending the ith codeword. We can determine 
the capacity when use is made of codewords of length N as a 
maximum of mutual information upon employment of the 
best code and measurement:

({ }, ).maxC I p M
{ },

N
p M

N i
i

= t
t

 (2)

If, for the classical case, CN = NC1 is always fulfilled, then 
for the quantum case, the phenomenon of superadditivity is 
possible: CN > NC1. This phenomenon consists in the fact 
that the capacity of c-q channels can increase when using col-
lective measurements over the entire sequence, which is not 
achievable in the classical case. An important role is played by 
the quantity C1, that is, the maximum mutual information 
achievable in individual measurements and called one-shot 
capacity.

A simple example of a situation where the above c-q chan-
nel demonstrates superadditivity is presented in [11]: a spe-

cific code was constructed with K = 4 codewords of length 
N = 3, for which I3 > 3C1, that is, mutual information in the 
collective measurement of such codewords exceeds by more 
than three times the one-shot capacity.

The quantity C = lim N ® ¥ N –1CN is called the capacity of 
a classical quantum communication channel. The quantum 
coding theorem [4, 5] states that this quantity is equal to the 
maximum of the Holevo value (or c value), which in the gen-
eral case of an ensemble ({ ri},{ pi}), where each state ri has a 
probability pi, takes the form

({ },{ }) ( ) .p S p p Si i i i
i

i i
i

c r r r= -d n/ /  (3)

Here S( r) is the von Neumann entropy of a quantum 
state.

For two pure equiprobable states { , },1; ;H Hy y0  the Holevo 
value is written as

,,, 2
1
2
1

1; ;H Hc y y0a k# %- /

 1S h2
1

20 0 1 1 2; ; ; ;HG HGy y y y k= + =
-_a aik k, (4)

where h2(x) = – (1 – x)log( 1– x) – xlogx is the Shannon binary 
entropy.

For superadditivity, both collective measurements and 
codewords are important, which do not fall into the use of 
codes with a shorter codeword length [12]. The task of con-
structing ‘good’ codes in the classical coding theory is very 
nontrivial, an so it makes sense to separately consider the 
phenomenon of increasing mutual information when using 
the collective observable. We will do this by the example of a 
simple code, that is, a repetition code. This code contains two 
codewords

{ , } { , }W w w N N
1 1; ; ; ;H H H Hy y= = 7 7

0 0 ; (5)

for these words, w w N
1;G H k=0 . The states w; H0  and w1; H  are still 

nonorthogonal quantum states, and it is easy to find the 
observable of optimal distinction between them.

We will use the observable obtained from the square root 
of the Gram operator [13]. The Gram operator of an ensem-
ble of equiprobable states { , }w w1; ;H H0

,G w w w w2
1

0 0 1 1; ; ; ;HG HG= +_ i

and its normalised eigenvectors have the form

1
,

2
1

N
N N

0 0 1; ; ;H H Hl
k

y y=
+

+7 7_ i

1
,

2
1

N
N N

1 0 1; ; ;H H Hl
k

y y=
-

-7 7_ i

with corresponding eigenvalues 2
1 (1 ± Nk ). Therefore,

,G
2 1
1

2 1
1/

N N
1 2

0 0 1 1; ; ; ;HG HG
k

l l
k

l l=
+

+
-

-

and the measuring basis is given by vectors
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,e G w
2
1

2
1/

0
1 2

0 0 1; ; ; ;H H H Hl l= = +- _ i

,e G w
2
1

2
1/

1
1 2

1 0 1; ; ; ;H H H Hl l= = -- _ i  

(6)

where the factor 1/ 2  is the square root of the state proba-
bility.

It is easy to see that with such coding, the error probabil-
ity is 

Q e 2
1

2
1

2
1N

N N

0 1
2

2

; ; ; ;G Hy k k= =
+

-
-7 d n

 .2
1 1 1 N2k= - -_ i  (7)

For mutual information in collective measurements, we have

( , ) 1 ( )I A B h Q,colN 2= -

 1 ( )h 2
1 1 1 N

2
2k= - - -a k. (8)

Using similar actions, we can calculate the probability of 
error q with an individual decoding of the states { , }1; ;H Hy y0  in 
each position:

1q 2
1 1 2k= - -_ i;

the calculation of mutual information, taking into account 
the uneven probability distribution of the output signals, is 
less trivial, that is, for N = 2, mutual information is 
expressed as

( , ) ( ) ( ) 1 (2 (1 ))I A B H Y H Y X h q q,ind2 2;= - = + -

 2 ( ) 1 2
1

.h q h h2 2
1

2 2

2

2

2k k
- = + -

- -d dn n  (9)

One can easily see from (8) and (9) that I2, col (A, B) > 
I2, ind (A, B), that is, when use is made of the same codewords, 
collective measurements give a gain in mutual information, 
while a repetition code in this case does not make it possi-
ble to achieve general superadditivity [I2, col (A, B) > 2C1]; 
more complex codes are needed [11, 12]. In the following 
sections, we will consider the use of repetition code for the 
transmission of information to several users and for dis-
tributing a secret key and will show that its use may be 
more justified.

Of interest is the entanglement measure of the measure-
ment vectors (6), since the presence of the vectors that do not 
fall into individual measurements makes it possible to obtain 
more information during the measurement. In a many-parti-
cle system, the definition of the entanglement measure is 
ambiguous [14]; therefore, we consider the case N = 2. The 
entanglement measure is the same for both states e0; H  and 

,e1; H  and therefore we consider one of them:

1 1
e 2

1 1 1
0 2 2 0; ; ;H H H

k k
y y=

+
+

- 0d n<

 
1 1

1 1
2 2 1 1; ;H H

k k
y y+

+
-

-
d n F ;

the partial state of the first subsystem has the form

TrA e e 2
1
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; ;HG
k

k
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k
k

k

= =

+
+

+

+

-
+

J

L

K
K
K
KK

N

P

O
O
O
OO
.

The entanglement measure of this state is determined by 
the von Neumann entropy of the state of the subsystem and is 
equal to

h 2
1 1

1
1 2

2 2

2

k
k

-
+

+f p> H . (10)

This measure is the greater, the greater the k , that is, the 
less distinguishable the states { , }.1; ;H Hy y0  From the point of 
view of expressions for mutual information (8) and (9), the 
entanglement measure can have the following meaning: the 
terms h2(Q) and 2h2(q) in expressions for collective and indi-
vidual mutual information mean a measure of entanglement 
of the system and the environment after taking the measure-
ment, and this measure turns out to be smaller in the case of 
collective measurements. The calculations show that the 
entanglement measure of vector measurement is a mono-
tonic function of the difference 2h2(q) – h2(Q), and vice 
versa: the indicated difference is a monotonic function of 
entanglement. This speaks in favour of the fact that the 
entanglement of the operators of the observable helps reduce 
the error, that is, the entanglement of the state and the envi-
ronment after the measurement. This phenomenon is of 
interest for further studies.

3. Cloning problem and distribution 
of information between multiple receivers

The repetition code is also notable for the fact that when it is 
used, the sender operates with two quantum states N; Hy 7

0  and 
N

1; Hy 7  (hereinafter it is assumed that N ³ 2), and they can be 
considered to be an action of transformation 

N
0 0"; ;H HyF 7 ,

N
1 1"; ;H HyF 7  

(11)

to the original vectors { , }1; ;H HF F0  in a two-dimensional space, 
where 1;G H aF F =0 . Operation (11) is an operation of approx-
imate cloning of states { , }.1; ;H HF F0  As is known, nonorthogo-
nal quantum states cannot be cloned [1], but approximate 
cloning is possible [2]. In this case, an important limitation is 
the unitarity condition for operation (11), which implies the 
relation between the scalar products, a = .Nk

We can describe at the application of the repetition code 
as follows: the sender has the states { , },1; ;H HF F0  but decides to 
send them not in the original form. By performing approxi-
mate cloning of the states, which divides them into several 
parts, he sends these parts one by one. The collective measure-
ment by the receiver can be interpreted as the fulfilment of the 
inverse transformation, in which the receiver collects the par-
tial states together. At the same time, in individual measure-
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ments, the receiver has many ‘extra’ outcomes that reduce his 
information.

This approach allows us to consider the task of sending 
states { , }1; ;H HF F0  to several receivers; in this case, each 
receiver can perform his own measurement, including collec-
tive one, but the receivers act independently of each other, 
and the reverse operation of ‘assembling’ the states 
{ , }1; ;H HF F0  is not available to them. It is easy to determine 
the Holevo value of the states of each receiver in such a situ-
ation:

, h 2
1

part 1 2; ;H Hc c y y k= =
-

0_ ai k# -  

 .h 2
1 N

2

a
=

-d n  (12)

It can be seen that for a fixed a, with increasing number 
N of receivers the maximum information of each of them 
tends to zero, while the general transmitted information 
specified by the sum of the pieces of information of the 
receivers is, for a Î     ÎÎ(0, 1) and sufficiently large N, a super-
additive quantity:

c , .N part 12 ; ;H Hc y y0_ i# -  (13)

Receivers, however, cannot unite after the measurement 
and take joint actions (for example, processing the results of 
their measurements) to obtain information that exceeds the 
initial value of the Holevo states { , },1; ;H HF F0  because their 
measurement results will be duplicated.

The operation of approximate cloning of states for send-
ing to multiple users is also of interest from the point of view 
of cryptography. In fact, we can set a task of creating a secret 
key between the sender and several receivers, when the sender 
simultaneously sends nonorthogonal states to several receiv-
ers, and the result is that each participant receives his key. In 
this case, a similarity of the B92 protocol [6] arises between 
the sender and each of the receivers, in which each receiver 
measures the state using an error-free measurement defined 
by the observable:

1 , 1 ,M
I

M
I

0
1 1

1
0 0; ; ; ;HG HG

k
y y

k
y y

= +
-

= +
-

 .M I M M? 0 1= - -  (14)

Such a measurement either gives complete information 
about the state with probability pconc = 1 – k  (the outcome 
0 or 1 is called conclusive), or with probability p? = k  (an 
inconclusive outcome), which indicates that it was not pos-
sible to extract the information.

Further actions of the participants are as follows: each 
receiver informs the sender of the position in which he 
received a conclusive result. If in this position only one 
receiver was able to receive information, he uses this value as 
a bit of a ‘raw’ key; in the case of conclusive results for sev-
eral receivers, the sender randomly decides which of the 
receivers uses this bit value, and the rest do not use it and 
delete it out from their memory. This scheme of actions 
requires trust between the receivers that they all behave 
according to the protocol and, in particular, really ‘forget’ 
the values of the common bits.

With full trust between the participants and in the 
absence of errors and attenuation in the channel, all users 
receive independent keys. The length of the secret key of 
each participant is determined by the probability of obtain-
ing complete information and the probability of collision 
with other participants when they also received conclusive 
results. The probability of receiving a key in this position by 
one of the participants in the case of complete trust is equal 
to the probability that at least one of the participants will 
receive a conclusive outcome:

l key, all = 1 1 1p?
N Nk a- = - = - . (15)

This probability is equal to the probability of obtaining a 
conclusive result when sending the states { , }1; ;H HF F0  to one 
sender. It follows that with full trust and an ideal channel, the 
sum of the lengths of the secret keys of the participants is 
exactly equal to the length of the key of one participant, as if 
he had received all the states.

At the same time, if one of the recipients suspects that 
part of the other receivers does not follow the protocol, then 
in the absence of an error, he should assume that the eaves-
dropper has partial information about the key, specified by 
the Holevo value of states of unscrupulous participants (it is 
more profitable for them to unite together and use common 
measurements over their subsystems). Then the total length 
of the key transmitted to all trusted users in the presence of 
F untrusted users and with an ideal channel satisfies the 
inequality

l key, trusted (1 ) {1 [ (1 )]}.p p h 2
1

? ?
N F F F

2H k- - --  (16)

This probability includes the probability of obtaining a 
conclusive outcome for at least one of the N – F  trusted users, 
the absence of a conclusive outcome for F untrusted users, 
and the exclusion of information that untrusted users could 
receive with the best measurement. Expression (16) gives a 
conservative estimate: If part of the users decided to perform 
the optimal collective measurement to obtain the Holevo 
value equal to 1 – h2 [ 2

1 (1– Fk )], then they already cannot per-
form an error-free measurement of their states and either can-
not signal the sender about a conclusive outcome in the 
expected number of positions, or they will reveal themselves 
by the erroneous value of these bits at the stage of disclosing 
part of the sequence. Note that in the presence of an error 
between some users, estimate (16) is no longer correct, since 
introducing an error gives unscrupulous participants new 
opportunities: In particular, they can perform measurements 
with error-free state discrimination and, conversely, signal a 
conclusive result, when the result was inconclusive to exclude 
such positions from the key. Also, the probability of attenua-
tion in the channel and how it can be used by the interceptor 
[15] were not taken into account, since there is no attenuation 
for an ideal channel. A detailed analysis of such a system, tak-
ing into account the possibility of introducing errors and 
blocking some of the states, may be the topic of future 
research; in this paper, of essence is the general principle 
which states: when use is made of such a scheme, a large num-
ber of trusted users can increase the length of the key received 
by each of them.

Note also that in the scheme in question, the sender does 
not know which of the receivers acts unscrupulously, and is 
not able to not send states to these participants. At the same 
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time, for each receiver, the set of untrusted participants can be 
different, including generally speaking their number, and the 
key length of each user depends only on the number of such 
participants.

We should also mention similar problems associated with 
the cryptographic protocols of several participants: distribu-
tion of a shared secret key between a group of remote users 
[16, 17], as well as sharing a secret message between several 
participants, in which they can read the message together, but 
any subset of them will have no access to a secret [18].

4. Problem of broadcasting quantum states 
and using entangled states in a channel

If the goal is to distribute the maximum public information 
among unrelated users in the presence of the initial states 
{ , }1; ;H HF F0  at the sender’s disposal, then we can see that the 
approximate cloning transformation (11) is not optimal. 
Consider a broadcasting operation in which the output states 
can be entangled:

,p p1 N N
0 0 0"; ; ;H H Hj jF - +7 7=

,p p1 N N
1 1 1"; ; ;H H Hj jF - +7 7=  

(17)

where 0 £ p < 1, and from considerations of unitarity it 
follows

(1 )p pN N
1 0 1; ;G H G Ha j j j j= - + = =

0

 ( ),p p1 N N
0 1 0 1; ;G H G Hj j j j+ - += =  (18)

which gives other scalar relations for vectors i; Hj  with respect 
to the vectors i; Hy  corresponding to the approximate cloning 
operation (11).

The quantum broadcasting problem generalizes the clon-
ing problem, since the latter does not allow the entanglement 
of output states. For two noncommuting density matrices, 
broadcasting is also prohibited [3], that is, the obtained par-
tial states

(1 ) ,p p0 0 0 0 0; ; ; ;HG HGr j j j j= - + = =

(1 )p p1 1 1 1 1; ; ; ;HG HGr j j j j= - + = =  
(19)

of each participant will necessarily differ from the initial 
states { , }.0 1 1; ; ; ;HG HGF F F F0

For partial states (19), it is important that their Holevo 
value no longer tends to zero with an increase in the number 
of receivers. In fact, there is an individual measurement of 
states { , },1; ;H HF F0  which distinguishes them with the proba-
bility of error

(1 ),Q 2
1 1 2a= - -

coinciding with (7). After such a measurement by copying 
the classical mutually orthogonal states { , },e e1; ;H H0  corre-
sponding to the measurement results 0 and 1, we can obtain 
the states

,Q e Q e1 N N
0 0 1"; ; ;H H HF - +7 7

Q e Q e1 N N
1 1 0"; ; ;H H HF - +7 7  

(20)

for arbitrary N.
Thus, the Holevo value of each participant after transfor-

mation (17) can be made no less than the amount of mutual 
information in an individual measurement of the states 
{ , }:1; ;H HF F0

({ , }) 1 ( ).h Q0 1 2Hc r r -

It makes sense to consider the problem of maximising 
information ({ , }),0 1c r r  which can be distributed between 
the sender and each of the independent receivers, under 
conditions of unitarity of (18). The prohibition of full 
broadcasting indicates that for a Î     ÎÎ(0, 1) it is less than the 
initial c value:

({ , }) ({ , }).0 1 11 ; ;H Hc r r c F F0

This phenomenon can be called prohibition of information 
broadcasting: it is impossible to use the available quantum 
states to transmit information to an arbitrary number of users 
without losing information. This prohibition can be consid-
ered as a dual phenomenon to the superadditivity of the clas-
sical capacity of the c-q channel. If superadditivity is associ-
ated with the ability to make collective measurements over 
the entire transmitted sequence, the prohibition of informa-
tion broadcasting is associated with the inability of several 
users to perform a joint collective measurement, while each of 
them performs collective measurements over his sequence of 
states obtained in several communication sessions, which 
allows the c value of partial states to be employed to evaluate 
the participant information.

With approximate broadcasting, the problem of distrib-
uting public information is well solved; however, such a 
transformation, as is easy to see, is poorly suited for distrib-
uting keys, because receivers due to their entanglement will 
receive a matching key, and the distribution of independent 
keys is extremely inefficient. This can be interpreted as fol-
lows: the low quantumness of ensembles of states that each 
participant receives makes the distribution of keys poorly 
implemented.

Consider also the situation where the sender performed 
transformation (17), but after that sent all the states to one 
receiver. Then, due to the unitarity relation (18), the mutual 
information between the sender and the receiver during col-
lective measurements of the latter over all N states is 
unchanged and is equal to the one-shot capacity for the states 
{ , }:1; ;H HF F0

( , ) ({ , }) 1 ( )I A B C h Q1col 1 2; ;H HF F= = -0

 1 ,h 2
1 1

2

2a
= -

- -d n

which coincides with (8). In individual measurements, the 
mutual information is higher than cloning allows [see (9)], 
and is defined as

( , ) ({ , }).I A B Cind 1 0 1r r=
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If we set the maximisation problem Iind (A, B), then it 
is easy to see that the maximum is achieved by measuring 
the states { , }1; ;H HF F0  and preparing several copies (20) 
and does not differ from the capacity Iind (A, B) in the col-
lective measurement of the receiver over N messages. Thus, 
there is no gain in using collective measurements in this 
case.

As a result, the entanglement between the states of dif-
ferent participants acts both constructively (for the task 
of information broadcasting and maximisation of the 
receiver information in individual measurements) and 
destructively (for the task of distributing independent 
keys among several users).

5. Entanglement dilution 
at the transmitter’s side

The two previous sections considered the sender’s actions, in 
which he initially has a set of nonorthogonal states { , }1; ;H HF F0  
and performs actions with them, resulting in states in a new 
space, generally speaking, of a different dimension. This situ-
ation can be generalised to the case when the sender has an 
entangled state of the system AB

0
2
1 10AB A B A B1; ; ; ; ;H H H H HY F F= +_ i (21)

and performs actions over this state. To obtain the states 
{ , }1; ;H HF F0  in the subsystem B, it suffices to measure the 
subsystem A in the basis { , }0 1; ;H H , but this is not the only 
possible action.

For state (21), we can write the Schmidt decomposition

0 02
1

AB A B; ; ;H H HaY =
+ r r

 1 1 ,2
1

A B; ;H Ha+
- r r  (22)

where, as before, a ={ , },1; ;H HF F0  and the Schmidt basis is 
given by vectors
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A measure of entanglement of the two-particle state 
(21) is the entropy of the squares of Schmidt coefficients

( ) ,E H 2
1

2
1

AB; H a aY =
+ -a k% /  

 h 2
1

2
a m=
-

= aa k . (23)

Important operations in quantum information are con-
centration (the terms distillation and purification are also 
used) and entanglement dilution [14, 19]. Concentration of 
entanglement allows a smaller number of fully entangled 
states to be obtained from a large number of partially entan-
gled states, while entanglement dilution is the inverse opera-
tion, which allows a larger number of partially entangled 
states to be obtained from a small number of fully entangled 
states.

The entanglement measure of state (21) is equal to ma, and 
this means that one can obtain from it N states ,AB; HY  with 
the entanglement measure of each being equal to /Nma :

.AB AB
N

"; ;H HY Y 7l  (24)

Consider the situation when the sender performs such 
dilution and then measures the subsystem A of each of the 
states AB; HY l  in the basis { 0 , 1 },; ;H H  after which N independent 
ensembles of states { , },0 1; ;H Hw w  are formed in the system B for 
which 0 1;G Hw w  is determined from the equation

1
.h Nh2

1
22 2
0 1;G Ha w w-

=
-a dk n

Note again that the scalar relations between i; Hw  differ 
from the relations between i; Hy  and i; Hj  introduced for 
approximate cloning and broadcasting operations, respec-
tively. Also note that states i; Hw  are different from codewords 
wi; H (5) considered in Section 2.

From the point of view of distributing public informa-
tion, this approach is worse than those described above, 
since the total Holevo value of the ensembles { , }0 1; ;H Hw w  is 
equal to the value of the Holevo values of the states  
{ , }1; ;H HF F0  and it turns out to be less than the same sum for 
other cases.

At the same time, this situation is well suited for distribut-
ing keys among several recipients in the absence of trust 
between them, since they receive independent keys about 
which other participants do not have information, regardless 
of their good faith. If there is no error, the length of the secret 
key of each participant is expressed as

l key, part = 1 .0 1;G Hw w-  (25)

The sum of keys of participants will be slightly lower than 
the sum of keys with approximate cloning of states and the 
presence of a sufficient number of trusted participants, but 
higher than with a small number of untrusted users.

Figure 1 shows the key generation rate during the entan-
glement dilution and during the operation of approximate 
cloning in the case of a different number of trusted users. It 
can be seen that with a large number of receivers, the entan-
glement dilution ensures a key generation rate comparable 
to that for approximate cloning and half of trusted users.

Of interest is the situation when all N states are sent to 
one receiver. If the receiver is not able to perform collective 
measurements over the entire sequence that would give the 
Holevo value of the states { , },1; ;H HF F0 , then it does not make 
sense for him to take collective measurements over words of 
length N, because, due to independence, the general ensem-
ble quantum states breaks up into N ensembles of the states 
{ , }0 1; ;H Hw w  related to the subsystems, and, as noted above, 
the collective measurement does not give a gain in compari-
son with the individual measurement of each state [12]. Note 
that with increasing N, the difference between the informa-
tion available in collective and individual measurements 
increases, while measurements over all N states do not give a 
gain compared to individual measurements. For future stud-
ies, it is of interest to study relation of this fall in informa-
tion with the characteristics of the observable over the states 

AB
N; HY 7l  after entanglement dilution, since, as was noted in 

[20], the coherence (which can serve as a measure of quan-
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tumness) of the ensemble obtained by measuring part of the 
entangled state depends on the degree of uncertainty used in 
the observable.

6. Conclusions

We have discussed the situations of public data transmission 
and secret key distribution with a fixed resource between 
remote users. As a resource we use a measure of the entan-
glement of the sender’s state, from which one can obtain an 
ensemble of states or several independent ensembles. Three 
main directions are considered when working with the 
obtained ensemble: the preparation of several pure states 
(approximate cloning), the preparation of mixed states 
(broadcasting) and the entanglement dilution with the prep-
aration of independent ensembles. For each situation, we 
have studied the problem of transmitting public information 
to one or several users and the problem of distributing the 
secret key.

When all states are transmitted to one participant and it is 
possible to perform collective measurements, the method of 
data transmission does not play any role, since the maximum 
mutual information is given by the Holevo value of the initial 
states { , }1; ;H HF F0  or, equivalently, by the measure of state 
entanglement .AB; HY . However, if it is possible to perform 
measurements over N states for the three situations consid-
ered, the results are different. With the approximate cloning 
of states, a gain arises from collective measurements, which is 
equivalent to a gain in applying a repetition code in a c-q 
channel. In the case of approximate broadcasting, the gain 
from measurements over N states is small, and with sufficient 
entanglement between the states, it turns out to be zero. When 
an entangled state is diluted with its subsequent measure-
ment, the gain from measuring all N states is absent.

If we set the task of transmitting public information to 
several participants making independent measurements, then 
approximate broadcasting copes with this task best; neverthe-
less, finding the optimal transformation (information broad-
casting) over an arbitrary initial ensemble is a nontrivial 
problem, which lacks a general solution. If participants are 
limited to individual measurements, then this problem is 
solved by optimally measuring the initial state and preparing 
classical states based on the measurement results.

When distributing independent keys between N receiv-
ers, the approximate broadcasting operation is poorly suited 
due to signal duplication caused by state entanglement. It is 
logical to make use of entanglement dilution as the main 
transformation, which will allow an independent key to be 
generated for each participant. However, an interesting situ-
ation arises in the case of approximate cloning: the key dis-
tribution rate with each participant depends on the trust 
between the participants. The more the trusted users with 
whom the participant is confident that they are behaving 
according to the protocol, the higher the key distribution 
rate for this participant.

In our opinion, it makes sense to take these situations 
into account in the quantitative description of the phenom-
ena of quantum physics and the work of quantum commu-
nication protocols. It is also worth paying attention to a 
number of related problems: the study of the influence of 
entanglement on the gain from collective measurements, 
finding the optimal transformation of information broad-
casting to transmit the maximum of public information to 
several recipients with given initial quantum states and a 
strict estimate of the length of the secret key when it is dis-
tributed between the sender and multiple receivers, depend-
ing on the number of trusted receivers, including those with 
an imperfect channel and errors.
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