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Abstract. Based on the rules for summing oscillator-strength mom-
ents, we derive analytical expressions for environmentally (ther-
mally) induced energy-level shifts and broadenings of circular Ryd-
berg states with maximum orbital (l ) and magnetic (m) quantum 
numbers, l = |m| = n – 1. The formulae for the energy of interac-
tion with blackbody radiation are presented in the form of series exp-
ansion in even powers of the small parameter h = Z2/(n3kBT ) << 1 
in the region of high temperatures T and principal quantum num-
bers n (Z is the charge of the residual ion). The expression for the 
thermally induced width contains a negative temperature-indepen-
dent term coinciding in absolute value with the spontaneous width, 
so that the temperature-independent term is absent in the expres-
sion for the sum of the spontaneous and thermally induced widths. 
A similar expansion in powers of h for the thermally induced shift 
also contains a temperature-independent term proportional to 1/ n6.

Keywords: atom, circular Rydberg states, sums of oscillator 
strengths, thermal radiation, energy level width, shift.

1. Introduction

The methods of multiphoton laser spectroscopy enable exci-
tation of atoms and ions into circular Rydberg states |nlm ñ 
with large values of the principal (n), orbital (l ), and magnetic 
(m) quantum numbers (l = |m| = n – 1) [1 – 4]. Spontaneous 
decay of such states is possible due to dipole-allowed radia-
tive transitions to the states |n'l'm'  ñ with principal, orbital, 
and magnetic quantum numbers, n' = n – 1, l' = l – 1, |m'| = 
|m| – 1. The matrix elements of such transitions rapidly 
decrease with increasing n and l. Therefore, the natural life-
time of Rydberg states increases in proportion to n5, in full 
agreement with the general dependence proportional to the 
product n3l 2 [5]. Using specially selected external conditions 
that exclude the possibility of spontaneous emission, the 
lifetime of Rydberg states can be increased by several orders 
of magnitude [1 – 4], significantly expanding the possibilities 
for manipulating highly excited atoms and their practical 
application. In the field of virtually inevitable thermal radia-
tion, the lifetimes and frequencies of radiative transitions for 
Rydberg states can vary significantly. Therefore, for the 
properties of circular states to be successfully controlled, a 
detailed calculation of the dependences of the shifts and 

broadenings of Rydberg energy levels on the ambient tem-
perature T is needed.

The wave functions and energies of circular Rydberg sta-
tes are close to hydrogen-like and identical for all atoms, in 
con trast to states with small orbital moments, which have a 
specific energy structure characteristic of atomic particles of 
each specific chemical element. The energy spectrum of states 
with an orbital momentum l < 5 is described by the Rydberg 
formula, which differs from the formula for the spectrum of a 
hydrogen-like atom by the fact that the principal quantum 
number n is replaced by the effective principal quantum num-
ber n = n – dl determined by the quantum defect dl of a series 
of states with a certain angular momentum l. For states with 
l > 5, the defect dl practically does not differ from zero in all 
many-electron atoms. Thus, the manyfold single-electron 
state with a principal quantum number n coincides with the 
corresponding manyfold of a hydrogen-like atom in which 
there are no states with small orbital momenta l < 6. The-
refore, highly excited circular states are identical to the cor-
responding states of the hydrogen atom described by Cou-
lomb wave functions. The use of these functions allows 
obtaining analytical expressions for the constants of the 
polarisation and dispersion long-range interactions of atoms 
in circular Rydberg states [6, 7], which are necessary to evalu-
ate the possibility of using the blockade effect of resonant 
excitation of Rydberg states [8 – 10].

Along with the effects of interatomic interaction, environ-
mental thermal radiation has an important effect on the struc-
ture of the energy levels of Rydberg states. The authors of 
Refs [11 – 13] obtained asymptotic expressions for the shift 
and broadening, the accuracy of which has so far been deter-
mined by comparing with the results of numerical calcula-
tions for specific states in a specific range of blackbody radia-
tion temperatures. To analytically present the results of such 
calculations, the contributions to the thermally induced shift 
and broadening from ionisation [14 – 16] were separeted from 
those of thermally induced decays and excitations to the states 
of a discrete spectrum [17, 18].

In the present paper, we have obtained analytical expres-
sions for corrections to asymptotic formulae using the rules 
for summing the oscillator-strength moments. Section 2 pres-
ents the procedures for finding closed expressions for the sums 
of oscillator-strength moments. For circular states, we used 
the sum rules to obtain analytical expressions for summing the 
moments over an infinite set of highly excited states, includ-
ing integrals over the continuous spectrum. Section 3 discus-
ses the effect of environmental thermal radiation, referred to 
in the literature as blackbody radiation (BBR), on the lifetime 
described by the imaginary part of the energy of the level. 
Using the rules for summing the oscillator-strength moments, 
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we have derived analytical formulae for corrections to the 
asymptotic expression for the thermally induced decay rate. 
In Section 4, analytical expressions are obtained for correc-
tions to the asymptotic formula that describes the BBR-
induced changes in the energy of circular Rydberg states.

Throughout the work, unless expressly stated otherwise, 
we use the atomic system of units e = m = '  = 1, the speed of 
light numerically coincides with the inverse fine structure con-
stant c = a–1 = 137.036, the temperature is expressed in kel-
vins, and the Boltzmann constant is determined by the ratio 
kB = 1/Ta of the atomic unit of energy to atomic unit of tem-
perature Ta = 315776 K.

2. Sum of oscillator-strength moments

2.1. Oscillator-strength moments

The oscillator strengths fn' n ( m) = 2wn' n|á n'|rm|n ñ|2 of electric 
dipole transitions are important characteristics of atomic 
spectra. Here, the symbol n(n' ) denotes a complete set of 
quantum numbers nlm (n'l'm' ) of the stationary states of the 
atom, and rm is the coordinate of the Rydberg electron ( m = 
0, ± 1 is the cyclic coordinate [19], and r0 = z is the projection 
onto the z axis directed along the polarisation vector of the 
emitted or absorbed photon during the transition between the 
states n and n' ). In the one-electron approximation, the com-
ponents of the dipole moment coincide in absolute value and 
are opposite in sign to the coordinates of the valence electron.

In calculating the probabilities of radiative transitions and 
the energy of interaction with external fields, there arise sums 
of the oscillator-strength moments over a complete set of 
atomic eigenstates, including the integral over the continuous 
spectrum [20, 21]
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In particular, the dipole dynamic polarisability of an atom in 
the state |nlm ñ is determined by the expression
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and can be represented as a series expansion in powers of the 
square of the frequency w2 using the formula for the sum of 
the series of geometric progression. The coefficients of this 
expansion are the sum of the oscillator-strength moments (1). 
Depending on the relationship between w2 and the square of 
the atom eigenfrequency 'n n

2w , there are two types of expan-
sions:

1) for w2 < 'n n
2w , the series contains only positive powers 

of w2, and the coefficients are the sums of moments (1) with 
even negative exponents q, starting from q = – 2, correspond-
ing to static polarisability, S ( )
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2) the opposite inequality w2 > 'n n
2w  is formally valid for 

bound states provided that the frequency exceeds the level 
ionisation potential, w > |Enl|. If in this case the contribution 
of the states of the continuous spectrum and the contribution 

of the lower bound states with n' < n, which do not satisfy the 
condition w2 > 'n n

2w , can be neglected, then we can use the 
series expansion in negative powers of w2. The coefficients of 
this expansion are the sums of moments (1) with even positive 
exponents q ³ 0, and S ( )nlm
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Along with S ( )nlm
0 , one can immediately obtain a closed 

expression for S ( )
( )
nlm 0
1-  = 2 á nlm|z2|nlm ñ [20, 21], which for 

arbitrary values of the orbital and magnetic quantum num-
bers can be represented as the product of the angular and 
radial matrix elements:
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For the circular state of a hydrogen-like atom, this expres-
sion takes the form

S ( )
( )
nlm 0
1-  = 2 á nl|r2|nl ñ/(2n + 1) = n2(n + 1)/Z2,

where Z is the charge of the atomic core. Similarly, one can 
obtain fairly simple analytical expressions for sums (1) with 
other exponents q. Below we present the rules for sums (1) for 
negative and positive values of q.

2.2. Analytical expressions for the sums of oscillator-strength 
moments with negative q

Strictly speaking, the sum rules (1) can be expressed in closed 
form if analytical expressions for the wave functions and ene-
rgies of single-electron stationary states are known. The sim-
plest solution to this problem can be obtained for circular 
Rydberg states described for all atoms using the wave func-
tions of a hydrogen-like atom. After integration over the ang-
ular variables of the matrix element, the expression for sums 
(1) with a negative exponent q = – p determining the low-fre-
quency expansion of polarisability (3) can be represented as
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where the exponentiation, [ g ( )'l
n (r; r' )] p – 1, is the ( p – 2)-fold 

integration of the product p – 1 of the radial Green’s func-
tions,
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For the function g ( )'l
n (r; r' ), one can use the spectral expansion
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where Rn'l' (r) is the radial wave function of the bound state; 
Rel' (r) is the radial function of the stationary state of the con-
tinuum with positive energy, e > 0; and En is the energy of the 
level. The orbital momentum of intermediate states in (6) – (8) 
is l' = l + 1 = n, since the result of integration in the matrix 
element with respect to angular variables
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vanishes for l' = l – 1. Here l> = max(l', l ).
The orthogonality of radial wave functions makes it pos-

sible to write the relation
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The use of expressions (8) and (10) does not allow us to 
calculate the matrix element (6) in a closed analytical form. 
Therefore, the expansion of the Green’s function in terms of 
the Sturm functions [22] Fkl' (x) = xl' exp(– x/2)L2 'k

l 1+ (x), where 
L2 'k

l 1+ (x) is the associated Laguerre polynomial [23]:
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where (a)k = G (a + k)/G (a) = a(a +1) ... (a + k – 1) is the 
Pochhammer symbol [23].

The radial wave function can also be expressed through 
the Sturm function:
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where nr = n' – l' – 1 is the radial quantum number. In particu-
lar, for the circular state |nlm ñ we have |m| = l = n – 1, so that 
nr = 0, the Laguerre polynomial L 'l

0
2 1+ (x) = 1, and the wave 

function has the form
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Using expressions (7), (11), (13) and the orthogonality 
property of the Laguerre polynomials, we obtain the analyti-
cal expressions of the sums for (6) for circular states:
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These expressions are applicable not only for Rydberg, but 
also for any circular states of hydrogen-like atoms with quan-
tum numbers l = |m| = n – 1. For example, for the 1s state we 
have well-known values of matrix elements with the Green’s 
function in the first, second, and third degrees, determining 
the susceptibility of an atom in static electric and magnetic 
fields [24]:

S1
( )
s
2-  = a1s(0) = 9/(2Z 4 ),

S ( )
s1
3-  = 43/(8Z 6 ),

S ( )
s1
4-  = 319/(12Z 8 ).

Expressions (14) determine, in particular, the region of 
applicability of expansion (3) for the dynamic polarisabilities 
of circular Rydberg states by the inequality w << Z 2/n3. Ob v-
iously, on the right-hand side of this inequality is the frequen cy 
of the transition between neighbouring Rydberg states. For 
states with n » 30, this value is approximately 200 GHz; the-
refore, expansion (3) is applicable in the vicinity of these val-
ues of n for the microwave frequency not exceeding 20 GHz.

2.3. Analytical expressions for the sums of oscillator-strength 
moments with positive q

Polarisability expansions (3) and (4) make use of oscillator 
strengths with fixed directions of the photon polarisation vec-
tor along the z axis and the atomic orbital vector of the atom 
determined by the magnetic quantum number m. In a number 
of problems, the directions of the polarisation vectors and/or 
orbital momentum can be arbitrary. In particular, the distri-
bution of all possible directions of the polarisation vectors of 
photons acting on the atom of thermal radiation (BBR) can 
be considered equally probable. In the case of free orientation 
of atoms, the directions of the vector of the orbital momen-
tum (numerical values of the magnetic quantum number) can 
also be considered equally probable. The general relations of 
the quantum theory of angular momentum [19] make it pos-
sible to demonstrate the complete equivalence of the results of 
averaging over the directions of the polarisation vector for a 
fixed magnetic quantum number m and averaging over the 
directions of the vector of orbital momentum (over m) for a 
fixed projection of the electric dipole moment m:
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=m m
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where S ( )
( )
nlm
q

m  is defined in (1). Both sums in (15) yield the 
same result, which depends neither on m nor on m.

Further, when calculating sums (1) with q > 0, along with 
the fixed directions of the vectors [as in expressions (3) – (6)], 
we will use averaging over the projections of the photon 
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polarisation vector, which reduces to additional summation 
over the projections of the operator of the dipole electric 
moment and to division by 3. Averaging over the projections 
of the dipole moment is necessary when calculating the inter-
action energy of an atom with randomly polarised radiation, 
in particular with environmental thermal radiation. Note that 
these averagings do not affect the basic summation rule for 
q = 0 (Thomas – Reiche – Kuhn rule), so that S ( )

( )
nlm 0
0  = S ( )nlm

0  = 1. 
It should also be noted that in the calculations of the sums of 
moments (1) for q ¹ 0, averaging is usually performed over 
projections of the dipole moment [20, 21].

In calculating averaged sums (15), the following operator 
identities can be used:

i [ pt , r] = 3,   i [Ht , r] = pt ,

i [ ,H pt t ] = –dV(r) = 
r
Zr

3
, (16)

[ pt ,[ ,H pt t ]] = DV(r) = 4pZd(r),

with the Hamiltonian Ht , the internal atomic potential V(r), 
the radius vector r, and the momentum operator pt  of the 
optical electron. These relations yield the identities for matrix 
elements [20]:

wn'n á n'l'm'|xm|nlm ñ = i á n'l'm'| pmt |nlm ñ,

wn'n á n'l'm'| pt |nlm ñ = i á n'l'm'|dV(r)|nlm ñ, 

(17)

transforming frequency factors into corresponding operators 
inside the matrix element. After such transformations, it suf-
fices to use the condition of completeness of the set of eigen-
states of the valence electron

' ' ' ' ' ' 'n l m n l mr r
' ' 'n l m
/  = d(r – r' ), (18)

to express sums (15) as the average value of the function of 
the radial variable, similarly to expression (5). Using relation 
(15) for averaged values, as well as averaging the matrix ele-
ment from angular variables
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we obtain the expressions
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where dl 0 is the Kronecker delta.
It should be noted that the sums S ( )nlm

0  and S ( )nlm
1  were used 

to derive asymptotic formulae for the shift and broadening of 
Rydberg energy levels by thermal radiation [11 – 13]. For 
states with a nonzero orbital momentum S ( )nlm

2  = 0, which mea-
ns mutual reduction of the negative contribution S ( )

nlm
2-  of the 

finite number of terms with n' < n from the sum on the right-
hand side of expression (1) with the positive contribution 
S ( )
nlm
2+  of an infinite number of terms of the sums over the 

states of the discrete spectrum and the integral over the con-
tinuous spectrum: S ( )

nlm
2-  = –S ( )
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2+ . The negative contribution 

is proportional to the rate of spontaneous decay: S ( )
nlm
2-  = – 

(c 3/2) nlG sp (see Section 3.1 below). Therefore, for an infinite 
sum over n' > n and an integral over the continuous spectrum 
from the right-hand side of expression (1), we can also write a 
closed analytic expression S ( )

nlm
2+  = (c 3/2) nlG sp. Using the ana-

lytic expression for nlG sp in the case of circular states [7], we 
find the relation
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Similarly, one can also obtain closed expressions for infi-
nite sums and integrals resulting from closed expressions for 
the rules of summation of higher-order oscillator-strength 
moments. Obviously, with an increase in q, additional com-
mutators appear in terms of sums (15), which are expressed in 
by the kinetic and potential energy operators and their deriva-
tives. For circular states, we have the expressions
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As can be seen from expressions (20) – (23) for the sums of 
oscillator-strength moments, with increasing q, the quantities 
S ( )nlm
q  quickly decrease with increasing principal quantum num-

ber n. Moreover, S ( )nlm
q  µ Z 2q/n3q for even q = 2k and S ( )nlm

q  µ 
Z 2q/n3q –1 for odd q = 2k –1 (k = 0, 1, 2, ... are natural num-
bers). These asymptotics take into account the first non-van-
ishing terms of the expansions of the exact values of the sums 
(20) – (23), which we will use below to calculate the correc-
tions to the asymptotic formulae for induced broadenings 
and shifts of energy levels of circular Rydberg states.
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3. Natural and BBR-induced widths of the 
circular-state energy level

3.1. Natural width

The spontaneous energy width of the level of the circular state 
|nlm ñ represents the rate of dipole radiative decay to the near-
est state |n' = n – 1 l' = l – 1 ñ. For this probability, one can 
obtain a closed analytical expression [7] in a form convenient 
for simplified estimates:

nG sp  = –
c
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n
Z
5

4

gn (in MHz), (24)
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slowly decreases with increasing n ( g2 = 1.873, g20 = 1.052, 
1n n

g
"3

). From (24) we obtain a simple formula for esti-
mating the natural lifetime of a circular state:
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n
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g
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The spontaneous energy width of states with arbitrary 
orbital momenta 1 < l < n – 1 can be represented as nlG sp » 
[855.4/(n3l 2)]  f (n, l )Z 4 (in MHz). Here f (n, l ) is a dimension-
less factor that smoothly depends on l and almost coincides 
with unity for small l and slowly increases with increasing l, so 
that for large values of the orbital momentum f (n, l = n – 1) » 2 
[5, 7, 20]. This shows that the natural width of the circular 
state is approximately n2 times smaller than the width of the 
highly excited hydrogen-like state with a small angular mom-
entum l << n. This circumstance contributes to ‘survival’, 
increasing the possibility of the practical use of states with 
maximum orbital moments from a hydrogen-like energy shell 
with a fixed n.

3.2. BBR-induced broadening

It can be seen from expression (26) that the natural lifetime of 
the circular Rydberg-shell state with n = 100 is approximately 
1 s. For n = 200, the lifetime will be about 30 s. However, in 
practice, the ubiquitous thermal radiation of the environment 
can significantly reduce the lifetime of an atom in a highly 
excited state and even turn an atom into an ion due to photo-
ionisation [14 – 16].

Interaction of the BBR with the electromagnetic field leads 
to broadening of atomic levels, which is equal to the sum of 
probabilities of induced transitions

( )TBBR
nlmG  = 

/( )

' ' '

expc k T

n l m r nlm

3
4

1'

'

' ' ' Bn n

n n

n l m
3

3 2

w

w

-

m

m 6 @
/

 = 
/( )expc k T

f

3
2

1

( )

'

' '

' Bn n

n n n n

n
3

2

w

w

-

m

6 @
/ , (27)

where the summation is performed over the projections μ of 
the dipole moment, as well as over the complete set of states 
with fixed orbital l' and magnetic m' quantum numbers, inc
luding states of the continuum. The term corres ponding to 
the single possible radiative decay of the circular state |nlm ñ 

with the transition to the state with quantum numbers n' = n 
– 1, l' = l – 1, |m'|= |m| – 1, is the probability of thermally 
induced decay

d
nlG  = ( , )n Tsp

nl n n 1wG -r , (28)

different from the probability of spontaneous decay (24) by a 
factor

( , )n Tnn 1w -r  = 
[ /( )]exp k T 1

1
Bn n 1w --

. (29)

Function (29) determines the number of thermal photons 
(occupation number or population) from the Planck distribu-
tion at a frequency wn  n – 1 = Z 2 [1 – 1/(2n)] / [n3(1 – 1/n)2 ]. This 
function can be considered as the relative (compared to the 
spontaneous) rate of stimulated radiative decay ( , )n Tn n 1w -r  = 

d
nlG (T ) / sp

nlG  of the circular state of an atom under the influ-
ence of thermal radiation. It should be noted that, for a small 
parameter h = Z2/(n3kBT ) << 1, the value of ( , )n Tn n 1w -r  » 
n3kBT/Z 2 grows rapidly with the product n3T, and in this case 
it is Z 2 times smaller for ions as compared to ( , )n Tn n 1w -r  for 
neutral atoms. Such an estimate of the number of photons 
corresponds to taking into account only the main term (1/x) 
in the expansion in powers of the exponent in the fraction on 
the right-hand side of (29)

( )exp x 1
1
-

 = – coth x
2
1

2
1

2
+ ` j = x

x x1
2
1

12 720

3

- + -

 + x
30240

5

 – o((x/6)7 ). (30)

Replacing the factor {exp[|wn’n|/(kBT )] – 1}–1 by the first 
term of expansion (30) and using the summation rule for S ( )nlm

1  
from expressions (20) gives a well-known asymptotic result 
for the probability of the BBR-induced decay of the Rydberg 
state [11, 12]:

( )TBBR
nlmG  » ( )T( )

n
0G  = 

c

k TS2 ( )
B n

3

1

 = 
4

c n

Z k T

3
B

3 2

2

. (31)

For x < 1, the terms of the sign-alternating series on the 
right-hand side of expression (30) quickly decrease, so that 
the first three terms provide an approximation of the function 
{exp[|wn'n|/(kBT )] – 1}–1 with a relative error not exceeding 
0.2 %, and the account of the fourth term reduces the error by 
additional two orders of magnitude. Note that at room tem-
perature (T » 300 K) the argument of the exponent in (27) 
and (29) takes values below unity for n ³ 11Z 2/3.

Of interest from the point of view of numerical calculation 
and determination of the region of applicability of the expres-
sion for the thermally induced width (27) is the x independent 
constant term in expansion (30), equal to –1/2. This term, tak-
ing into account the equality of the contributions of states 
with n' < n and with n' > n in sum (27), gives a negative cor-
rection to the asymptotic expression for the thermally induced 
width (31), which exactly coincides in absolute value with the 
spontaneous width (24). Thus, in the expansion in powers of 
the parameter h of the total probability ( )Ttot

nG  = sp
nG  + 

( )TBBR
nG  of the Rydberg state decay, there is no temperature-

independent component, and the first nonvanishing correc-
tion to ( )T( )

n
0G  is proportional to h2. Therefore, the asymp-

totic formula for ( )Ttot
nG  can be expressed as
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( )Ttot
nG  = ( )T( )

n
0G [1 + a1h2 – a2 h4 + o(h6)]. (32)

The coefficients of this expansion ak are determined by the 
coefficients of series (30) and the sum rules for the moments 
S ( )nlm
q  with odd exponents q = 2k + 1:

a1 = 
Z S

n S

12 ( )

( )

nlm

nlm

4 1

6 3

 = 
( )n

n
3 2 3
2

3

3

-
,

a2 = 
720Z S

n S
( )

( )

nlm

nlm

8 1

12 5

 = 
( )

( )

n

n n n

45 2 7

8 18

7

5 2

-

+ +
. 

(33)

The opposite signs of the corrections a1h2 and – a2 h4 cor-
respond to the signs of the corresponding terms x/12 and 
–x3/720 in expansion (30). Note that the coefficient h2 in [7] is 
written as an expansion in powers of the small parameter 1/n, 
which exactly coincides with the expansion of the closed 
expression for a1 from (33).

Thus, for h £ 1, the total width (32) (spontaneous plus 
thermally induced) of the energy level of the circular state 
coincides with the asymptotic expression (31) for the ther-
mally induced width with a relative error on the order a1h2 » 
h2/12. The higher-order corrections for h £ 1 are negligible, 
since the coefficient a2 is 12 times smaller than a1 for n = 10, 
and with increasing n this ratio gradually decreases, so that 
a2/a1 ® 1/60 for n ® ¥, as can be seen from explicit expres-
sions (33). At T = 100 K and n = 15, the parameter h » Z 2 and 
the correction to ( )T( )

n
0G  for a neutral atom (Z = 1) do not 

exceed 10 % (40 % for a singly ionised atom, Z = 2).
A comparison of ( )T( )

n
0G  with the spontaneous width (24) 

shows that at room temperature the total width (32) exceeds 
the spontaneous one for all circular Rydberg states of atoms 
and ions with principal quantum numbers n > 8. The depen-
dence on the core charge and temperatures for this inequality 
can be supplemented by the expression n > 8(Z2 300/T )1/3. 
Note that this dependence is smoother than a similar depen-
dence in the inequality n > bZ2 300/T for states with small 
orbital moments, where the coefficient b takes different values 
for Rydberg states of different series of multielectron atoms: 
2 < b < 20 [17, 25].

4. Thermally induced energy level shift of the 
circular state

The shift of the energy level of the circular state under the act ion 
of the BBR electric field can be represented in the form [13]

( )TBBR
nlme  = –

( )
( )E T

2
maxnlm 2a w

, (34)

where anlm(wmax) is the dynamic polarisability at the fre-
quency wmax » 2.82kBT corresponding to the maximum of 
the frequency-dependent distribution E 2(w, T ) = [8w3/(pc3)] 
´{exp[w/(kBT  )] – 1}–1 of the BBR electric field squared; and

( )E T2  = 
3 ( , )

d
E T

2

2

0

w
wy  = 4 ( )

c
k T

15
B3

3
4p  (35)

is the average of the BBR electric field squared. For low ambi-
ent temperatures, that is, for 1/h = (n3kBT )/Z 2 << 1, the fre-
quency wmax is also small, so that the dynamic polarisability 
in (34) can be replaced by the static one (14), anlm(wmax) » 

anlm(0). Then, taking into account (14), expression (34) for the 
circular state can be rewritten in the form

( )TBBR
nlme  = –2.1528

( ) ( )

Z

n n n T
4

1 4 5
3004

4 4+ +
c m (mHz). (36)

In particular, for n = 5 at a temperature T < 300Z 2 (in K) 
satisfying the condition h >> 1, the thermally induced 
shift is ( )TBBR

nlme  » – [T/(300Z)]4 ́  247.86 (in Hz). The dyna-
mic correction taking into account the quadratic term in 
the expansion of polarisability in frequency (3) is below 
[T/(300Z 2 )]2 ́  0.05 % of this value.

In the case of the opposite inequality, for the ratio of the transi-
tion energy to thermal energy, h << 1, one could use the expansion 
of the real part of polarisability (4) over even powers of the recip-
rocal frequency. However, integration over the BBR frequency of 
the product of series (4) and the distribution E 2(w, T ) is possible 
only for the first term of this series, which is independent of the 
principal quantum number n. The result of this integration gives 
the well-known asymptotic expression [11 – 13]

e0(T ) = 
( )

c

k T

3

B

3

2p
 = 2416.65(T/300)2 (Hz). (37)

The integrals over the BBR frequencies with the higher-order 
terms of series (4) diverge in the lower limit, w = 0. Therefore, 
to obtain corrections to e0(T ) in analytical form, one can use 
the function [13]

F ( y) = – 2yP
3

( ) [ ( ) ]exp
d

x y x
x x

12 2

3

0 - -
y , (38)

where P is the notation for the principal value of the integral, 
which effectively takes into account the frequency depen-
dence of the real part of the dynamic polarisability in the inte-
gral determining the BBR-induced shift of the atomic energy 
level [26]:
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' ' dl m r nlm F
k T

E

B

nl2

0
e

e
e

+
m e o 3y . (39)

Here, the summation over the projections of the dipole mom-
ent corresponds to taking into account all possible polarisa-
tions of the BBR photons. Function (38) can be transformed 
to a form that allows obtaining a closed analytical expression 
[7] F ( y) = – p2y/3 – 2y 3Re [F (iy)], where [27]

F (z) = 
3

( ) [ ( ) ]exp
d

x z x
x x

12 20 + -
y

 = ln z
z

z
2
1

2 2p
p

p
y- -` `j j8 B,   Re z > 0. (40)
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The function y(x) = d{ln[G (x)]}/dx is the logarithmic 
derivative of the gamma function. Using the analytic continu-
ation for the right-hand side of expression (40) and setting z = 
± i|y| + d, we obtain for d ® 0

F ( y) = – ln Re iy
y y

y
3 2 2

2
3p

p
y

p
- -e eo o= G) 3 . (41)

To determine the real part of the y-function in this expres-
sion, we can use the expansion in series [28]

Re i
y

2p
ye o= G = – g + 

4 [ /(4 )]

y

k k y
1

k
2

2

2 2 2
1p p+

3

=

/ ,

where g = 0.5772156649 is the Euler constant. Using the 
expansion of the terms of the series in powers of the ratio y2/
(4p2k2) and performing the summation over k, we obtain a 
formal expansion of function (38) in series of odd powers of 
the argument [7]:

F ( y) = – )1 p(lny
y

3 2 p

2

1

p
p

g- + + -
3

=

e o= /

 ´ 
y

y
2

p2
3

p
( )p2 1z + c m G , (42)

where

z(s) = k s

k 1

3
-

=

/

is the Riemann zeta function [27, 28]. The term proportional 
to y3 must be taken into account in the region |y| > 0.01, and 
to achieve accuracy in the sixth decimal place in the region 
0.1 < |y| < 1, one should also take into account the first term 
of the sum from the factor (in square brackets) at y 3. 
Detailed discussions of the properties of expression (42) are 
given in [7].

For a shift, as well as for broadening the energy level of 
the Rydberg circular state, it is possible to propose a polyno-
mial approximation that significantly expands the range of 
use of the asymptotic approximation (37), identical for all 
Rydberg states and is independent of n and Z, which corre-
sponds to taking into account only the first (linear) term in 
expansion (42). Such an approximation determines the shift 
(39) with a relative error of the order of 10–3 under the condi-
tion n3kBT > 100Z 2, which corresponds to the numerical val-
ues of the principal quantum number n > 47 /Z T300 23

.
The expression for the corrections to e0(T ), improving 

precision of ( )TBBR
ne  for lower values of the principal quan-

tum number n and temperature T, can be obtained by taking 
into account the term proportional to y 3 from the right-hand 
side of expression (42). To this end, we substitute (42) into 
(39) and rewrite the expression for ( )TBBR

ne  using definition 
(14) for the averaged oscillator strengths:

( )TBBR
nle  = 

( )

c

k T
S S S1

3
( ) ( ) ( )B
nlm nlm n3

2
0 2 2

p
p

g+ +u=

 + 
)1 p ( )p2 1z +

( )

(

k T
S

2
( )

B
p n

p

p
2

2 2

1 p
-3

+

=

G/ . (43)

A special notation is introduced here for the oscillator 
strengths with a logarithmic factor

S ( )nlm
2u  = ' ' ' lnn l m r nlm

k T3
2

2
'

' ' '

'

B
n n

n l m

n n3 2

p
w

w

m
m e o/ . (44)

Because S ( )n
2  = 0, the third term (Euler constant g) in 

square brackets on the right-hand side of (42) can be omitted, 
and the term ln(2p /h) independent of n' can be added to the 
logarithm. Then expression (44) transformes to the form

S ( )nlm
2u  = ' ' ' lnn l m r nlm

Z

n

3
2

'
' ' '

'
n n

n l m

n n3 2
2

3

w
w

m
m e o/ , (45)

clearly showing that the thermally induced shift (43) contains 
a temperature-independent term. It is not possible to obtain 
an analytical expression for sum (45) in closed form. The-
refore, to estimate S ( )nlm

2u , one can use the series expansion in 
powers of the small parameter |p/n| << 1, where p = n' – n, for 
each of the three factors of the product summed over n' from 
the right-hand side of expression (45). Since the argument of 
the logarithm in (45) is close to unity, the expansion for it has 
the form

ln
Z
n

'n n2

3

wc m = ln|p|– 
n
p

n

p

n

p
2
3

8

7

8

5
2

2

3

3

+ -  + ... . (46)

Substituting the expansions [similar to (46)] for 'n n
3w  and 

the radial matrix elements |á n'l'|r|nl ñ|2 into (45) (after inte-
gration over the angular variables of the matrix elements 
á n'l'm'|rm|nlm ñ [7]), we obtain a series of terms representing 
the quantity S ( )nlm

2u  in the form of an expansion in powers of the 
small parameter 1/n << 1. Confining ourselves to terms of 
the order of 1/n3, we can write

S ( )nlm
2u  = –A1pc3e0(T ) h2B1(n) = – ( )

n
Z A B n
3 6

2 4

1 1
p , (47)

where A1 = [3 – 4ln(2)]/p2 = 0.0230416 is a constant; and 
B1(n) = 1 + b1/n + b2 /n2 + b3 /n3 is the cubic polynomial with 
coefficients

b1 = 
[ ( )]

[ ( ) ( ) ]

ln

ln ln

8 3 4 2

9 32 2 27 3 8

-

- +
 » 2.56342,

b2 = – 
[ ( )]

( ) ( )

ln

ln ln

48 3 4 2

42496 2 25515 3 1464

-

- -
 » 3.58290, 

(48)

b3 = 
[ ( )]

( ) ( ) ( )

ln

ln ln ln

384 3 4 2

7819264 2 2123577 3 1953125 5 56880

-

- - +

 » 4.11773.

Thus, by analogy with the formula for thermally induced 
broadening (32), the expression for shift (43) can be written as 
an expansion in even powers of the parameter h:

( )Tapp
nle  = e0(T )[1 – h2A1B1(n) – h4A2B2(n) + o(h6)], (49)

where the constant A2 = 3z(3)/(2p 4) » 0.0185104 and the fac-
tor B2(n) = (2n)5/(2n – 5)5 is determined from the explicit 
expression in (22) for the sum of the angular moments of the 
oscillator strengths S ( )nlm

4 . The second term in (49) corresponds 
to the second term in square brackets in expression (43) and 
determines the temperature-independent component of the 
thermally induced shift
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eu  = 
c

S ( )n
3

2

p

u
 = – ( )

c n
Z A B n

3 3 6

4

1 1
p . (50)

For clarity, Table 1 lists the numerical values of the 
parameter h/Z2 and the values of – h2A1B1(n)/Z4 at room tem-
perature T = 300 K and various values of the principal quan-
tum number n. The fourth and fifth columns of Table 1 show 
the numerical values of the relative corrections to the asymp-
totic value of ( )T( )

n
0G  for the total broadening (32) in a neu-

tral atom (Z = 1)

D ( )Tapp
nG  = [ ( )Ttot

nG  – ( )T( )
n
0G ]/ ( )T( )

n
0G  » a1h2 – a2h4

and corrections to ( )T( )
n
0G  for the exact value of width (27)

D ( )TBBR
nG  = [ ( )TBBR

nG  – ( )T( )
n
0G ]/ ( )T( )

n
0G .

The sixth and seventh columns give numerical values of the 
relative corrections to e0(T ) for the approximate value (49)

D ( )Tapp
nle  = [ ( )Tapp

nle  – e0(T )]/e0(T )

 = – h2A1B1(n) – h4A2B2(n)

and corrections to e0(T ) for the exact value (39)

D ( )TBBR
nle  = [ ( )TBBR

nle  – e0(T )]/e0(T ).

5. Conclusions

The results of analytical calculations obtained in this work pro-
vide important information about the accuracy and range of 
applicability of asymptotic expression (31) for thermally 
induced (27) and total (32) broadening, as well as expression 
(37) for the shift of the energy levels of circular states of atoms 
in the BBR field. The choice of circular orbits is justified not 
only by their presence in highly excited atoms of almost all 
elements of the periodic system, but also by the possibility of 
analytical calculations, since circular Rydberg states have 
zero quantum defects and are described by hydrogen-like 
wave functions. In an analytical form, the cancellation of the 
temperature-independent spontaneous component sp

nG  in the 
total width ( )Ttot

nG  = sp
nG  + ( )TBBR

nG , as well as the presence 
of the temperature-independent component eu  (50) in the 
expression for the shift of the Rydberg energy level are dem-
onstrated. Note that the corrections to the asymptotic broad-

ening value are positive, as follows from (32) and (33), and the 
corrections to the shift asymptotics are negative, as can be 
seen from (49) and the data in Table 1.

For n > 15 and a fixed temperature T = 300 K, the main 
contribution to the deviations of D ( )Tapp

nG  and D ( )Tapp
nle  

from the asymptotic values of ( )T( )
n
0G  and e0(T ) of the ther-

mally induced broadening and shift of the circular states of 
the neutral atom yield corrections proportional to h2: a1h2 
and – A1B1(n) h2, respectively.
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