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Abstract.  We discuss the operational meaning of a commonly 
accepted security parameter in quantum key distribution, which is 
based on the trace distance. We separately consider the cases of 
using a key in a one-time pad and in a computationally secure 
cipher. Some practical aspects of using the security parameter are 
also elucidated, which are usually not paid enough attention in the-
oretical studies and which therefore may cause difficulties for 
experimentalists and engineers. It is shown that a one-time pad 
requires not only a higher key generation rate than computationally 
secure ciphers, but also a significantly stronger condition on the key 
security parameter.

Keywords: quantum cryptography, quantum key distributions, 
security parameter, trace distance.

1. Introduction 

Quantum key distribution (QKD) protocols allow two parties 
(we will call them legitimate) to generate a common private 
binary string (key) [1]. Unlike key distribution protocols 
based on public key cryptography, quantum cryptography 
provides theoretical security, i.e., security against even unlim-
ited computing power of the adversary. If the security of the 
QKD protocol is proved mathematically, then the only way 
to break it is to attack the hardware. QKD has one more 
property that is distinctive: the key generated with its help 
cannot be broken after the protocol is completed. In contrast, 
ciphertexts generated using computationally secure ciphers 
(i.e., based on the assumption of limited computing capabili-
ties of the adversary) can be decrypted later with the advent of 
new cryptanalysis algorithms or due to progress in computer 
technology. If, for example, a new type of attack on equip-
ment is detected in the QKD systems, this does not help to 
find out the keys distributed up to this point. 

The theoretical degree of security of the key generated in 
the QKD protocols is expressed in terms of the trace dis-
tance between the real classical-quantum state (in which the 

classical subsystem corresponds to the key, and the quan-
tum one belongs to the adversary) and the corresponding 
ideal state, characterised by uniform distribution of the key 
and the absence of correlation between the key and the 
adversary’s quantum subsystem. If the trace distance does 
not exceed e (usually, e is very small, e.g., about 10–10 or 
10–11 [2 – 4]), then the key is called e-secure. A key corre-
sponding to an ideal classical-quantum state is called ideal, 
or perfectly secure. 

The reasons why this particular security measure is most 
suitable are described, e.g., in Ref. [5], which is a review 
summarising the advent and development of the theory of 
universally composable security [6 – 11] and its adaptation to 
quantum cryptography [12 – 17]. This measure of security is 
universally composable, i.e., applicable in any context. 
Imperfect security of the key increases the probability of 
breaking a cryptographic protocol in which the key is used 
(application protocol), e.g., an encryption system. However, 
the application protocol itself may be also imperfect. Other 
measures of key security (for example, based on the Shannon 
amount of information) can lead to a situation when the 
combination of two small imperfections (key and applica-
tion) can lead to a full compromise of the application proto-
col [18]. The use of a universally composable measure of 
security ensures that if the key is close to ideal, then what-
ever the application protocol, the degree of imperfection 
(also expressed in terms of the distance to the ideal imple-
mentation) increases as a result of using an imperfect key 
only by a small amount.

However, despite the theoretical attractiveness of the con-
cept of universally composable security, the distance to the 
ideal state is a very unusual measure of security from a practi-
cal point of view. Therefore, it is advisable to give this security 
parameter generally accepted in the QKD some more practi-
cal operational meaning. In Ref. [5], this parameter is consid-
ered as the probability of failure in the quantum cryptogra-
phy protocol, but the authors themselves acknowledge the 
conventionality of such interpretation. This interpretation 
was criticised by other authors [19 – 22]. Although this secu-
rity criterion is well studied and a large number of its proper-
ties help understand its intuitive and operational meaning, in 
our opinion, these issues deserve further discussion, which is 
a subject of the present paper.

We believe that in order to give the security parameter a 
more practical operational meaning, it is useful to consider 
separately the combination of QKD with a one-time pad, i.e., 
with a theoretically secure cipher, and with computationally 
secure symmetric ciphers (Magma, Kuznyechik, AES, etc.). 
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In the first case, we base on the reduction of a set of possible 
plaintexts that occurs when replacing a completely secure key 
with an e-secure one. In the second case, we base on the inter-
pretation given in the footnote to the polemic note [23], in 
which the security parameter is related to an increase in the 
probability of breaking a cipher (or any other cryptographic 
application that uses a key) due to the key imperfection. In 
both cases, e can be associated with the probability of break-
ing the QKD protocol, which confirms the existing intuitive 
meaning of this parameter. 

In [24], the parameter e is associated with the difficulty of 
enumeration for breaking a computationally secure symmet-
ric cipher. In his fundamental work [25], Shannon introduced 
the concept of work characteristic for a computationally 
secure cipher as the average amount of computation required 
to find out the key. Assuming that there is no algorithm more 
efficient for breaking the used cipher than key enumeration 
(brute force attack), in Ref. [24] it is estimated how the aver-
age amount of computation on enumerating keys is reduced 
due to the use of an e-secure key instead of a perfectly secure 
one. In this paper, we generalise this result to the case of the 
existence of more efficient methods of cryptanalysis of a 
cipher than simple enumeration of keys. 

We will also consider the issue of an e-secure key security 
in the case, when part of the key becomes known to the adver-
sary. For example, this may occur in partially known plain-
text attacks. In this situation the use of trace distance has 
been criticised by some authors [19 – 22]. We will elucidate 
what is exactly ensured and what is not ensured by e-security 
in the sense of trace distance. 

Section 3 is devoted to all these problems, i.e., the opera-
tional meaning of the security parameter. In Section 4, we 
consider some practical issues that directly follow from the 
properties of the trace distance, but which, in our opinion, are 
not paid enough attention in theoretical publications and 
therefore can cause difficulties for experimentalists and engi-
neers. First, factors to be taken into account in the security 
parameter are considered. Then we discuss the generalisation 
of the security parameter for implementations of the QKD 
protocols, in which the key length is not specified in advance, 
but is calculated in the course of the protocol execution. Next, 
we present the rules for calculating the key security parame-
ters obtained by splitting the key generated in the QKD ses-
sion into parts, and vice versa, obtained by merging the keys 
obtained in different QKD sessions.

In the end of Section 4, examples of calculating the ‘rapid-
ity’ of breaking the QKD protocol with realistic parameters 
are given. These examples also allow better navigation in 
choosing the value of e for a particular practical situation. 
Moreover, it follows from them that a one-time pad requires 
not only a higher key generation rate than computationally 
secure ciphers, but also a significantly lower value of e. 

We begin with Section 2, which gives a definition of the 
security parameter in terms of a trace distance. 

2. Definition of the security parameter

Recall the main stages of any QKD protocol [1, 3, 26]. 
1. Transmission of quantum states between legitimate 

parties and their measurement. As a result, the legitimate par-
ties form binary strings called raw keys.

2. Announcement of information provided by the proto-
col (position numbers at which the signal was registered, 
bases, etc.). Elimination of positions stipulated by the proto-

col (in which registration did not occur, bases did not match, 
etc.). The binary strings after the end of this stage are the 
sifted keys. 

3. Error correction. Binary strings after the end of this 
stage are corrected keys. Often this stage ends with verifica-
tion that the corrected keys of the legitimate parties are likely 
to match. For verification, special hash function families are 
used. From this moment, we can talk about one common key 
of legitimate parties (with a low probability of noncoinci-
dence). 

4. Estimation of the degree of adversary intervention and 
the decision to generate a key or abandon it (protocol abor-
tion) based on the observed data.

5. Privacy amplification. At this stage, a hash function is 
applied to the corrected key, which converts it into a key of 
shorter length, about which the adversary has only negligible 
information with high probability. This is expressed precisely 
through the concept of e-security, the definition of which is 
given below. The result of this stage and the entire protocol is 
the final or secret key. 

6. Authentication of all communication through the 
classical channel. To simplify, we can say that this is a pro-
tection against the man-in-the-middle attack, when the 
adversary communicates through the classical channel and 
distributes a key to each of the legitimate parties on behalf 
of the other legitimate party, i.e., this is protection against 
adversary intervention in the classical communication 
channel. In quantum cryptography, theoretically secure 
message authentication codes are usually used, i.e., the 
codes whose security does not depend on the computing 
capabilities of the adversary. They are based on the proper-
ties of special families of hash functions and imply that 
before the start of the session, the legitimate parties have a 
common short secret key (e.g., from the previous session). If 
intervention is detected in classical communication channel, 
the protocol is considered aborted and the generated key is 
destroyed. 

In various implementations of the QKD protocols, the 
order of the steps described may vary, but this is not essen-
tial. To avoid confusion, we note that the protocol uses 
three families of hash functions: for verification, for privacy 
amplification, and for authentication. These stages differ in 
their goals; therefore, families of hash functions are gener-
ally different.

Consider the stage of making a decision about generating 
a key. There are two options for its implementation. In the 
first option, a decision is made about the possibility of gener-
ating a key of a predetermined length. If this is impossible, the 
protocol is aborted. In the second option, the maximum pos-
sible key length is calculated from the observed data. Failure 
to generate a key in this case corresponds to a key of zero 
length. We will consider this option in Section 4. As will be 
shown below, in a certain sense it reduces to the case of a fixed 
key length. Prior to this, we will consider the first option, i.e., 
generating a key of a predetermined length L. 

In this case, as a result of executing the QKD protocol and 
the adversary’s attack, a state (positive kernel operator with a 
unit trace) of the form 

| |pKE K E7= =r r= =
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arises (see [5]), where 0 1pG G=  (probability of protocol 
abortion); L{ }k 0 1! ,

/  pk = 1 (total probability of any possible 
key value); K is the register used to record k or the sign ^, 
which means aborting the protocol and refusing to generate 
the key (the Hilbert space of the register );C2 1L+  and rE

k are 
positive operators in the Hilbert space of the adversary ℋE 

with a dimension unknown in advance. Note that here we 
neglect the probability that the keys of the legitimate parties 
may be not coincident in order to focus on the issue of the 
degree of the key security; therefore, we indicate only one 
register K with the key k. The probability of a mismatch 
between the keys of legitimate parties will be discussed in 
Section 3.4. Abortion of the protocol can occur when exces-
sive intervention in the quantum channel is detected in stage 
4 or when intervention in the classical communication is 
detected in stage 6. Since the adversary’s attack is unknown 
to legitimate parties, they also do not know exactly what 
state of the form (1) takes place. On the contrary, the adver-
sary knows what kind of attack he carried out, and therefore 
we believe that he knows state (1). However, this does not 
mean that he knows exactly which value of the key k was 
implemented. 

The ideal state corresponding to the real state (1) has the 
form

| |pideal
KE K E7= =r r= =

=

	 2 (1 ) | |p k k
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where

pE k E
k

L

r r=<

{ , }k 0 1!

/ .	 (3)

State (2) is characterised by the fact that if a decision is made 
to generate a key, then the key is distributed evenly and does 
not correlate with the state of the adversary. In this sense, it is 
ideal. Correspondence to state (1) consists in the coincidence 
of the protocol abortion probabilities and the reduced states 
of the adversary subsystem: Tr Trideal

K KE K KEr r= , where Tr is 
the trace, TrK is the partial trace in the space of the register K. 

The QKD protocol and, accordingly, the key generated 
by this protocol is called e-secure if, for any adversary attack 
(from the considered class of attacks), the following condition 
is satisfied:

( , )D ideal
KE KE Gr r e,	 (4)

where 

( , ) | | | |D
2
1

1r s r s= -
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is the trace distance between arbitrary states r and s; li are 
the eigenvalues of the operator r – s (with the multiplicities 
taken into account). If the operators r and s are simultane-
ously diagonalisable, then the trace distance reduces to the 
distance in variation between the two probability distribu-
tions: 

( , ) | |D p q
2
1

i i
i

r s = -/ ,	 (5)

where pi and qi are the eigenvalues of the operators r and s, 
respectively. 

Remark 1. ‘More ideal’ would be the state 
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which is characterised by the fact that the legitimate parties 
generate the key with certainty, i.e., p^ = 0. However, in this 
case inequality (4) when replacing ideal

KEr  with ,ideal
KEr<  in the 

general case will not be fulfilled: the adversary can always 
make legitimate parties refuse to generate a key. To this 
end, he can, e.g., carry out intense eavesdropping of the 
quantum channel, so that the key generation becomes 
impossible, or simply block all the transmitted quantum 
states. Therefore, we cannot ensure the proximity of state (1) 
to (6) and are forced to restrict ourselves to ensuring prox-
imity to state (2). 

Another important point is associated with the probabil-
ity p^ of refusal to generate the key. Consider the state

| |p k k
{ , }

KE k K
k
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7r r=<
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/ .	 (7)

Then

( , ) (1 ) ,D p D ,ideal ideal
KE KE KE KEr r r r= - =

< <^ h,

and inequality (4) can be rewritten in the form

(1 ) ,p D ,ideal
KE KE Gr r e- =
< <^ h ,	 (8)

or

, /(1 )D p,ideal
KE KE Gr r e e= -< <

=l^ h .	 (9)

The states KEr<  and ,ideal
KEr<  are conditional quantum states if 

the protocol was not aborted and the key was generated. If 
the key is generated, legitimate users are interested in the dis-
tance between these states, i.e., ,rD ,ideal

KE KEr< <^ h, and not 
between states that include the unrealised probability of pro-
tocol abortion. However, as follows from (9), the distance 

,rD ,ideal
KE KEr< <^ h, generally speaking, does not have to be small. 

Intensive eavesdropping of the quantum channel will lead to 
a large correlation of the key and the adversary subsystem, so 
that the distance between these two states will be large. For 
example, if we consider the QKD BB84 protocol, then the 
adversary can carry out the simplest intercept – resend attack 
and guess all bases with nonzero probability. Thus, he will 
receive complete information about the key, without intro-
ducing any error. However, in this case, with a high probabil-
ity, the legitimate parties will detect eavesdropping (thus, in 
our example, the probability of guessing all the bases is very 
small) and will conclude that it is impossible to generate a 
private key, so that the probability 1 p- =  will be low, thus 
ensuring smallness of (8). 

Inequality (8) ensures that either the adversary has practi-
cally no information about the key [the value of ,rD ,ideal

KE KEr< <^ h 
is small], or an extremely unlikely event of intense eavesdrop-
ping nondetection occurred. Parameter e', characterising the 
distance between conditional quantum states under the con-
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dition of key generation, will be also often used. We will 
return to the problem of taking into account the unknown 
probability 1 p- =  in Section 3.4. 

3. Operational meanings of the security 
parameter

3.1. Indistinguishability, increased probability of application 
protocol breaking, universal composability 

The main operational sense of the security parameter defi-
nition in terms of a trace distance consists in the following: 
the probability of successfully distinguishing any quantum 
states r and s (provided that their a priori probabilities are 
1/2) cannot exceed (1 + D(  r, s))/2, i.e., it exceeds the prob-
ability 1/2 of simple guessing by a small amount if D(  r, s) is 
small [5]. By distinguishing we mean the measurement of the 
observable, which is given by two positive operators, Mr 
and Ms = I – Mr (I is the identity operator). The outcome 
corresponding to the first (second) operator is interpreted as 
supplying the state r (s), respectively, to the input of the 
distinguishing device. Then the probability of distinguishing 
is the average probability that the input state is determined 
correctly: 

[ ( ) ( )]Tr TrP M M
2
1

dist r s= +r s .

The estimate 

( , )
P

D
2

1
dist G

r s+ 	 (10)

is exact, i.e., there is always a dimension that turns this 
inequality into equality. The value 2Pdist – 1 is called distin-
guishing advantage. Thus, the trace distance between two 
quantum states is equal to the maximum gain in their distin-
guishability. 

This property has important implications for QKD. To 
formalise the concept of distinguishability in the theory of 
universally composable security, the role of a distinguisher is 
introduced, which selects the input data for the protocol, per-
forms all the actions of the adversary, receives the protocol 
output (in our case, the key), and then performs any actions 
with this output. A detailed description of the theory can be 
found, for example, in [5, 11] and in earlier works, referenced 
above in the beginning of the article. To simplify, as applied 
to the QKD protocol, we can say that the ddistinguisher first 
plays the role of an adversary and implements an arbitrary 
attack, after which it is given with 1/2 probabilities either the 
real state rKE resulting from the execution of the protocol and 
attack on it, or the corresponding ideal state ideal

KEr . The task 
of a ddistinguisher is to guess which of these two states is given 
to it, i.e., to distinguish between these states. For this purpose, 
it can perform any action with the provided classical-quantum 
state. For example, it can execute an arbitrary protocol for 
encrypting a private message using a key recorded in the regis-
ter K and simulate an adversary’s attack on the cryptographic 
system, taking into account partial knowledge of the key by the 
adversary. For example, if a cipher is broken, while with an 
ideal key the breaking has a very low probability or is not pos-
sible at all, then the ddistinguisher will conclude that it was 
given a real state. 

The arbitrary use of the key in any cryptographic applica-
tion, together with the attack of this application by the adver-

sary, taking into account partial knowledge of the key and the 
subsequent decision about which of the two states took place, 
is a specific, complexly organised measurement that distin-
guishes between these states. Therefore, estimates (4) and (10) 
indicate that it is impossible in any way to distinguish a real 
state from an ideal one with a probability exceeding the prob-
ability of a simple guess 1/2 by more than e/2.

Let us draw another important conclusion from these 
considerations. Suppose that the probability of breaking an 
application protocol using an ideal key using a specific attack 
is p. This probability can be affected by both the characteris-
tics of the application protocol and the a priori information of 
the adversary. For example, if the application protocol is a 
symmetric encryption system, then the probability p may 
decrease if the adversary becomes aware of a portion of the 
plaintext. If this cipher system is secure only in the computa-
tional sense, then the p can be defined as the probability of 
breaking at the expense of a certain amount of computation. 
For example, if a more efficient attack on a cipher than a 
complete enumeration of all keys (brute force attack) is not 
known, then enumerating a fraction of p of the entire set of 
keys will yield a probability of breaking p (the probability 
that one of the keys will work). If the key is not perfect, then 
this probability increases, because the adversary can begin the 
enumeration from the most probable versions (for more 
details see [24]). 

An application protocol can be launched only when the 
key is generated, i.e., the conditional states KEr<  and ,ideal

KEr<  
should be considered. According to Eqn (9), the trace dis-
tance between them is e' = e/(1 – p^  ).

Proposition 1. Let p be the probability of breaking some 
protocol using the private key as a result of some attack, pro-
vided that the ideal key specified by state (6) is used. Then, 
when using an e-secure key that corresponds to state (7), this 
probability does not exceed p + e/(1 – p^ ).

This proposition is illustrated in Fig. 1 for enumeration of 
keys as an example. 
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Figure 1.  Probability of breaking a computationally secure symmetric 
cryptosystem by enumeration of keys (brute force attack) versus the 
fraction of keys tested. The dashed line is the case of an ideal key, i.e., 
completely private and evenly distributed, described by state (6); the 
solid curve is the case of an e-secure key described by state (7), which 
satisfies inequality (9). The maximum displacement of the solid line 
from the dashed along the ordinate axis does not exceed e' = e/(1 – p^). 
The figure illustrates Proposition 1; in the case of other attacks, the de-
pendence for the ideal key is not necessarily linear. 
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Proof of Proposition 1. We prove it from the contrary. Let 
the probability of breaking the cipher system increase by e1 /(1 
– p^), due to replacing an ideal key with an e-secure one, where 
e1 > e. Let us show that then we can distinguish between the 
states rKE and ideal

KEr  with a probability exceeding (1 + e)/2, 
which contradicts (10). The algorithm for the ddistinguisher is 
as follows: 

1. The ddistinguisher performs a binary measurement 
specified by the projector | | IE7= =  (IE is the identity oper-
ator in the space ℋE), i.e., a measurement of whether the key 
is generated. If the key has not been generated, which hap-
pens with probability p^, the ddistinguisher is unable to deter-
mine what state is given to him, and is forced to resort to 
simple guessing. Therefore, in this case, the probability of a 
correct answer is /P 1 2dist =

= .
2. If the key is generated, which happens with a probabil-

ity 1 – p^, then the ddistinguisher, playing the role of legiti-
mate parties, measures the register K, obtains the key as a 
result, and launches the application protocol with this key. 
Then, as an adversary, he attacks the application protocol. If 
the breaking was successful, then the ddistinguisher decides 
that it was given the state rKE, otherwise, the state ideal

KEr . 
Then, since the probabilities of breaking the application pro-
tocol with ideal and real key are p and p + e1/(1 – p^), respec-
tively, the probability of a correct answer is 

1
( )P p

p
p

p2
1 1

2
1 1

1dist
1 1e e

= +
-

+ - = +
-

<

= =
c cm m; E .

The probability of a correct answer, averaged over the 
outcomes of algorithm 1 and 2, is 

(1 )P p P p P
2

1
2

1
dist dist dist

1 2
e e

= + - =
+ +

=
= <

= ,

which contradicts (10). 
This interpretation of the security parameter is given only 

in the footnote in the polemic note [23], but, in our opinion, is 
one of the most important interpretations: Proposition 1 
allows us to interpret e' = e/(1 – p^) [and not Eqn (20) below, 
as is often believed] as the probability of key breaking. Indeed, 
let suppose that the application protocol is practically 
unbreakable. For example, when attacking a cipher with real-
istic amounts of computation, the probability of breaking p is 
practically zero [formally p <<  e/(1 – p^)]. Then the probability 
of breaking the application protocol using the e-secure key 
will be p + e/(1 – p^) » e/(1 – p^). In a sense, this value can then 
be considered the probability of breaking the key, since it is 
precisely the key nonideality that allows breaking the applica-
tion protocol. 

We mentioned the application of Proposition 1 to the case 
of using a key in a computationally secure cipher. This propo-
sition can be applied, e.g., to the case of using the key in theo-
retically secure message authentication codes, which imply a 
common private key possessed by the legitimate parties. If p is 
the probability of collision of hash functions used in the code 
with a perfectly secure key, then the probability of collision 
with an e-secure key will not exceed p + e'.

To simplify, we can say that Proposition 1 is exactly the 
one containing the universal composability of the security 
parameter: if the application protocol is also nonideal, the 
degree of its nonideality due to the use of a nonideal key 
increases by a small amount that can be estimated. This 

property allows exploring the security of the application 
protocol with an ideal key and the security of the key distri-
bution protocol separately. Using other measures of the 
degree of the key nonideality instead of the trace distance, 
e.g., those based on the Shannon amount of information, 
can result in complete compromise of the entire system due 
to combination of two nonidealities (of the key and applica-
tion protocol) [18]. 

3.2. Relation of the security parameter with the performance 
characteristic of a computationally secure cryptosystem 

We continue considering the case when the generated key is 
used in a computationally secure symmetric cryptosystem. In 
the fundamental work of Shannon [25], the concept of the 
performance characteristic of such a cryptosystem as the 
average amount of computation required to determine the 
key is introduced. In Ref. [24], a formula was obtained that 
relates the security parameter to the average amount of oper-
ations on enumerating keys (that is, for brute force attack). If, 
with an ideal key, the average number of keys that must be 
considered to decrypt the message is (2L + 1)/2, then in the case 
of an e-secure key this value in our notation will be [(2L(1 –
2e' ) + 1]/2, where e' = e/(1 – p^). 

Now let us generalise the results to the case of existence 
of more efficient attacks than the brute force one. Let p(T) 
be the probability of breaking the cipher with expenditure 
of computing time T provided that the legitimate parties 
use the ideal key. With simple enumeration of the keys, if T 
is measured by the number of keys being tested, p(T) = 
T/2L. Then from Proposition 1 it follows that when using 
an -secure key this probability does not exceed p(T) + e'. 
Here, for simplicity, we consider only the computing time, 
but we can also include other characteristics that make break-
ing difficult. 

Consider the inverse function T( p), i.e., the amount of 
computation necessary to ensure the probability of breaking 
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Figure 2.  Amount of computations needed to ensure a given probabil-
ity of breaking a computationally secure symmetric cryptosystem by 
key enumeration (brute force attack) – the functions that are inverse (up 
to a factor) to those shown in Fig. 1; Tmax is the amount of computa-
tions required to break the cipher for sure. If it is measured in the num-
ber of keys examined, then Tmax = 2L. As in Fig. 1, the dashed line is the 
case of an ideal key, the solid curve is the case of an e-secure key, e' = e/
(1 – p^). The figure illustrates Eqn (11). In the case of other attacks, the 
dependence corresponding to the ideal key is not necessarily linear.
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p when using the ideal key. Denote by T( p) the corresponding 
amount of computations when using the e-secure key. Then 
the last statement of the previous paragraph can be rewritten 
as follows: 

Te(  p) H  T(  p – e' ).	 (11)

Formula (11) is illustrated in Fig. 2. This is a general 
formula relating the complexity of breaking and the secu-
rity of the key in terms of trace distance: when legitimate 
parties use the e-secure key, the laboriousness of breaking 
can be estimated from below via the laboriousness in the 
case of an ideal key, but it provides smaller by e' probabil-
ity of breaking. 

3.3. Using the QKD with a one-time pad 

We examined the operational meanings of the security param-
eter when combining the QKD with computationally secure 
ciphers. Currently, this often takes place in practice, since the 
QKD rate is still not high enough. However, the original idea 
of quantum cryptography is to provide a theoretically secure 
private communication, i.e., to combine a theoretically secure 
QKD with a theoretically secure cipher, i.e. a one-time pad. 
Since this cipher is not breakable when using an ideal key, the 
previous operational interpretations of the trace distance 
associated with the probability of breaking are not suitable. 
In our opinion, in this case the following interpretation may 
be useful. 

Let ℳ Ì {0, 1}L be the set of possible plaintexts known 
to the adversary. This can be a set of all kinds of binary 
strings of length L, a set of all meaningful texts (in binary 
representation), as well as some subset of the set of meaning-
ful texts, which may reflect the a priori knowledge of the 
adversary about which messages could be encrypted. For 
example, if the adversary knows that one of the two possible 
messages is encrypted, then ℳ contains two elements. We 
denote the power of this set by M. When encrypted with a 
one-time pad with an ideal key, this set does not change, 
because the cipher is perfectly secure. However, if an e-secure 
key is used, then this set can be reduced. For example, for 
some keys k it is possible that pk = 0, so that, having read the 
ciphertext, the adversary will exclude from ℳ those plain-
texts that correspond to keys with zero probabilities. We 
denote by M' < M the number of possible plaintexts after 
the adversary has read the ciphertext in state (1). The adver-
sary has no way to find out which of these plaintexts was 
actually sent. Note that M' is a random variable, since it 
depends on the ciphertext and, therefore, on the key gener-
ated by legitimate users (in accordance with the distribution 
{pk}), as well as on the random result of the adversary mea-
suring his subsystem. We also denote the number of excluded 
plaintexts by M'' = M – M'. 

Now we proceed to a question of how much M' is less 
than M. Since log2M and log2M' are the Hartley entropies of 
the plaintext, the decrease 

'
'

log log logI M M
M
M

2 2 2= - = 	 (12)

can be interpreted as the amount of Hartley information 
received the adversary as a result of reading the ciphertext. 
We will show that with high probability this value is approxi-
mately equal to e'.

Before formulating the general proposition, we consider 
two examples. Let rE

k = rE, i.e., the adversary subsystem does 
not correlate with the key, but the adversary attack or equip-
ment imperfection leads to an uneven distribution pk. If the 
key is e-secure, then

=| | /( )'p p2 1
{ , }

k
L

k 0 1 L

G e e- = -
!

-/ ;

therefore, pk = 0 can be fulfilled for a maximum of 2Le' keys 
(up to rounding down). For realistic values of L and e, e.g., L 
= 106, e = 10–11, this value is greater than unity. Let ℳ be the 
entire set of binary strings of length L, i.e., M = 2L. Then 2Le' 
messages are reliably excluded from the set ℳ, i.e., M' = 2L 
– 2Le' = 2L(1 – e' ). This means that M''/M = e' , i.e., the per-
centage of excluded open messages is very small. In terms of 
the amount of Hartley information we have 

(1 ) / 2' 'log lnI 2
1.e e= - - .

Now let us consider another extreme case: M = 2, i.e., 
when one of two possible messages is encrypted. If the key 
corresponding to the second message belongs to the excluded 
set with power 2Le', then I = 1 and the adversary decrypts the 
message. However, the probability of a fixed key belonging to 
the set 2Le' is equal to e'. This means that the security criterion 
based on the trace distance provides security only in a proba-
bilistic sense. This also manifests itself, e.g., in Eqn (8): the 
generated key is unsecure if a low-probability event of an 
undetected intense attack occurs. 

We now prove the general proposition. 
Proposition 2. Let the e-secure key corresponding to state 

(1) be used for encryption with a one-time pad. For any plain-
text from the set ℳ {0,1}L1  of power M for the mean value 
''M  of a random variable M'', the number of plaintexts 

excluded after reading the ciphertext by the adversary has, the 
estimate 

''M G  2e'M,	 (13)

is valid, where e' = e/(1 – p^).
Markov’s inequality allows proceeding from estimating 

the average number of excluded plaintexts to probabilistic 
assessment with individual outcomes (the key and the out-
come of the adversary’s measurement of his subsystem). 

Consequence. Under the conditions of Proposition 2, 

'Pr M
M 22 Gd

d
ell: D .	 (14)

holds.
Thus, the ratioM'/M can significantly differ from unity 

[respectively, Hartley information (12) can differ from zero] 
only with a probability of the order of ’. If a significant differ-
ence of Hartley information from zero is considered key 
breaking (the adversary obtained substantially nonzero infor-
mation about the message due to a nonideal key), then e' can 
be considered the probability of breaking the key in order of 
magnitude. However, the value of 2e'/d for a specific and min-
imal d acceptable for users characterises the probability of 
breaking with more accuracy. 

Proof of Proposition 2. As in the proof of Proposition 1, 
we reduce the problem to distinguishing between the states 
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KEr<  and ,ideal
KEr< , i.e. to Eqn (2). Consider the following algo-

rithm. The ddistinguisher imitates both the actions of legiti-
mate users and the actions of an adversary in order to 
encrypt and decrypt a private message. Acting as legitimate 
users, the ddistinguisher measures the register K, obtains the 
key as a result, and then encrypts the specified plaintext with 
it. Then, playing the role of the adversary, he measures his 
subsystem taking into account the known ciphertext and 
writes out excluded plaintexts. Since we are considering the-
oretical security, the ddistinguisher has unlimited comput-
ing power. Then it (already as a ddistinguisher as such) finds 
out whether the encrypted open message belongs to the set 
of excluded open messages. If the answer is yes, he concludes 
that he was given the ideal state ideal

KEr , and, otherwise, the 
real state rKE. 

Thus, the algorithm always identifies the real state as real, 
i.e., in the case of a real state, the probability of the correct 
answer is unity. For ideal state, the probability of a correct 
answer is equal to the probability that the key is one of many 
excluded. Since in the ideal state the distribution of keys is 
uniform, this probability is M''/M. M'' is a random variable, 
so we need to take its average value. However, averaging is 
performed not over the real state, but over the ideal one; we 
denote this mean value by ''M ideal . We emphasise that the 
excluded keys are written out based on the measurement 
result as if the state were real, because the ddistinguisher does 
not know what state it was given. But since we are considering 
the case when the ideal state is given, averaging is performed 
over the ideal state. Strictly speaking, we consider another 
random variable, but for simplicity we also denote it by M''. 
Then the probability of distinguishing is

P M
M

2
1 1

2
1

dist

ideal

G e
= + +< ll lc m ,

where the last inequality holds due to inequality (10). Hence 

'' 'M Mideal G e .	 (15)

We now estimate /'' 'M M G e , where averaging in the numer-
ator occurs already over the real state. The random variable 
M'' is a result of the measurement of the state, ,ideal

KEr<  or KEr<

, the trace distance between which does not exceed e'. The 
variation distance between the distributions obtained by mea-
suring the same observable over these states also cannot 
exceed e' [5]. Since 0 G  M’’ G  M,

'' '' 'M M MidealG e+ .

From this and Eqn (15) the desired inequality (13) follows. 
Remark 2. In the previous subsections, we considered 

arbitrary probability distributions on the set of keys from the 
point of view of the adversary after the attack performed by 
him. Here we took into account only the fact that some keys 
can have zero probability for the adversary, which leads to 
the exclusion of some plaintexts. If we take into account here 
that probable keys generally have different probabilities, then 
plaintexts will also have different probabilities, i.e., from the 
point of view of the adversary, one plaintext after an attack 
will be more probable than another. In addition, initially 
(before the attack) one plaintext may be more probable for 
the adversary than another due to various reasons. 

We did not address such a level of consideration, since the 
meaning of the probabilities of plaintexts depends on the fur-
ther actions of the adversary, which goes beyond cryptogra-
phy. Suppose that as a result of an attack the adversary learns 
that the probability is 0.6 for one plaintext and 0.4 for the 
other. He can bet that the plaintext that has the greatest prob-
ability has been sent and not take into account that another 
text could have been sent. Then probability 0.6 acquires an 
objective statistical meaning: in the course of multiple repeti-
tions of this situation (i.e., a session of the QKD and the cor-
responding attack) in 6 % of cases, the adversary will behave 
basing on a correctly decrypted text. However, the adversary 
may keep in mind both these options rather than discard 
plaintext having lower probability, remembering, however, 
that one option is more likely, and plan his activity based on 
the subjective perception of these probabilities. In this case, it 
is already difficult to assign an objective statistical meaning to 
these probabilities. 

However, we can generalise our reasoning to the case 
when the adversary discards keys not only with zero, but also 
with sufficiently low probability pk < pcrit, where pcrit is the 
given critical value. Then Proposition 2 and the consequence 
from it remain valid. 

3.4. Accounting for the probability of key generation 

In Propositions 1 and 2 and in formulae (11) and (14), the 
distance between the conditional quantum states KEr<  and 

,ideal
KEr<  corresponding to the already generated key is charac-

terised by the quantity e' = e/(1 – p^) rather than by e. The 
probability p^ is unknown to us, however, due to the probabi-
listic interpretations of the quantity e' that we obtained in 
Subsections 3.1 and 3.3, this does not create a problem for us. 
In the notation of Proposition 1, let us consider instead of the 
value p + e' (recall that p is the probability of breaking the 
application protocol, for example, the cipher, with a certain 
attack and, possibly, by cost of certain computing resources), 
the value 

(1 – p^)( p + e') = p(1 – p^) + e G  p + e.

In the left-hand side there is a joint probability that the proto-
col will not be aborted, and the cipher will be broken, the 
right-hand side of the inequality is an estimate of this proba-
bility from above. Similarly, 

(1 – p^)2e'/d = 2e        /d

is the joint probability that the protocol will not be aborted 
and the adversary will be able to exclude from the set of pos-
sible open texts a fraction exceeding d (e.g., d can be the 
maximum allowable fraction). Both events correspond to 
the breaking of QKD protocol: nondetection of eavesdrop-
ping and generation of a key, the use of which led to break-
ing the cipher. The probabilities e in the first case (for p << 
e) and 2e/d in the second case will be referred by us to as the 
probabilities of breaking the QKD protocol, in contrast to 
the probabilities of breaking the key, where e' was used 
instead of e. 

Let us explain the meaning of the probability of breaking 
the protocol of the QKD by an example. Let this probability 
be, for example, 10–11 and let the QKD protocol sequentially 
run an unlimited number of times. Suppose, in some cases, 
the protocol will be aborted due to actual eavesdropping, 
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noise fluctuations, malfunctions, or loss of hardware settings. 
In these sessions, the security of the key (if it were generated) 
does not interest us. In some cases, the protocol will not be 
aborted and a key will be generated, but the adversary will 
not be able to break the cipher. In some cases, the protocol 
will not be aborted, but the adversary will be able to break the 
cipher. This is exactly what corresponds to breaking the pro-
tocol of the QKD. The probability of breaking the QKD pro-
tocol e allows evaluating how often this will happen. The 
probability e = 10–11 means that such an event will occur on 
average once in 1011 key distribution sessions. Of course, due 
to protocol abortions, fewer keys than 1011 will be generated 
during this time, i.e., interpretation of e in terms of the aver-
age frequency of sessions leading to breaking the cipher does 
not depend on 1 – p^. The probability 1 – p^ (in practice, in 
the absence of interception, it should be close to unity) only 
affects how many keys we will generate in the interval before 
the next break. We will return to calculations with realistic 
parameter values in Section 4.4. 

At the same time, in Eqn (11), which relates the security of 
the key to the performance characteristic of the cipher, the 
quantity e' is retained. This can be understood as follows: in 
this case we are considering the difficulty of breaking a cipher 
with one fixed key rather than a large number of sessions and 
keys; hence, it is just the degree of security of a particular key 
e' that enters the formula, and therefore it is necessary to esti-
mate 1 – p^ from below. A small value of 1 – p^ means that 
with high probability the protocol should have been aborted. 
Therefore, if in practice the protocol is aborted rather rarely, 
this value cannot be small simultaneously in all sessions. 
However, its smallness cannot be ruled out in a single selected 
session. Then the legitimate parties can determine the thresh-
old probability a (an analogue of the significance level in 
mathematical statistics) and assume that the event that hap-
pened could not have too little probability (less than a). Then 
we can put 1 – p^ H  a if the protocol was not aborted. 
Probably, the need for such an estimate suggests that the 
interpretation of the security parameter in terms of the break-
ing difficulty is not very convenient; the interpretation in 
terms of the breaking probability is preferable due to the pos-
sibility of multiplying the probabilities and interpreting them 
statistically. 

It is important to note that the problem of key degrada-
tion does not impede this statistical interpretation. This prob-
lem is as follows: the theoretically secure authentication codes 
for classic messages used in the QKD protocol suggest that 
the legitimate parties have an initial short private key. When 
it is exhausted, part of the key distributed in one of the pre-
ceding sessions, i.e., an imperfect key, is used for authentica-
tion, which reduces the security of the new key. This new key 
is used to authenticate the next sessions, resulting in the 
repeated decrease in security of new keys, etc. 

From the position of universally composable security, 
the problem of key degradation was first considered in [12]. 
This paper considers a chain of n sessions of the QKD pro-
tocol, in which part of the key generated in one session is 
used for authentication in the next session, and the other 
(larger) part is used for useful applications, for example, 
encryption. It is shown that if the QKD protocol with a per-
fectly secure key for authentication is e-secure, then the 
whole chain is ne-secure. The value of ne is also determined 
in terms of the trace distance between the real classical-
quantum state (the result of the work of all sessions) and 
ideal state. This quantity can be given a probabilistic mean-

ing, too. If a session is aborted, then the subsequent sessions 
of the chain will not be started since there is no authentica-
tion key. However, it is important that the sessions in which 
the keys were generated would not be broken. As before, 
breaking a session of the QKD protocol can be understood 
as the realisation of the probability of Proposition 1 or for-
mula (14). Then ne is the probability of breaking at least one 
session that was launched and ended with the generation of 
a key. In other words, if we start a chain many times, then 
this undesirable event will occur on average once per (ne)–1 
starts of the chain. If every n sessions a ‘fresh’ (perfectly 
secure) authentication key is taken, i.e., the chain is really 
launched sequentially a large number of times, then this 
proposition is equivalent to the previous one: on average, 
one of 1/e sessions is broken. 

From these considerations, an important practical con-
clusion follows: when you abort a QKD session, the next ses-
sion must be started with a fresh (perfectly secure) key for 
authentication, since the chain security has been proved pre-
cisely in this setting. This conclusion seems counterintuitive: if 
the adversary intensively eavesdropped a given session of the 
QKD, which led to its abortion, this does not make the keys 
generated in previous sessions less secure. However, we 
emphasise once again that the security parameter e actually 
characterises the degree of security of the QKD session rather 
than the key security; this parameter includes the unknown 
probability of protocol abortion as a factor. For example, the 
adversary could carry out more intensive eavesdropping than 
usual, not only in the last session, but also in the penultimate 
one, but then this would not lead to the abortion of the proto-
col. Since probability acquires an objective statistical mean-
ing in multiple repetitions of tests, any judgment regarding 
the interpretation of the degree of security e should be based 
on rigorous probabilistic and statistical reasoning associated 
with a large number of QKD sessions. These considerations 
make it necessary to take a fresh key after some session of the 
QKD was aborted. 

Finally, we note that the probability of protocol abortion 
is also involved in assessing the probability of noncoincidence 
of keys of the legitimate parties. With this probability the sec-
ond parameter (in addition to e), characterising the quality of 
the key pair [2, 5, 27], is associated. Typically, the assessment 
of the key mismatch probability is based on the properties of 
the hash functions used in the verification procedure (see the 
description of the stages of the QKD protocol). Let KA and 
KB be the corrected keys of the legitimate parties. To make 
sure that they coincide, the same hash function F is applied to 
them, randomly selected from a special family of hash func-
tions, which ensures that the probability of hash functions 
coincidence under the condition of key mismatch is small: 

[ ( ) ( ) | ]Pr F K F K K K corA B A B! G e= 	 (16)

for a given small ecor. The subscript cor (correctness) means 
the requirement that the keys of legitimate parties are coinci-
dent with high probability. However, in practice, with the 
keys generated, we are interested in another probability, 

[ | ( ) ( )]Pr K K F K F KA B A B! = ,

i.e., the probability of key mismatch provided that the hash 
functions coincide. If the hash functions do not coincide, the 
protocol is aborted. However, in order to evaluate this prob-
ability, it is necessary to know the probability 
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[ ( ) ( )]Pr F K F K p verA B! = = , i.e., the probability of protocol abor-
tion due to mismatch of verification hash functions: 

[ | ( ) ( )] [ ( )Pr PrK K F K F K K K F KA B A B A B A/! != =

	 ( )] /(1 ) [ ( ) ( ) | ]PrF K p F K F K K Kver
B A B A B!= - = ==

	 [ ] /(1 ) [ ( )Pr PrK K p F Kver
A B A# ! G- =

	 ( ) | ] /(1 ) /(1 )F K K K p pver
cor

ver
B A B! G e= - -= = .

Just these calculations are presented in the proof of the proto-
col correctness in Ref. [27], where the criterion for the correct-
ness of the protocol is formulated as 

[ ( ) ( )]Pr K K F K F K corA B A B/! G e= ,	 (17)

i.e., also as the joint probability that the test (in this case, ver-
ification) is passed, but the keys are not as expected (in this 
case, they do not coincide). 

Estimation of the joint probability of type (17), i.e., the 
joint probability that the protocol will not be aborted, but the 
key will be unreliable, is also present in the authentication of 
communication using the classical channel, which is taken 
into account in parameter e. We will consider this subject in 
Section 4.1. 

3.5. Security in the case when a part of the key leaks 
to the adversary 

A series of papers [19 – 22] argue that a key that is secure in the 
sense of estimate (4) may in fact be unsecure when part of it 
becomes known to the adversary. For example, this may 
occur in the case of an attack based on a partially known 
plaintext. Let the plaintext be encrypted with a one-time pad 
with an e-secure key and part of the plaintext is known to the 
adversary. Then he becomes aware of the corresponding part 
of the key. In fact, this issue has already been considered in 
Section 3.3: the set ℳ of plaintexts known to the adversary 
reflects the adversary’s partial knowledge of plaintext. For 
example, if the adversary knows the first word of the plain-
text, then ℳ contains only plaintexts starting with this word. 
Proposition 2 and formula (14) indicate that it is very likely 
that a reduction in the number of plaintexts because of the 
adversary reading a ciphertext with an e-secure key in a per-
centage ratio is small. But with some low probability, a sig-
nificant reduction of this set, up to a single element, i.e., a 
complete decryption of the message, is also possible. 

The following explicit example illustrating this situation is 
presented in Ref. [23]. Consider the state rKE (1), in which for 
simplicity we set p^ = 0 and rE

k = rE, i.e., the adversary subsys-
tem does not correlate with the key, but the key is distributed 
non-uniformly. This can happen due to both adversary 
attacks and imperfect hardware. Namely, let pk = 2–L for all k 
= 0 . . .0 º 0 and k = 1 . . .1 º 1, the probabilities of which are 
p0 = 0 and p1 = 2–L+1. Such a key is e-secure for He  2–L. As we 
mentioned above, with realistic values of L and e, this inequal-
ity holds. 

Suppose that the adversary becomes aware that all bits of 
the key except the last one are zeros. Then, since p0 = 0, the 
adversary learns that the last bit of the key is one. This allows 
him to decrypt the last bit of the private message unknown to 
him (in the example with encryption with a one-time pad and 
partially known plain text). According to researchers who 

criticise the use of trace distance as a measure of security, this 
violates Shannon’s definition of cryptosystem security, which 
postulates that whatever the adversary’s prior knowledge, he 
should learn nothing more. 

At the same time, it is worth noting that the probability 
that all bits of the key, except the last one, are equal to zero is 
very small and amounts to 2–L. In other words, with a proba-
bility of 1 – 2–L there will be ones among these bits, and then 
the knowledge of these bits by the adversary will not allow 
him to determine with certainty the last bit of the key. 
Moreover, with a probability of 1 – 2–L + 2, there will be zeros 
and ones among these bits; in this case, there will be complete 
uncertainty regarding the last bit. This example once again 
illustrates formula (14) and the fact that the security criterion 
based on the trace distance guarantees security only in a prob-
abilistic sense. 

We now proceed from an example to a proof of the gen-
eral fact: when part of an e-secure key leaks to an adversary, 
the remaining part of the key is still e-secure. This fact was 
proved in Ref. [5] in terms of the general theory of universally 
composable security, but we will prove this by using direct 
transformations of quantum states. Let the adversary know 
the last 1 G  L2 < L bits of the key (L1 = L – L2). The key k Î 
{0, 1}L can be written as k = k1k2, ki  Î  {0, 1}Li, i = 1, 2. Then 
the state rKE (1) can be rewritten in the form:
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where
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Thus we rewrote the k2 subsystem as part of the adversary 
subsystem, which corresponds to a leakage of a part of the 
key and considering only the rest of the key left for legitimate 
participants. For ideal state (2) we have 2pk k

L
1 2 =

- , 2pk
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1= - , 
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i.e., it does not depend on k1. Therefore, the ideal state for the 
transfer of the subsystem k2 to the adversary also turns into 
ideal state for a key of length L1. Since in fact, we are dealing 
with the same states KEr  and ideal

KEr , simply written in a differ-



435On the operational meaning and practical aspects of using the security

ent way, then the trace distance between them remains the 
same. Therefore, for leakage of a key part to the adversary the 
state corresponding to the rest of the key is at a distance e 
from the appropriate ideal state. It means that the remaining 
part of the key is e-secure and all interpretations mentioned 
above are applicable to it. We will return to discussing these 
interpretations in Section 3.6.

3.6. Other interpretations of the security parameter

We gave interpretations of the security parameter, having the 
most practical operational sense. For completeness, based on 
Ref. [5] we consider two other commonly referred interpreta-
tions that allow better understanding of the meaning of this 
parameter.

The first one is an estimate of the probability of guessing 
the key by the adversary. The adversary wants to guess the 
key by measuring his subsystem. Let the measurement be 
given by a probabilistic operator-valued measure { }M { , }k k 0 1 L! , 
Mk 0H , M Ik Ek =/ , all operators act in the space ℋE. 
The adversary interprets the outcome k as that the legiti-
mate parties generated key k. The guessing probability is 
defined as 

[ (| | )] ( )Tr TrP k k M p M
{ , } { , }

guess KE k

k

k E
k

k

k0 1 0 1L L

7r r= =
! !

/ / . 

For the ideal state (2), obviously, Pguess = 2–L, i.e., the 
adversary’s subsystem does not correlate with a key that is 
evenly distributed, so the adversary can only merely guess the 
value of a uniformly distributed random variable. For the real 
state (1), we have 

2 ( , )P D ,
guess

idealL
KE KEG r r+ < <- .	 (19)

This estimate can be obtained from formula (10) for the 
probability of distinguishing between the states rKE and 
ideal
KEr , the distinguishing dimension is { , }M I M-u u , where the 

operator

M =u  | |k k M
{0,1}

k
k L

7
!

/

corresponds to the correct guessing, and I – Mu  corresponds 
to the error. If the key is guessed correctly, then the ddistin-
guisher interprets this result as input of the real state rKE 
(since this probability is higher for it); in the case of an error, 
it reacts as if that the ideal state ideal

KEr  was input. The esti-
mate (19) can also be considered a particular case of 
Proposition 1, since substituting the most probable key is 
one of the methods of attacking the application protocol. 
The estimate (19) suggests that the use of an e-secure key 
increases this probability by no more than ( , )D ,ideal

KE KEr r< < . 
The second interpretation is related to the probability of 

coincidence with a hypothetical ideal key. Namely, let us 
consider the measurement of an arbitrary observable, which 
is carried out simultaneously with the real state of rKE and 
the ideal state of ideal

KEr . The measurement result is a random 
variable, so we get two random variables, Z and Zideal, with 
probability distributionsPZ(z) and ( )P zZ ideal , where z runs a 
finite set of measurement outcomes. Then there exists a joint 
distribution ( , )P z z,Z Z ideal l  for which PZ(z) and ( )P zZ ideal l  are 

partial distributions and for which the following inequality 
holds:

[ ] ( , )Pr Z Z P z z,
ideal

Z Z
z

ideal! / G e/ ,	 (20)

if the trace distance between rKE and ideal
KEr  does not exceed e. 

We recall that Pr denotes the probability of an event. 
The estimate (20) is sometimes interpreted as the fact that 

e is the upper estimate of the probability of the difference 
between the measurement result of any observable in the state 
rKE and the measurement result in the ideal

KEr  state, i.e., the 
probability that the QKD protocol will manifest itself in a 
different way than hypothetical ideal key distribution proto-
col. In other words, the QKD protocol behaves similar to an 
ideal one, up to a low probability. 

However, this interpretation is criticised [19 – 22] because 
neither the ideal protocol nor the ideal state ideal

KEr  nor, there-
fore, the random variable Z ideal and the joint distribution 

( , )P z z,Z Z ideal l  actually exist, so that inequality (20) does not 
correspond to any real fact. For example, it cannot be verified 
experimentally. Even if we construct a model of an ideal key 
distribution protocol (for example, by connecting legitimate 
parties with an additional channel, completely protected from 
the adversary’s eavesdropping), then with independently 
working protocols ( , )P z z,Z Z ideal l  = ( ) ( 'P z P zZ Z ideal ), so that 
inequality (20) is not satisfied. It is also agreed in Ref. [5] that 
estimate (20) serves only for better intuitive understanding of 
the trace distance and the choice of the value of e. In our opin-
ion, the interpretations given in Subsections 3.1 and 3.3 reflect 
the meaning of /(1 )pe - =  in a more practical way as the prob-
ability of breaking. 

4. Practical aspects of using the security 
parameter 

4.1. Components of the security parameter 

Typically, the security parameter is composed of the follow-
ing components [3, 4, 26]:

pa pe authe e e e= + + ,	 (21)

where epa is the parameter of privacy amplification (pa); epe 

is the probability that one of the statistical estimates per-
formed during the protocol will be incorrect (pe – parameter 
estimation); eauth is the parameter of authentication of com-
munication via the classic channel. We briefly explain each 
term. 

Privacy amplification implies application of a hash func-
tion to a corrected key that maps it into a key of smaller 
length. The adversary’s information about the key is 
reduced, as a result, not to zero, but to the given parameter 
epa, which is an estimate of the trace distance. The stronger 
the key is compressed, i.e., the greater the difference between 
the lengths of the corrected and final keys, the smaller it is. 
Conceptually, this parameter is the main one in Eqn (21). 
However, to ensure the security of the key, two more condi-
tions must be met. 

First, to calculate how much you need to compress the key 
to ensure a given epa, you need to evaluate the adversary’s 
information about the sifted key. For this purpose, interval 
statistical estimates of certain parameters are used, according 
to which the degree of adversary intervention is revealed. In 
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the simplest case, this is only the noise level (QBER – quan-
tum bit error rate), but frequently the QKD protocols include 
estimates of other parameters, too. Any interval statistical 
estimate has a confidence probability. Let the statistical esti-
mation of m parameters X1, . . . , Xm be performed in the QKD 
protocol; all estimates have the form 

A X Bj j jG G ,	 (22)

where one of the boundaries, Aj or Bj, can be infinite, i.e., the 
estimate can be one-sided (which most often takes place). The 
boundaries Aj and Bj, as a rule, depend on the observed data 
(for example, empirical mean values), i.e. formally they are 
also random variables. Let 1 ( )

pe
je- , j = 1, . . . , m be the confi-

dence probabilities of the estimates, i.e., 

Pr [observed data | ,j j[ ]]X A B ( )
pej
jg G e ,

and, therefore, 

Pr [observed data  j j,[ ]]X A B ( )
pej
j/ g G e

is also true. Then 

( )

1
pe pe

j

j

m

e e=
=

/ ,	 (23)

i.e., epe is the upper estimate of the probability that at least 
one interval estimate (22) is not valid. 

We note separately that the method of decoy states also 
includes interval statistical estimates, the confidence proba-
bilities of which, therefore, should be taken into account in 
(23) (see, e.g., [28]). 

Second, to ensure security, it is necessary to authenti-
cate communication using the classical channel. The 
parameter eauth reflects the degree of authentication secu-
rity. Theoretically secure message authentication codes use 
hash functions and assume that the legitimate parties have 
a short initial private key (possibly from a previous ses-
sion) before starting a QKD session. Then eauth is the prob-
ability of collision of the hash function, i.e., the upper 
bound for the probability of an expression of type (16). 
Similarly, it can be reduced to a joint probability of type 
(17), i.e., to the joint probability of line mismatch and hash 
function coincidence. 

Note that in formula (21) we assume that a perfectly 
secure key is taken for authentication. If an e0-secure key is 
taken (for example, from one of the previous QKD sessions), 
then this term should be added to the right-hand side of (21). 
We do not add it, since we have already discussed this prob-
lem in Section 3.4. 

Let us briefly explain why e can be represented as the sum 
of the conceptually main term epa and the probability q G  epe 
+ eauth that one of the necessary conditions for ensuring this 
epa is not fulfilled. Let rKE be represented as 

(1 )q qgood bad
KE KE KEr r r= - + ,

where ( , )D good ideal
paKE KE Gr r e ; and the operators andgood bad

KE KEr r  
are positive and have a unit trace, that is, they are states. Then 
from the property of strict convexity of the trace distance [29] 

( , )D qideal
paKE KE G Gr r e e+ .

As for the correctness parameter (17) (the probability of 
key mismatch), which we discussed in Section 3.4, in the secu-
rity analysis it is possible to consider the total parameter etot = 
e + ecor (in this case the parameter e usually has a subscript 
sec, i.e. secrecy). Then p^ is understood as the probability of 
protocol abortion due to any reason: failure to verify, detec-
tion of excessive intervention in the quantum channel or 
intervention in classical communication. However, these con-
ditions – correctness (17) and secrecy (4) – can be considered 
separately. It is believed that the problem of key mismatch is 
less acute than the key privacy problem: in many applications 
erroneous decryption is detected, therefore, when a low prob-
ability of key mismatch is triggered, it is sufficient to resend 
the data (encrypted with a new key, completely independent 
of the previous one) [2]. Then ecor can be set to a higher value 
than esec. 

4.2. Variable key length 

Until now, the key length distributed in the QKD protocol 
was considered to be predetermined. Let us now consider the 
implementation of the protocol when the key length is not 
specified in advance, but is calculated by legitimate parties 
during the protocol execution. In this case, as a result of the 
QKD protocol and the adversary attack, a state arises having 
the form

p ( ) ( )

=
KE

l
KE
l

l

L

0

max

r r= / ,

| |p k k( )

{ , }

KE
l

k K E
k

k 0 1 l
7r r=

!

/ ,

where 1p ( )ll

L

0
max

=
=

/ ; p 1
{ , } kk 0 1 l =

!
/  for all l; p(l ) H  0 is the 

probability of generating a key of length l. Register K in this 
case has a variable length from zero (refusal to generate a key) 
to Lmax (maximum possible key length), and therefore the cor-
responding Hilbert space is Cl

L l
0

max5 = . The corresponding 
ideal state is

p ( ) ( ),ideal ideal
KE

l
KE
l

l

L

0

max

r r=
=

/ ,

| |k k2( ), ( )

{ , }

ideal
KE
l l

K E
l

k 0 1 l
7r r=

!

- / ,

where ( )
E
lr  are defined by formula (3) with < replaced with (l). 

We again determine the e-security based on inequality (4). 
Note that due to the orthogonality of ( )

KE
lr  for different l (sim-

ilarly for ( ),ideal
KE
lr ) we obtain 

( , ) ( , )D p D( ) ( ) ( ),ideal ideal
KE KE

l
KE
l

l

L

KE
l

1

max

r r r r=
=

/ .

Suppose that inequality (4) holds and the legitimate parties 
have generated a key of some length 1 G L G Lmax. Then they 
are only interested in the distance ( , )D ( ) ( ),ideal

KE
L

KE
Lr r  and the 

factor before it. To derive the corresponding inequality, we 
use the fact that ( , )D ( ) ( ),ideal

KE
l

KE
lr r  increases with growing l. In 

fact, the stronger the key compression at the stage of privacy 
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amplification, the less information about the final key remains 
available to the adversary. Then 

( , ) ( , )p D p D( ) ( ) ( ), ( ) ( ) ( ),ideal ideall
KE
l

l

L

KE
l l

KE
l

l L

L

KE
l

1

max max

H He r r r r
= =

/ /

	 ,p D( ) ( ) ( ),ideall

l L

L

KE
L

KE
L

max

H r r
=

e ^o h/ .

If we denote the factor in brackets in the last expression by 
1 p- =, then we again obtain Eqn (8). As in the case of a fixed 
length, it is the probability that the legitimate parties con-
clude that it is possible to generate a key of length L (if it is 
possible to generate a longer key, then all the more it possible 
to generate a key of length L). 

Again we can conclude that the value of ,D ( ) ( ),ideal
KE
L

KE
Lr r^ h, 

generally speaking, is not small. It can be great if the proba-
bility 1 p- =  is low. 

Note that the weaker inequality 

( , )p D( ) ( ) ( ),idealL
KE
L

KE
L Gr r e

is insufficient, because if the probability distribution { p(l )} 
has a large variance (which is possible even in the absence of 
eavesdropping ), then all the probabilities p(l ) can be suffi-
ciently small. In other words, if l takes a large number of val-
ues, then any value of this random variable will be a low-
probability event; therefore, it cannot be concluded that 
( ,D ( ) ( ),ideal

KE
L

KE
Lr r ) is small. 

Thus, the case of a variable key length reduces to inequal-
ity (8); therefore, considering the case of a fixed key length in 
the rest of the article of does not limit generality. 

4.3. Partitioning and joining keys

A cipher usually requires a key of fixed length, which may not 
coincide with the length of the key distributed using the QKD 
protocol, especially if the key length in the latter is variable. 
In this regard, it may be necessary to split the key distributed 
in the QKD protocol into parts, or, conversely, combine the 
keys distributed in different QKD sessions into one. These 
operations can be required together. Suppose that a cipher 
requires a 256-bit key. Then, we decompose the key distrib-
uted using the QKD into blocks with a length of 256 bits. But 
if the length of the distributed key is not a multiple of 256 bits, 
then the last block will have a shorter length, and therefore it 
is necessary to combine it with part of the key distributed in 
another session. Therefore, it is necessary to specify the for-
mulas for the key security parameter obtained by these opera-
tions. 

The trace distance D(  r, s) does not increase when apply-
ing an arbitrary quantum transformation, i.e., a completely 
positive and trace-preserving map F, to both arguments: 
D(F(  r), F(s)) G (  r, s). Omitting part of a key is a quantum 
transformation. We define it formally. Let the last 1 G L2 G L 
bits of the key be discarded, L1 = L – L2. As in the analysis of 
key security in the case leaking a part of the key to the adver-
sary, we write the key {0,1}k L!  in the form k = k1k2, 

{0,1}ki
Li! , i = 1, 2. We have 

| | | | V V
{ , }

KE KE k KE k

k 0 1 L
1 1

1
1

7 = = = =r r r @

!

/  =

	 | | (1 ) | |p p p k k
{ , }

E k

k

1

0 1

1
L

1

1
1

7= = r= + -=
=

=

!

/

	 p
p

{ , }
k

k k
E
k k

k 0 1 L 1

1 2 1 2

2
2

r
!

7 / ,	 (24)

where

p p
{0,1}

k k k

k L
1 1 2

2
2

=
!

/ ; | |V k k k I
{ , }

k

k

E1

0 1

1 2
L

1

2
2

7=
!

/ : C2L

7ℋE ® 

	 C2
L1
7  ℋE.

The difference between transformations (24) and transforma-
tions (18) when part of the key is leaked to the adversary is 
that in this case, the subsystem k2 is discarded rather than 
included in the adversary subsystem. The rest of the formu-
las are similar. The ideal state during transformation (24) 
also transits into the ideal state (in a new space): 

2 , 2p pk k
L

k
L

1 2 1
1= =- - . Therefore, we can conclude that the 

key obtained from the e-secure key by discarding part of it, is 
also e-secure. 

When dividing a key into several shorter keys, each 
‘short’ key is obtained by discarding part of the positions 
from the original sequence of bits. Therefore, if the source 
key is e-secure, then each of the small keys will also be 
e-secure. However, when calculating complex probabilities 
in Proposition 1 and formula (14), it should be kept in mind 
that the securities of these keys are not independent. For 
example, if during the distribution of the original ‘long’ key a 
hardly probable event of non-detection of eavesdropping 
occurred, then all short keys are unsecure at the same time. 
Therefore, Proposition 1 and formula (14) must be applied 
to the long key and not to each short key individually. Then 
the quantity p in Proposition 1 can be understood as the 
probability of reading one of the messages encrypted with 
one of the short keys. To apply formula (14) when using 
short keys in a one-time pad mode, you can combine the 
used short one-time pads into a long one. Many possible 
plaintexts ℳ can then be obtained as a result of all kinds of 
concatenations of short plaintexts. 

When merging the keys their security parameters add: if 
two keys had the security parameters e1 and e2, then the secu-
rity parameter of the key obtained as a result of their joining 
is equal to e1 + e2. This stems from the inequality [29] 

( , ) ( , ) ( , )D D D1 2 1 2 1 1 2 27 7 Gr r s s r s r s+ .

Using these two rules allows calculating the security of the 
key for an arbitrary combination of partitioning and joining 
of different keys. 

4.4. Examples of calculating the time before the first breaking 

In order to sort out roughly what value of e should be chosen 
in practice, instead of probabilities, it may be convenient to 
consider the inverse quantities: the average number of ses-
sions of the QKD at which one case of breaking will occur. 
Multiplying this value by the average execution time of the 
QKD protocol yields the same quantity expressed in time 
units. 

For the calculations, we will use the following conditions: 
let the QKD hardware generate a key of length L = 106 with a 
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security parameter e = 10–11 every ten seconds. Suppose first 
that the key is used in a one-time pad mode (in Ref. [4] it is 
emphasised that a rate of 100 kbit s–1 is sufficient for encrypt-
ing audio messages in a one-time pad mode). We use the for-
mula (14) and evaluate the joint probability that the protocol 
will not be aborted, but the nonideal key will allow the adver-
sary to reduce the number of possible open texts by 1 %, i.e. d 
= 1/100. The probability of breaking a protocol for the 
given d will be 2e/d = 2 ́  10–9, i.e., the breaking will occur 
on average in one session out of 500 million, or once every 
150 years. 

Suppose now that the key is used in a computationally 
secure cipher with a key length of 256 bits, i.e., a key of 106 
bits is split into short keys, 256 bits long, each new message 
being encrypted with a new key. We also assume that the key 
is expended at the same rate as it is generated, that is, 
105/256 » 390 messages are encrypted per second. Suppose 
that in a situation where each message is encrypted with a new 
key, the cipher cannot be broken otherwise than by brute 
force. This assumption is justified by the fact that usually 
attacks on popular symmetric cryptosystems require knowl-
edge of a large amount of data encrypted with the same key. 
Therefore, the encryption of each message with a new key, 
completely independent of the previous ones, leaves the pos-
sibility of breaking only by brute force. Even if we assume 
that the adversary has the ability to enumerate 2128 » 1038 
keys, which is an extremely high number, the probability of a 
successful breaking (with an ideal key) is p = 10–38  <<   e. 
Therefore, using Proposition 1, e = 10–11 can be approxi-
mately considered as the probability of breaking the cipher 
(here we mean the joint probability of generating a key and 
breaking a cipher with this key). Moreover, for breaking the 
adversary does not need to enumerate 2128 keys for each 
encrypted message. He can try, for example, only one most 
probable key. With a perfectly secure key, the probability of 
success will be 2–256 » 10–77; the reciprocal of this number is 
comparable to the number of atoms in the visible part of the 
Universe. However, when using an e-secure key, it is only 
guaranteed that this probability does not exceed 2–256 + e » e. 
As we understood from Section 4.3, the probability calcula-
tion must be performed for a long (106 bit) key. The probabil-
ity of its breaking is e = 10–11, that is, breaking will occur on 
average once every 30 thousand years. 

From these calculations it follows that a one-time pad 
requires not only a higher key generation rate than compu-
tationally secure ciphers, but also a significantly lower e 
value, especially if we want to reduce the fraction d of plain-
text excluded by the adversary due to the key nonideality. 
Indeed, according to the formula (14), the probability of 
breaking the protocol is 2e/d rather than e (as in Proposition 
1 with p  <<   e). 

5. Conclusions

When using a key distributed with the help of QKD in a 
computationally secure symmetric cipher (Magma, 
Kuznyechik, AES, etc.), the most natural interpretation of 
the key security parameter e is given by Proposition 1, which 
is associated with an increase in the probability of breaking 
the cipher due to replacing an ideal key with an e-secure one, 
as well as formula (11) that relates this parameter to the 
amount of computation that guarantees a given probability 
of breaking. If the probability of breaking the cipher in real-
istic attacks is negligible, then e can be interpreted as the 

probability of breaking the QKD protocol. Formula (11) 
relates the security parameter with the difficulty of breaking 
a cipher, which, when using an e-secure key by the legitimate 
parties, can be estimated from below in terms of breaking 
difficulty with an ideal key, but providing a lower by e/a 
probability of breaking, where a is the lower estimate of the 
key generation probability.

When using a distributed key in a one-time pad mode, it is 
proposed to use Proposition 2 and formula (14) for the main 
operational meaning, which show how the set of possible 
(from the adversary’s point of view) plaintexts can be reduced 
as a result of using an e-secure key instead of an ideal one. A 
significant reduction of this set (up to a single element, i.e., a 
complete decryption of the message) is possible, but it has a 
low probability of the order of e. Therefore, even in this case, 
e can be considered, in order of magnitude, as the probability 
of breaking the QKD protocol. At the same time, we saw that 
a one-time pad requires not only a higher key generation rate 
than computationally secure ciphers, but also a significantly 
lower e value. 
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