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Abstract.  We consider the problem of decoherence in a Bose – 
Einstein condensate (BEC) of noninteracting atoms during 
interferometric probing with a classical monochromatic external 
field. The condensate is located in one of the arms of the 
Mach – Zehnder interferometer, while part of the radiation from 
the interferometer output is fed back to the input, thereby clos-
ing the coherent feedback loop. A more general setting of the 
problem is also considered, in which the condensate is located in 
a system of interferometers ‘nested’ into each other, while part 
of the output radiation of each of them is also fed back to its 
input, closing the so-called multiloop feedback. The possibility 
of effective control of decoherence rates of various matrix ele-
ments is shown. The application of feedback of the proposed 
type to BEC in a double-well potential is investigated. It is found 
that this feedback allows efficient control of the distribution of 
atoms between the wells.

Keywords: Bose – Einstein atomic condensate, interferometric 
probing, feedback, decoherence rate.

1. Introduction

Atomic Bose – Einstein condensate (BEC) is a nonclassical 
state of matter. It is characterised by the majority of atoms 
being in a single quantum state. This state determines the 
average spatial density of atoms and certain phase rela-
tions between the atomic arrangements. In other words, 
BEC posesses spatial coherence. It can be detected using 
interference experiments with beams of optical radiation 
probing various regions of the volume occupied by the 
condensate. However, probing with even a strongly non-
resonant field makes the condensate an open quantum sys-
tem, which leads to the loss of macroscopic coherence. It is 
of interest to study this process and search for methods to 
control it. 

Quantum control theory appeared in the 80s of the last 
century [1] and in recent years has been significantly devel-
oped due to the progress of experimental techniques that 

allow experiments with single quantum objects. Feedback is 
one of the most effective methods of control. The main appli-
cations of this theory include controlling the evolution of 
quantum systems and engineering of quantum states such as 
squeezed [2], entangled [3], and superposition states [4]. As 
applied to atoms localised in an optical trap, the feedback is 
mainly aimed at increasing the efficiency of their optical cool-
ing [5, 6]. The main method in this case is the phase-contrast 
imaging of the condensate with the subsequent tuning of the 
trapping potential [7, 8]. 

In the present work, we propose a new feedback control 
scheme for the atomic BEC, based on interferometric prob-
ing of the condensate, with part of interferometer output 
radiation being redirected back to its input. Describing 
BEC with a simple model, we have shown that this type of 
feedback allows efficient suppression of the BEC coher-
ence loss. In addition, a new method for controlling the 
spatial distribution of atoms in a BEC is proposed. Its 
advantage over standard approaches is that it does not 
involve adjustments of the trapping potential. Instead, the 
phase shifts situated in the interferometers undergo rapid 
switchings. 

Section 2 describes the model of BEC decoherence. 
Section 3 discusses the use of interferometric feedback for 
controlling decoherence within the framework of the chosen 
model. In Section 4, we study a modified feedback option 
with the addition of phase shift switching and its use for con-
trolling distribution of atoms in a BEC trapped in a double-
well potential. The results of the work and their discussion are 
presented in the Conclusions.

2. Decoherence of atomic condensate 

The present work is devoted to the study of a new scheme 
for BEC control; therefore, to describe the condensate 
itself, we will use a simplified model that does not take 
into account the effects of interatomic interactions. The 
condensate is represented by a single boson mode. We 
also consider the probe radiation to be classical and non-
resonant to atomic transitions, and the radiation wave-
front to be wide enough so that the field is uniform over 
the characteristic scale of BEC localisation. In this case, 
the interaction of the condensate atoms with the radia-
tion is dispersive. As a result of this interaction, the com-
plex amplitude E  of the probe radiation acquires a phase 
shift proportional to the number of atoms in the conden-
sate: eE E i n

"
z t , where the parameter f is the phase shift 
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introduced by a single atom, and nt  is the operator of the 
number of atoms in the condensate mode*. 

In the master equation describing the evolution of the 
condensate state, the interaction of radiation with the con-
densate is described by the dissipative part, which has the 
form of a Lindblad structure. The process of decoherence 
(dephasing) is associated with the irreversible departure of 
radiation carrying information about the condensate from 
the interferometer. The corresponding Lindblad operator in 
the case of a quantized field is a photon annihilation opera-
tor. Obviously, in our case it must be proportional to the 
amplitude of the radiation that has left the resonator [11], 
which, after acquiring a phase shift, becomes an operator. 
Thus, the equation for the density matrix tt  has the form: 

d
d e e
t deph

i in nr n r nr= -z z-t t tt t
c m .	 (1)

The parameter n is proportional to the beam intensity and 
determines the decoherence rate. 

To begin with, we consider the decoherence process on its 
own, without taking into account the dynamics of the con-
densate itself. It is easy to proceed from Eqn (1) to a set of 
independent equations for the matrix elements of the statisti-
cal operator tt  in the Fock basis {|nñ; n = 0, . . . , Nat} of the 
atomic mode (Nat being the total number of atoms in the con-
densate mode): 

r r| | ( ) | | ,
d
d i
t
m n m nmn mnG H G Hg w= - +t t

[( ) ],sin m nmnw n f= - 	 (2)

{1 [( ) ]}.cos m nmng n j= - - 	

3. Interferometric probing scheme  
with coherent feedback 

The proposed feedback scheme is organised as follows. The 
condensate is located in the Mach – Zehnder interferometer, 
to the input of which classical coherent radiation is supplied, 
as described in the previous section. The radiation from one 
of the outputs of the interferometer is redirected back to the 
input (balanced) beam splitter (Fig. 1a). Thus, feedback arises 
in the system, similar to that found in electronic circuits: part 
of the system output signal is fed back to the input. According 
to the classification adopted in the theory of quantum feed-
back, feedback of this type is referred to as coherent [12], 
because it implies no explicit measurement in the controlled 
system. 

Let us find the relationship between input and output 
signals. According to Section 2, as a result of the interaction, 
the amplitude of the radiation transmitted through the con-

densate becomes an operator acting in the space of conden-
sate states. In the presence of feedback, this applies to the 
amplitudes of all fields except the input one. As usual, we 
will denote these operators by the symbol Ù over the corre-
sponding variable. We emphasise that the probing field 
acquires the operator nature exclusively as a result of inter-
action with the condensate. For the amplitudes at the input 
beam splitter, we have the expressions (see the notation in 
Fig. 1a): 

2
1E E E

( )
1 0

1
= +t t6 @,	

(3)

2
1E E E

( )
2 0

1
= - +t t6 @.

A similar relation can be written for the output signal: 

e e
2
1E E E

( ) i i n
0
1

2 1= +i zt t t t^ h,	

(4)

e e
2
1E E E( ) i i n1

2 1= +- i zt t t t^ h.

It is assumed here that the delay introduced by the feedback 
circuit is negligible. By virtue of relations (3), (4), we obtain 
the expression 

e e
e e e
2
1 2

E E( )
i i

i i i

n

n
1 =

- -

+ -
i z

i i z
t

t

t^ h
.	 (5)

Both the numerator and the denominator in (5) are operator 
expressions. Division in this case means multiplication by the 
operator, inverse of the denominator. It is easy to show that 
the operator on the right-hand side is unitary, and therefore 
we can write the expression eE E( ) ( )i n1 1= |t t . 

This scheme can be generalised by placing the resulting 
system with a feedback circuit in the arm of the new Mach – 
Zehnder interferometer and connecting again one of its out-
puts to the input. This procedure can be repeated, resulting in 
a sequence of ‘nested’ interferometers (Fig. 1b), each contain-
ing a feedback loop. As far as the authors know, the concept 
of multi-loop feedback has not been described in the earlier 
literature. If we number interferometers from 1 to N, then for 
the output amplitudes of each of them, we can compose the 
following relation (taking into account the fact that each 
interferometer generally contributes its own phase shift  qk): 

* A more consistent theory would require a quantum treatment of both 
the condensate and the probe field. Their interaction would be reflected 
in the Hamiltonian by the term nn ph\ tt , where npht  is the number of pho-
tons in the probe beam. However, in the case of small photon fluctua-
tions, the last operator can be replaced by the average number of pho-
tons in the beam .phnr This is valid, e.g., for Glauber coherent states |añ 
with |a| >> 1. One of the possible approaches to accounting for fluctua-
tions of the probe field is discussed in Refs [9, 10].
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Figure 1.  Scheme of interferometric probing with (a) one coherent feed-
back loop and (b) several feedback loops. 
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eE E( ) ( )ik nk= |t t ,	
(6)
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In the case when all phase shifts are similar and equal to q, 
this relation becomes recurrent and has a solution in the 
closed form: 

2
(1 2 )

e
e e

e e e
2 1

2 1( )
( )
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i i

i i i
n
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^
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h

h
.	 (7) 

It is easy to verify that the modulus of the right-hand side of 
Eqn (7) is also equal to unity, i.e., the amplitude of the output 
radiation remains unchanged. The parameter q is easy to con-
trol, thereby realising a simple method for changing feedback 
parameters. In the remainder of the paper, we will focus on 
the case of identical phase shifts.

Taking Eqn (7) into account, the equation of evolution for 
a condensate placed in a chain of N nested interferometers 
with coherent feedback has the form [by analogy with Eqn (1)]:

	 ,
d
d e e
t

( ) ( )

deph

i in nr n r nr= -| |- NNt t tt t
c m 	 (8) 

and in terms of matrix elements we obtain the expression

r r| | | | .
d
d e e
t
m n m n1( ) ( )i im nG H G Hn= -| |-N Nt t6 @ 	 (9) 

Consider how the introduction of coherent feedback 
affects the process of dephasing in the probed BEC. Figure 2 
shows the decoherence rates of the matrix elements of the 
condensate statistical operator. It can be seen that even when 
using a single interferometer, the feedback efficiently sup-
presses decoherence of most matrix elements. With an increase 
in the number of interferometers, the effect becomes even 
more pronounced and the decoherence rate remains 
unchanged only for matrix elements with numbers n for which 
fn = 2p. This is explained by the fact that the matrix elements 
of expression (5) in states with such n tend to E , thus reducing 
the feedback effect on the decoherence of the corresponding 
density matrix elements. 

4. Coherent feedback with phase switching

In experimental applications, the problem of preparing con-
densate with a given spatial distribution often arises. In par-
ticular, this is important when studying various aspects of the 

tunnelling process between multiple localisations of the BEC 
[13, 14]. In the scheme considered above, the spatial structure 
of the condensate did not arise. In the general case, the situa-
tion when the probe beam illuminates only part of the space 
occupied by the condensate is of interest. In this case, the trap 
in which the condensate is localised is assumed created inde-
pendently (not using probe radiation). Obviously, this leads 
to the separation of condensate into the illuminated and 
nonilluminated parts and destroys the coherence between 
them. In the present section, a model of condensate in a dou-
ble-well trap will be used to describe this process. The intrin-
sic dynamics of such condensate is described by the 
Hamiltonian of two bosonic modes: 

H a a b b a b b aA Bw w l= + + +@ @ @ @t t t t t t t t t^ h.	 (10) 

Here the operators at , a@t  and bt , b@t  correspond to the creation 
and annihilation of photons in wells A and B, and the con-
stant l quantifies the process of atomic tunnelling from one 
well to another. 

Suppose now that atoms in only one well (let it be well A 
for definiteness) are subject to optical probing. From Eqn (1) 
it can be seen that the diagonal elements of the density matrix 
do not change in the course of decoherence. They also do not 
change under the influence of probing with feedback described 
by Eqn (8), since the Lindblad operators, although they 
acquire a more complex form, remain unitary and diagonal in 
the number of atoms in the illuminated well, which demon-
strates a certain limitation of the scheme considered in 
Section 3. 

In Ref. [15], a different method for probing a BEC 
localised in a double-well trap was considered. The con-
densate was also placed in a Mach – Zehnder interferome-
ter, and only one potential well was illuminated. The con-
trol was implemented by fast switching of the trap poten-
tial, triggered by the detection of photons in the output 
channels of the interferometer. This type of feedback is 
called measurement-based feedback [12]. It was shown that 
using it allows creating nontrivial distributions of atoms in 
the wells. However, for this purpose multiple switching of 
the trap potential is required, which is not very convenient. 
In addition, a rather strict constraint on the switching time 
arises. On the one hand, it must be fast enough to neglect 
the delay in the feedback loop. On the other hand, fast (in 
comparison with the atomic evolution time inside the well) 
switching of potential leads to the excitation of higher 
vibrational levels in the well and to a violation of the two-
mode approximation. As will be shown below, the addition 
of coherent feedback to this scheme makes it possible to 
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achieve a similar effect without the need to change the trap 
potential itself. 

In Section 3, we considered a system of nested feedback 
interferometers with the same phase shifts in the free arms. In 
contrast to the potential of the trap in which the condensate is 
localised, a collective change in these phase shifts is easily fea-
sible. In the scheme shown in Fig. 3, the detection of photons 
in a particular output channel of the external interferometer 
causes phase shifts in a coherent feedback system similar to 
that shown in Fig. 1. To describe such feedback based on 
phase switching, there is a very convenient formalism of the 
so-called hybrid statistical operators [16]. The introduction of 
feedback requires considering the combination of a quantum 
subsystem (condensate) and a classical subsystem (a device 
that regulates the state of the controlled phase shift). 

We successfully applied this approach in a series of works 
devoted to the study of feedback based on phase switching in 
systems of single emitters [17]. Its essence is that the ordinary 
statistical operator of a quantum system is replaced by a set of 
hybrid operators, numbered by the classical index. Each of 
these operators is a conditional state of the system corre-
sponding to a particular state of the feedback circuit. In our 
case, there are only two such states corresponding to one or 
another output of the external Mach – Zehnder interferome-
ter. We will denote them by superscripts ‘+’ and ‘–’. Another 
difference from Eqns (1) and (8) considered above is the exis-
tence of two output channels instead of one; the correspond-
ing Lindblad operators are labelled by the subscripts ‘+’ and 
‘–’. The Lindblad operators also depend on the current value 
of the phase shifts q; therefore, they additionally acquire the 
classical index ‘±’. Keeping this in mind, we can write the 
system of quantum master equations for new hybrid opera-
tors:

,
d
d i
t
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where

1e
2
1E( ) ( )i n= -

! |
+

! At t6 @;	
(12)

e
2
1 1E( ) ( )i n= +! |

-
! At t6 @;	

operators ( )nA|! t  have the form similar to Eqn (7), but with 
the replacement q ® q±; curly brackets denote an anticom-
mutator. 

It is worth commenting on the structure of dissipative 
parts in the system (11). The quantum jump itself – a sharp 
change in the quantum state of the system as a result of detect-
ing a photon at the output of the interferometer – is described 
by the so-called sandwich term in the Lindblad structure [18]. 
Depending on the value of the phase shift before this detec-
tion, two types of sandwich terms are possible. The hybrid 
statistical operator contained in each of them has a phase 
shift index prior to the switching. 

It can be seen that even the use of the simplest two-
mode model leads to equations that are too complicated 
for a complete analytical treatment. Due to the focus of the 
present work, the study of the feedback is of main interest; 
therefore, it is natural to concentrate on the case of a max-
imum impact of feedback. Since phase switchings are trig-
gered by photodetections, it is natural to consider the case 
when they occur frequently, i.e., the case of high intensities 
of probe radiation. This corresponds to a regime of strong 
decoherence. In this case, the dissipative parts of Eqns (12) 
are dominant. 

For the dissipative part, we can choose its ‘natural’ basis, 
in which this part can be reduced to a balance equation resem-
bling the Pauli equation, i.e., the Fock basis for the illumi-
nated well. If the decoherence rate in the illuminated well is 
high enough, then we can assume that the coherence in this 
basis does not extend beyond one term from the diagonal. 
Then for hybrid statistical operators the following ansatz can 
be used [19]: 

+n| | | 1 |n n n( ) ( ) ( )
A An

n

n7 7H G H Gr r r=! ! !
++t t t^/

	 1|nG +|n ( )
A n7H r+ !

-t h ,	 (13) 

where, obviously, ( ) ( )
n nt t=! ! @
- +t t , and ( )Tr p( ) ( )

n n nt t+ =+ -t t  is the 
probability of observing n atoms in well B. Operators ,( )nt !t  
( )
nt
!
+t , and ( )

nt !
-t  belong to the nonilluminated well B. However, 

it turns out that going for the  following linear combinations 
is more convenient: 

( ) ( )
n n nr r r= ++ -t t t ,

r ( ) ( )
n n nr r= -+ -t t t ,	

(14)
( ) ( )

n n nr r r= +! ! !
+ -t t t ,

r ( ) ( )
n n nr r= -! ! !

+ -t t t .

The equations for these linear combinations have the form 
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Figure 3.  Scheme of interferometric probing of a double-well BEC with 
coherent feedback and phase switching.
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Note that the first equation in (15) is not different from 
the equation in the absence of feedback obtained in [19]. 
However, the operators nr!t  evolve already in a completely 
different way, which leads to different stationary distribu-
tions. Let us check under what relations between the param-
eters of the problem it is legitimate to use ansatz (13). For this 
purpose, let us analyse the equations for the operators nr+t  
and r n+t , since it is exactly their matrix elements that deter-
mine the coherence in the illuminated well. 

In the equation for nr+t , the ‘source’ terms are proportional 
to b nl rt t  and bn 1lr +t t , and in the equation for r n+t , terms propor-
tional to brnl t t  and r bn 1l +t t . Thus, the coherence creation rate 
depends only on l. The terms proportional to n describe the loss 
of coherence. Therefore, if the rate of coherence loss significantly 
exceeds | l |, then expression (13) can be considered valid. Figure 
4 shows examples of the calculated coherence loss rates of the 
operators entering the ansatz (13) in comparison with the coher-
ence loss rate of nr+t  in the absence of feedback (the latter is 
equal to v(1 – cos f) [19]). It can be seen that the strong decoher-
ence condition is rather well satisfied for v(1 – cos f) >> | l |, and 
in this range of n values, the introduction of ansatz (13) is quite 
justified. The fulfilment of this condition is quite easy to ensure 
by increasing the intensity of the probe radiation or by increasing 
the height of the barrier between potential wells; the latter will 
lead to a decrease in the tunnelling parameter l. 

One more consequence of the introduced approximation 
is that the evolution of the operators r n+t  and nr+t  turns out to 
be adiabatically subordinate to the slowly evolving operator 
nrt . Therefore, the time derivatives in the last two equations in 

(15) can be neglected. 

Since the purpose of this section is to clarify the possibili-
ties of using feedback to control atomic distributions, we will 
be primarily interested in the diagonal matrix elements 

| |k knG Hr =t rn(k). Simple algebraic transformations make it 
possible to obtain for them a system of balance equations

( ) ( ( ), ( 1), ( 1), ( ),
d
d
t

k F k k k r kn n n n n1 1r r r r= - ++ -1

	 ( 1), ( 1))r k r kn n1 1- ++ - ,	
(16)

( ) ( ( ), ( 1), ( 1), ( ),
d
d
t
r k F k k k r kn n n n n1 1r r r= - ++ -2

	 ( 1), ( 1))r k r kn n1 1- ++ - ,	

where F1, 2 are linear functions of their arguments (we do not 
present explicit expressions for them because they are too 
cumbersome). It can be seen that this system determines the 
populations of states with a given total number of atoms Nat = 

n + k. Finding its solution is straightforward and  can be done 
numerically. 

As a criterion that demonstrates the possibility of creating 
nontrivial atomic distributions in the wells, we choose the 
quantity r0(Nat)/rNat(0), i.e., the ratio of the probability that 
all atoms are in the nonilluminated well B to the probability 
of the opposite situation when all atoms are in well A. When 
the switching of the phase shift q is absent, the stationary dis-
tribution of atoms between the wells is uniform and this 
quantity is equal to unity. Figure 5 shows the dependence of 
this quantity on phase shifts q± between which switching 
occurs. It is seen that when approaching the line q+ = q–, the 
quantity r0(Nat)/rNat(0) expectedly tends to unity. Overall, a 
rather complex landscape appears with multiple maxima and 
minima. This suggests that the correct selection of q± can 
allow efficient ‘pumping’ of atoms from one potential well to 
another. The nonequilibrium distribution arises as a result of 
permanently occurring phase shifts that change the phase 
relations between atoms in different potential wells.

5. Conclusions

In the paper, a fundamentally new interferometric feedback 
scheme was investigated and its prospectivity was demon-
strated by the example of relatively simple theoretical models. 
It is based on several coherent feedback loops using 
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Mach – Zehnder interferometers. We considered the applica-
tion of this scheme to the problem of controlling the state of 
an atomic BEC. It was found that this scheme can efficiently 
suppress the decoherence process caused by phase contrast 
probing of the condensate. This effect can find applications in 
preparation and storage of quantum states.

The proposed scheme also showed its effectiveness for 
controlling the spatial distribution of atoms in the conden-
sate. In the framework of the two-mode approximation, it 
was found that multi-loop feedback in combination with 
measurement-based feedback is capable of creating highly 
nonequilibrium stationary distributions of condensate atoms 
localised in a double-well potential.

Although the idea of organising the feedback of the con-
sidered type is quite simple, its experimental implementation 
is associated with certain difficulties. First of all, the main 
feedback tool, the Mach – Zehnder interferometer, is a highly 
delicate system to tune and to use. A study of how the features 
of a real experiment (in particular, the imperfect shape of the 
atomic cloud) will affect the results obtained will be the sub-
ject of a separate consideration. In addition, taking into 
account interatomic interaction is of undoubted practical 
interest. Another promising development of the present work 
is the study of the case of a quantized field. It seems that the 
probing of the BEC by essentially non-classical radiation (for 
example, being in a squeezed state) can lead to nontrivial cor-
relations between atoms and the field.
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Figure 5.  Dependence of the parameter r0(Nat)/rNat(0) on the controlled 
phase shifts q±/p for Nat = 10, wA = 5l, wB = 7l, f = p/50, n = 104l.


