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Abstract. A brief general review is presented of the theory of 
information transmission capacities of quantum communication 
channels, which is a development of the classical Shannon theory. 
Unlike a classical communication channel, a quantum channel is 
characterised by a whole set of different capacities, which depend 
on the type of transmitted information (classical or quantum) and 
on additional resources used during transmission. The main charac-
teristics of a quantum channel are considered: classical capacity, 
capacity assisted by entanglement between the channel input and 
output, quantum capacity and secret classical capacity. The unique 
role of the quantum entanglement property, which manifests itself, 
in particular, in a nonclassical phenomenon of capacity superaddi-
tivity, is emphasised.

Keywords: quantum information theory, quantum communication 
channel, coding theorem, capacity, entanglement, superadditivity.

1. Introduction

Quantum information theory is a scientific discipline that 
studies the laws of transmission and transformation of infor-
mation in systems obeying the rules of quantum mechanics. 
This review addresses only one, but very important topic, 
i.e. the coding theorem for quantum communication chan-
nels, and emphasises a special role played by the quantum 
entanglement property. The concept of channel capacity is 
central to Shannon’s classical theory. In the quantum case, 
this concept splits into several categories, giving rise to a 
whole range of informational characteristics of a quantum 
channel.

Quantum information theory is a source of a number of 
physically motivated mathematical problems that are often 
formulated quite simply, but difficult to solve (or still unsolved). 
Its main mathematical apparatus is linear algebra and the 
theory of operators in a Hilbert space, which is, as a rule, 
finite-dimensional. A detailed, more in-depth presentation of 
the issues in question, including numerous examples, can be 
found in books [1, 2], as well as in the course of lectures [3]. 
However, we should emphasise that since the time these 
books were written, progress has been made in solving some 
problem, which is reflected in this work.

2. Randomisation, entanglement 
and information

To understand the difference between classical systems and 
quantum systems from an information point of view, we con-
sider the following statement:

Principle (C). Introduction of additional independent noise 
into observations cannot increase the amount of information 
about the observed system. This principle seems reasonable 
and is indeed valid when it comes to classical systems. We 
refine it by giving a mathematical formulation. Let the observed 
classical system be described by a random variable Y. The 
uncertainty of the state of this system is described by another 
random variable X, correlated with Y. The entropy of the dis-
tribution { px} of a random variable X can serve as a measure 
of uncertainty:

logH X p px x
x

2= -_ i / . (1)

The amount of information about the system state, con-
tained in observation Y, is expressed by Shannon’s formula

;I X Y H X H Y H XY= + -_ _ _ _i i i i, (2)

;I X Y H Y H Y X;= -_ _ _i i i, (3)

where H XY_ i is the entropy of the joint distribution of ran-
dom variables X and Y; and H Y X H XY H Y; = -_ _ _i i i is 
the conditional entropy. Suppose that, in addition to Y, inde-
pendent noise Y0 is observed. Then, the amount of informa-
tion about the system state, contained in observation YY0, is 

;I X YY0_ i. A simple calculation using formulae (1) and (2) 
shows that

; ;I X YY I X Y0 =_ _i i. (4)

This is a quantitative expression of the above principle (C) for 
classical systems. The introduction of additional independent 
noise in the observation is called randomisation. Note that in 
classical statistics there are other situations (of a gaming 
nature, when an unknown state is chosen in the worst way for 
the observer) in which the probabilistic choice of a decision is 
on average beneficial. In the considered situation of simple 
observation, this principle seems obvious, if not trivial. 
However, it ceases to be valid when it comes to quantum sys-
tems.

Statement (Q). Introduction of additional independent 
quantum noise into observations (quantum randomisation) can 
increase the amount of information about the observed system. 
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To give an exact formulation, we recall the basic elements of 
the mathematical description of quantum systems. In quan-
tum theory,

– the system is described by a Hilbert space H ;
– the states of the system are described by unit vectors 
Hdy ;
– the measurement (ideal) with outcomes y corresponds to 

an orthonormal basis {ey} = E in H ; and
– the probability of the outcome y in measuring E in the 

state y is

y eP y
2; ;G Hy y=_ i . (5)

Let us now consider a quantum analogue of the situation of 
simple observation. The observed quantum system is described 
by a Hilbert space H ; the uncertainty of its state is expressed 
by specifying a family of unit vectors {yx} Ì H , where x are 
the values of the random variable X. Thus, this uncertainty has 
a classical character. If we perform a measurement {ey} = E 
over the system H , then the conditional probability of the out-
come y, provided that the state of the system is yx, according to 
the statistical postulate, will take the form

y x eP x y
2; ;G Hy=_ i . (6)

Together with the distribution of X, this conditional probabil-
ity determines the joint distribution of x and y values, which 
allows one to apply formula (2) to find the amount of infor-
mation about the state of the system, obtained by this mea-
surement, which we denote as ,I X E_ i.

Quantum noise is another system that is described by a 
Hilbert space H0  with a fixed state vector .H0 0dy  To describe 
the totality of the observed system and noise, it is necessary to 
make use of the following postulate of quantum theory.

The composite system H , H0  is described by the tensor 
product of Hilbert spaces H H H07=

~
; the vector 07y y

describes a state in which the subsystems are independent, the 
first being in state y and the second in state y0.

Consider measurements over a composite system includ-
ing an additional independent quantum noise, which are 
described by orthonormal bases Eu  in the space H

~
, and the 

corresponding amount of information ,I X Eu_ i. The exact for-
mulation of statement (Q) is that a strict inequality 

, ,max maxI X E I X E
E EH H

1
f f

u
u u

_ _i i (7)

is possible.
The simplest example, in which such an inequality does 

hold, is given by a two-level quantum system with a family of 

three equally probable states with equiangular vectors {y0, 
y1, y2} (Fig. 1). It is assumed that the vectors lie in a real sub-
space; for example, these can be polarisation vectors of coher-
ent monochromatic laser radiation. It was shown in [4] that 
for such a system

, /max logI X E 3 22
E H

=
1

3_ _i i » 0.459,

whereas

, /max logI X E 3 22
E H

=
1

u
u u

_ _i i » 0.585.

Both maximisation problems are mathematically non-
trivial, and we present here only the results. The first maxi-
mum is reached on the basis E consisting of two vectors 
located symmetrically with respect to any pair of vectors 
{y0, y1, y2}. To describe the solution to the second problem, 
we note that it can be reformulated as the maximisation 
problem for all possible overcomplete systems in the space 
H  of the observed system. A family of vectors {jy} H1  
that satisfies the condition

; Hy
y

2 2 d;G Hy j y y=/  (8)

is called an overcomplete system.
This condition is similar to the condition of complete-

ness of the basis, but the system {jy} does not need to be 
orthonormal or even linearly independent. Accordingly, 
every vector is decomposed via the components of an over-
complete system, but the decomposition may not be unique. 
It can be proved that every overcomplete system is obtained 
by projection P onto H of an orthonormal basis e Ey =u u# -  in 
some extension H

~
 of the original Hilbert space : PeH y yj = u ; 

this statement is a special case of the classical theorem of 
M.A. Naimark (1940) on the extension of a generalised 
spectral measure. Moreover, the extension can always be 
chosen so that H H H07=

~
, with H  being identified with 

the subspace H 07 y  (see [1]). Then the conditional probabil-
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Figure 1. Information optimum for three equiangular state vectors.
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ity of the outcome y in measuring Eu  is  yP y
2; ;G Hy y j=_ i , 

and the difference between the left- and right-hand sides of 
(7) is that in the first case the maximum is taken over all 
orthonormal bases, while in the second, over all overcomplete 
systems in H . An optimal overcomplete system consists of 
three equiangular vectors {j0, j1, j2} of length /2 3 , orthog-
onal to the corresponding state vectors (see Fig. 1). Sasaki et 
al. [5] experimentally demonstrated an optimal measurement 
of Eu  for three states of a plane-polarised photon using the 
polarisation of reference field as an auxiliary system H0 .

Thus, the phenomenon (Q) does hold for quantum sys-
tems. It is based on (unusual from the classical point of 
view) properties of composite quantum systems, which are 
described by the tensor product of subsystems. The tensor 
product of Hilbert spaces, along with vectors of the form 

07y y , contains all possible linear combinations (superpo-
sitions) of jj j

07y y/ . The states of a composite system, 
defined by vectors of the first kind, are called nonentangled, 
while all the other states, not reducible to such vectors, are 
called entangled. Entanglement is a purely quantum prop-
erty, partly related to classical correlation, but not reducible 
to it. The presence of entangled states makes it possible not 
only theoretically, but also experimentally to refute the 
hypothesis of hidden parameters, i.e., the possibility of a 
classical probabilistic description of quantum systems satis-
fying the physically motivated condition of locality. A large 
chapter of the modern quantum information theory is the 
quantitative theory of entanglement of states, a kind of com-
binatorial geometry of tensor products of finite-dimensional 
Hilbert spaces (see, for example, [6]).

Dually, there are measurements in the composite quan-
tum systems described by bases consisting of entangled vec-
tors. Only these measurements make information inequality 
(7) possible in a situation when the state of the observed sys-
tem and noise are not entangled. More generally, consider 
two quantum systems H1  and H2 , which are in an indefinite 
nonentangled state. Let I1, I2 and I12 be the maximum 
amounts of information about the state, obtained from mea-
surements on systems 1, 2 and composite system 12, respec-
tively. Then, in the general case, I12 > I1 + I2. This phenome-
non of strict information superadditivity occurs and plays an 
important role in the theory of quantum communication 
channel capacity.

3. Shannon’s theorem

Before considering quantum channels, recall the concept of 
capacity in the classical information theory. The central role 
is played by coding theorems, which establish the possibility 
of asymptotically error-free transmission of information 
through a noisy channel at transmission rates not exceeding a 
certain threshold value, which is called capacity [7].

Mathematically, a noisy channel is specified by the condi-
tional probability p ( y|x) of receiving a signal (letter) y at the out-
put, provided that the signal x is at the input. If a long message is 
transmitted, x(n) = (x1, . . . , xn ), and each letter is transmitted 
independently (a memoryless channel), then the probability of a 
message at the output is p ( y (n)|x (n) ) = p ( y1|x1) . . . p( yn|xn). 
Information transfer can be displayed as follows:

X

X
X

X

Y
Y

Y

Y( )

1

2

1

2 ( )n

n n

n

"

"

"

h h
= =

Z

[

\

]
]

]]

_

`

a

b
b

bb

,

where Xi and Yi denote random variables at the channel input 
and output, respectively (i = 1, . . . , n). The capacity of such a 
channel is given by Shannon’s formula

;maxC I X Y
X

= _ i, (9)

where the maximum is taken over all possible distribu-
tions of the input signal. Defining a similar quantity C( )n =

;max I X Y( ) ( )
X

n n
( )n _ i for messages of length n, we have C( )n =   

nC. This property of capacity additivity indicates absence 
of memory, or correlations between consecutive uses of a 
channel.

Encoding messages at the input involves a special choice 
of transmitted messages, in which messages at the output cor-
responding to different messages at the input are as distin-
guishable as possible. The coding theorem states that the 
number of messages of length n, which can be transmitted 
asymptotically (at n ® ¥) without errors, is N ~ 2 nC. In other 
words, nC is the number of binary digits (bits) necessary and 
sufficient for asymptotically error-free transmission, with the 
optimal choice of messages at the input and their optimal dis-
crimination at the output.

4. Quantum coding theorem

Quantum states, which are described by unit vectors of a 
Hilbert space, are pure states. It is convenient for the pure 
state to denote by Py  the orthogonal projector onto the cor-
responding vector y. Quantum statistics also considers mixed 
states. Such a state is a statistical mixture of several pure 
states P

i}
, taken with probabilities pi, and is represented by 

the density operator p Pii i
r = }/ . The density operator is 

characterised by two properties: 1) r is a Hermitian positive 
operator; and 2) r has a unit trace, Trr = 1. Thus, the eigen-
values of the density operator form a probability distribution. 
The entropy of this distribution is called entropy of the state 
r, or (in the operator form)

( ) log logTrH s s2 2j j
j

r r r= - = -/ .

The simplest quantum communication channel is speci-
fied by a family of quantum states { rx}, where x is the 
input signal. This channel is called a classical-quantum 
channel with a classical input and a quantum output. The 
mapping x ® rx in compressed form contains a descrip-
tion of the process that generates the state rx. For example, 
let x = 0, 1, where r1 is the coherent state of the laser beam 
and r0 is the vacuum state; then we have a classical-quan-
tum channel with two pure nonorthogonal states. At the 
channel output, a quantum measurement is performed, 
which is described in general by an overcomplete system 
{jy} = E, so that the conditional probability of the out-
come y under the condition of the input signal x has the 
form Try x PP y x y x y

; ; ;G Hj r j r= = {_ i .
If letters of a message of length n are transmitted indepen-

dently, then the transmission is described by a diagram
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where x xn1
7 7gr r  is the output density operator in the ten-

sor product of the spaces H H Hn 7 7g=7 , correspond-
ing to a message (x1, . . . , xn ). Let the input messages have 
some distribution corresponding to a random variable X (n). 
The measurement E ( )nu  generating a random outcome Y (n) is 
performed at the output. Denoting the amount of informa-
tion corresponding to the measurement E ( )nu , as 

, ;I X E I X Y( ) ( ) ( ) ( )n n n n/u_ _i i, we find

, .max I X E C
,

( ) ( ) ( )

X E

n n n

( ) ( )n n
=u

u
_ i

Unlike in the case of a classical channel, a strict inequality 

C (n) > nC (1), (10)

is possible i.e. for quantum memoryless channels, the trans-
mitted classical information can be strictly superadditive, 
which, of course, is due to the existence of entangled measure-
ments at the channel output. For this reason, we cannot assert 
that the capacity is equal to C (1) as in the classical case; instead 
we define it as

/limC C n( )

n

n=
"3

.

Remarkably, however, that for a quantity defined in this 
way there is an explicit expression

,maxC p
p

x x
x

c r= _ i# #- - , 

where

,p H p p Hx x x x
x

x x
x

c r r r= -_ d _i n i# #- - / / . (11)

This statement represents the content of quantum coding 
theorem. The inequality «£» follows from the entropy bound 
which was proven in 1973 [8]. The attainability of this bound 
was established in 1996 (for more details on the history of the 
proof of the coding theorem, see Ref. [1]). Note that c can be 
considered as a quantum analogue of the expression 
H Y H Y X;-_ _i i for Shannon’s information.

By calculating the C (1) and C values for some specific 
channels, we can verify that C (1) < C and, therefore, inequal-
ity (10) does hold for sufficiently large n. For example, for a 
channel with two pure states y0, y1

C h 2
1 e=
-a k,

C h1 2
1 1(1)

2e
= -

+ -d n,

where 0 1;G He y y= , and 

( ) (1 ) (1 )log logh p p p p p2 2= - - - -  (12)

is the binary entropy. Indeed, C (1) < C for 0 < e < 1; in par-
ticular, lim e ® 1C/C (1) = ¥.

Both in case C and in case C (1), the maximising distribu-
tion ascribes equal probabilities 1/2 to signal states, and the 
information-optimal measurement in case C (1) is given by 
the basis {e0, e1} located symmetrically with respect to these 
states.

For a channel with three pure symmetric states (see Fig. 1), 
C = 1, i.e., such a channel is asymptotically ideal! Of course, 
as in the classical information theory, the coding theorem 
only indicates the existence of optimal coding and decoding, 
which allows one to reach a maximum capacity, but does 
not provide a way to construct them. For such a channel, 
C (1) = 0.645, and the maximum of information is achieved 
when two of the three states are selected with probabilities 
1/2, and the measurement is information-optimal for these 
two states [9]. Since we are dealing with the transmission of 
classical information, the quantity C is called the classical 
capacity of a quantum channel.

5. Additivity problem

Let us now consider the classical capacity of a channel with 
both a quantum output and a quantum input. Such a chan-
nel is given by a linear completely positive mapping F , 
which transfers the states at the input to the states at the 
output, r rU l. The property of complete positivity means 
that the trivial extension of the channel by means of an ideal 
channel (defined by the identity mapping Id) of any finite 
dimension remains a positive mapping and, therefore, is also 
a channel,

r r7
Id

U

l* 4 .

A definition and a detailed discussion of this property can 
be found in [1]. It guarantees the preservation of positivity for 
the tensor product of any channels. The transmission of clas-
sical information through the channel n n7 7F F F=7

k  will 
then be expressed as:
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where coding means the selection of some quantum states ( )
x
nr  

at the channel input nF7  with probabilities px, and E( )nu  is 
some measurement at the output. Note that for fixed input 
states we obtain a (block) channel with a classical input, con-
sidered in Section 4. Applying the quantum coding theorem, 
we have the following expression for the classical channel 
capacity F :

limC n C
1

n

nF F=
"

7

3

r_ _i i, (13)

where

maxC H p p H
,p

i i
i

i i
ii i

r rF F F= -
t

r_ d _i n i7 7A A( 2/ / . (14)

There arises the following fundamental additivity hypoth-
esis: Is it true that for arbitrary quantum channels ,1 2F F  the 
equality

C C C1 2 1 27F F F F= +
?r r r_ _ _i i i (15)
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holds [note that the validity of (15) with the sign «³» is obvi-
ous]. If this hypothesis were valid, it would mean that the use 
of entangled states at the input, in contrast to entangled mea-
surements at the output, does not allow the amount of trans-
mitted classical information to be increased:C CF F= r_ _i i. 
This question remained open until 2008, when Hastings [10], 
relying on the property of asymptotic concentration of mea-
sure [11] and the previous results by Winter and Hayden, 
showed that in very high dimensions there exist random uni-
tary channels exhibiting strict superadditivity with high prob-
ability. The practical significance of this result, however, 
remains unclear, since so far no constructive example has 
been presented.

At the same time, the additivity property was established 
for a number of important classes of quantum channels 
[12 – 14]. A significant achievement was the solution of the 
long-standing problem of Gaussian optimisers and the addi-
tivity of capacity for bosonic Gaussian communication 
channels [15, 16]. Such channels are (irreversible) transfor-
mations of systems with ‘continuous variables’, such as a set 
of quantum oscillators that approximately describes electro-
magnetic radiation. For a wide class of ‘phase-insensitive’ 
bosonic Gaussian channels, including attenuators, amplifi-
ers and classical noise channels, the optimality of coherent 
input states and the additivity of the minimum output 
entropy are proved. This made it possible to establish that 
the classical capacity of such channels is also additive and 
is achieved with Gaussian coding, as a result of which 
explicit expressions were given for the fundamental limits 
of the information transmission rate for the most usable 
classes of quantum channels in quantum optics (see, for 
example, [17, 18]).

6. Using entanglement 
between the input and the output

Suppose that there are two spatially separated quantum sys-
tems A and B, described by the entangled state rAB. Such 
states can be prepared experimentally and are of great inter-
est in relation with a direct verification of quantum theory: 
the correlations between A and B predicted by the theory do 
not fit into the framework of any acceptable classical model. 
It is known that the presence of entanglement alone does not 
make it possible to transmit information from A to B. 
However, if A and B are additionally connected by a quan-
tum channel ,F  then the presence of entanglement allows 
one to increase its classical capacity. If F  = Id is an ideal 
channel, then the gain in capacity provided by the so-called 
superdense coding is twofold [2]. This is achieved by using 
for encoding the maximally entangled states of the ortho-
normal basis in the AB system, which B can obtain due to 
the presence of the quantum channel F .

The stronger the channel differs from the ideal one, the 
greater the gain, and in the limit of channels with very large 
noise, it can tend to infinity. Generalising the superdense 
coding protocol, it is not difficult to give a mathematical 
definition of classical capacity using entanglement assis-
tance, for which there is a remarkable formula obtained by 
Bennett, Shor, Smolin and Thapliyal [19]* 

,maxC Iea rF F=
t

_ _i i, (16)

where ,I r F_ i is the quantum mutual information between A 
and B, given by the formula

, ;I H H Hr r r rF F F= + -_ _ _ _i i i i7 A . (17)

Here H r_ i and H rF_ i7 A  are the entropies of the input and 
output states, respectively; and ;H r F_ i is the so-called 
entropy exchange. To define the latter, we need introduce the 
concept of purification of a quantum state. Namely, for any 
density operator rA in the Hilbert space HA  there is a pure 
state, i.e., the one-dimensional projector Pr in the space 
H HA R7 , where HR  is the space of the reference system such 
that the partial trace of Pr in the space HR  coincides with rA. 
Moreover, the partial trace of Pr in the space HA , i.e., the 
state of the reference system, has the same entropy as rA. 
Entropy exchange is defined as

; IdH P7r F F F= t_ __i i i7 A  (18)

and can be interpreted as an analogue of the joint entropy of 
A and B. Then formula (17) is an analogue of the expression 

;I X Y H X H Y H XY= + -_ _ _ _i i i i for Shannon’s informa-
tion. Quantum mutual information has a number of natural 
properties, similar to those of Shannon’s information; in par-
ticular, it is subadditive with respect to the tensor product of 
the channels. Hence, the capacity Cea F_ i is additive. 

The practical realisation of the above protocol involves 
the spatial distribution of entanglement, which is currently an 
engineering challenge. Possible approaches to solving this 
problem are discussed in [20].

7. Quantum capacity

When classical information is transmitted over a quantum chan-
nel, it is recorded into a quantum state, which, therefore, repre-
sents an information resource. The peculiarity of this resource 
consists in the fact that the entirety of its information content 
(sometimes called quantum information) cannot be reduced to a 
classical message. This is due to the fact that the quantum state 
contains information about the statistics of all possible, includ-
ing mutually exclusive (complementary), measurements over the 
system. A simple argument based on the linearity of the equa-
tions of quantum evolution shows that, unlike classical informa-
tion, there is no ‘quantum Xerox machine’, that is, a physical 
device that allows one to copy quantum information.

Thus, the transformation of the quantum state "r rF7 A 
can be considered as the transfer of quantum information. It 
is natural to raise the question of asymptotically (for n ® ¥) 
error-free transmission by the channel nF7 :
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Quantum capacity Q F_ i is determined by the maximum 
dimension of the subspace of the input space vectors [~2 ( )nQ U ] 
for which the states corresponding to them are transmitted 
asymptotically without errors, i.e., almost reversibly. For 
Q F_ i there is an expression using coherent information

, ; ,maxI H H 0c r r rF F F= -_ _ _i i i7 A# -,* A simplified proof of formula (16) is presented in Ref. [1].
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namely

,lim maxQ n I1 ( )

n
c

n n

( )n
rF F=

"

7

3 t

_ _i i. (19)

The concept of quantum capacity and its relationship with 
coherent information at the heuristic level were discussed by 
Lloyd [21], who proposed the formula

,maxQ Ic rF F=
t

_ _i i, (20)

based on the assumption of additivity of coherent informa-
tion, which, however, was soon refuted. An exact definition 
of quantum capacity is given by Barnum et al. [22], who also 
proved the inequality with the £ sign in (19). The question of 
equality remained open until 2003, when Shor gave a sketch 
of the proof clarifying Lloyd’s arguments, and Devetak [23] 
presented a completely different proof based on the parallel 
between a quantum channel and a classical channel [7], and in 
the quantum case, the role the eavesdropper is played by the 
environment of the open system in question.

Nevertheless, the quantum capacity remains the least 
studied of the whole variety of capacities of a quantum com-
munication channel. Formula (19), due to its asymptotic 
nature, is hardly suitable for calculation, but it is known that 
for the so-called degradable channels [24] it is simplified to 
expression (20).

Smith and Yard [25] constructed an example of the remark-
able phenomenon of superactivation when the inequality 
Q 01 27 2F F_ i  holds for two quantum channels ,1 2F F  with 
zero quantum capacity. Shirokov [26] showed that a similar 
phenomenon can occur for quantum zero-error capacity. 
This can be considered as an extreme manifestation of the 
capacity superadditivity, which is based on the unusual geo-
metric properties of the tensor product of channels that 
improve the ‘reversibility’ of some transmitted states.

8. Secret classical capacity

Consider the transmission of classical information in which 
there are three participants: the sender A, the receiver B, and 
the eavesdropper E. A quantum channel subject to eaves-
dropping BEF  is defined by isometric mapping of the space A 
into the space BE. Suppose A selects states { }A

xr } with prob-
abilities { };px  then participants B and E receive the states 
{ }B
xr  and { }E

xr , respectively; the upper bounds of Shannon’s 
information for B and E are the quantities ({ },{ })px B

xc r  and 
({ },{ }),px E

xc r  where c is defined by formula (11). By analogy 
with a classical eavesdropping channel [7], the ‘secrecy’ of 
transmission can be characterised by the quantity

({ },{ }) ({ },{ })p px B
x

x E
xc r c r- .

Assuming that the input states A
xr  are pure, and denoting the 

average state of the input ensemble as pA x A
x

x
r r=r / , we 

obtain the key relation

( , ) ({ },{ }) ({ },{ })I p pc A B x B
x

x E
xr c r c rF = -r , (21)

which reveals an important relationship between coherent 
information and secret classic capacity (defined below); the 
relation also indicates a way of proving direct coding theorem 
for quantum capacity through consideration of an eavesdrop-
ping channel.

The exact upper bound of the achievable transmission 
rates, provided that the mutual information between A and E 
asymptotically disappears, is called the secret classic capacity 
( )Cp BEF  of the eavesdropping channel. This capacity is 

expressed as

( ) ({ },{ })lim maxC n p1
,

( )
p BE

n p
i
n

B
i

( ) ( )

( )
n n

nc rF =
"3

7

/
 

 ({ },{ })p ( )i
n

E
i
( )nc r- A, (22)

where the maximum is taken over all finite sets of states 
( )n { }A

i
( )nr=/  in H A

n7 and probability distributions p(n) = 
{ }p ( )i

n  (we use the notations [ ],B
i

B
n

A
i

( ) ( )n nr rF= 7  and E
i
( )nr =  

[ ]E
n

A
i
( )nrF7 ).

Relations (19), (21) and (22) yield an important inequality 
between the quantum and classical secret capacities:

Q CB p BEGF F_ _i i.

This inequality follows from the fact that in calculating 
Cp BEF_ i, all ensembles of states are taken into account, and 
in calculating Q BF_ i, only ensembles of pure states for A are 
considered. In general, a strict inequality is possible; there-
fore, of particular interest is the following statement: If the 
channel B is degradable [24], then

,maxC Q Ip BE B c rF F F= =
t

_ _ _i i i. (23)

This makes it possible to explicitly calculate the capacities Cp 
and Q in a number of interesting cases (see [1] for more 
details).

At the end of the brief discussion of eavesdropping chan-
nels, we mention a vast field of quantum cryptography, which 
is an independent and far developed chapter of quantum 
information science (see, for example, reviews [27, 28]).

9. Conclusions

We have considered the main capacities of quantum commu-
nication channels. Further development of the theory leads to 
the study of multiple-user quantum channels (“quantum 
Internet”) [29]. A large part of quantum information science 
is devoted to the study of systems with continuous variables 
based on the principles of quantum optics, as well as hybrid 
optical-atomic systems. Many experiments and protocols of 
quantum information theory, carried out at the laboratories 
of a number of developed countries, are implemented on such 
systems.
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