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Abstract. For a gas of trapped interacting atoms forming a Bose 
condensate, we demonstrate a possibility of a significant influence 
of the boundary conditions on the statistics of the number of parti-
cles in the fundamental mode of the system. The analysis is carried 
out in the Bogoliubov – Popov low-temperature approximation for 
model homogeneous cubic traps with periodic or combined periodic 
and zero boundary conditions. It is shown that the effect of the 
boundary conditions does not weaken even in the region of param-
eters corresponding to the relatively strong interaction in the 
Thomas – Fermi asymptotic case, and does not disappear when pro-
ceeding to the thermodynamic limit.

Keywords: Bose condensation, order parameter fluctuations, 
Bogoliubov – Popov approximation, Thomas – Fermi asymptotic 
case, boundary conditions.

1. Introduction

When describing a Bose gas in a trap with a temperature 
noticeably below critical, it is traditionally assumed that N 
atoms of the system are divided into two fractions. The first 
fraction forms a Bose condensate, i.e. the ground state, mac-
roscopically filled mode of the system with a significant num-
ber of particles N0. The second fraction containing Nex parti-
cles forms a residual cloud of noncondensed gas. This divi-
sion into condensed and noncondensed fractions is random, 
i.e., the number of particles in the condensate N0 and outside 
it Nex are randomly fluctuating quantities (related by the con-
dition N0 + Nex = N in a canonical ensemble). 

Quantum statistics describing this partition becomes an 
object of laboratory research of Bose systems of various con-
figurations. The analysis is not restricted only to mathemati-
cal expectations; e.g., in the experiment [1], the behaviour of 
the variance of the number of particles in a condensate was 
studied as a function of the system temperature. The achieved 
measurement accuracy and the ability to vary the geometry 
and parameters of the trap allow quantitative comparison of 
laboratory results with theoretical models. An example is the 
experiment [2], in which the dependence of the number of 
noncondensed atoms on the intensity of interparticle interac-
tion was measured (i.e., the effect of the condensate quantum 
depletion was measured) and the prediction of the Bogoliubov 

theory about this dependence was confirmed, including the 
relevant numerical factor. 

A universal microscopic description of the Bose conden-
sate fluctuations in an arbitrary trap corresponding to such 
experiments has not been constructed yet and, in fact, is 
known only for an ideal gas [3 – 5]. However, even this par-
ticular case already demonstrates nontrivial statistics of the 
number of particles in the condensate. For a gas without 
interparticle scattering, it was shown that the studied statistics 
can be essentially non-Gaussian even in the thermodynamic 
limit [4 – 7], which is not typical for the statistical physics of 
multimode systems. In this case, the variance and higher-
order moments turn out to depend on the boundary condi-
tions imposed on the system (and other nonglobal perturba-
tions of the trapping potential). These properties manifest 
themselves for traps with a sharply increasing confining 
potential and low energy density of states, which include 3D 
box traps and other systems that are close to homogeneous. 
To design and interpret future experiments aimed at studying 
the statistics of Bose systems, it is important to find out 
whether its non-Gaussian features also appear in a real situa-
tion when interparticle interaction is present. Today, this 
problem remain an open one. 

In this paper, we consider a particular aspect of the above 
problem, namely, whether the interparticle interaction ‘turns 
off’ the effects associated with boundary conditions. It would 
seem that this can be expected taking into account the follow-
ing two circumstances. First, in the case of relatively strong 
interparticle scattering, bringing the system closer to the 
Thomas – Fermi limit, the condensate effectively shields the 
external potential, and therefore, the wave functions of the 
system are able to sense the imposed boundary conditions 
only in a narrow boundary region of space that is vanishingly 
small compared to the total volume of the system. Second, in 
the presence of interparticle scattering, the spectrum of the 
quasi-particles of the system in the low-energy part (most 
important for the formation of fluctuations) is modified in 
accordance with the Bogoliubov transformation from a qua-
dratically increasing function of quantum numbers to a lin-
early growing one. It is also known [4, 5, 7] that for an ideal 
Bose gas in a 3D harmonic trap, such a linear increase in ener-
gies depending on quantum numbers is completely insuffi-
cient to violate the central limit theorem, and, therefore, 
implies neither non-Gaussian fluctuations nor a significant 
influence of trapping potential perturbations on the statistics 
of the system. 

The aim of this work is a direct demonstration of the fact 
that in a wide range of Bose system parameters, the influence 
of boundary conditions on fluctuations in the number of par-
ticles in the condensate, namely, variance and higher-order 
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moments, is preserved in the presence of interparticle scatter-
ing. This effect is not restricted to the case of a nearly perfect 
gas; it neither disappears nor even weakens as the system 
approaches the Thomas – Fermi limit. The analysis is carried 
out by the example of two model box traps that differ only in 
superimposed boundary conditions. The choice of such a sim-
ple geometry made it possible to obtain the most transparent 
and almost completely analytical description of the analysed 
statistical distributions. 

The hypothesis about the influence of the boundary con-
ditions on the statistics of the interacting Bose gas was earlier 
presented in Ref. [8], where it was pointed out why the central 
limit theorem may appear not applicable for describing its 
fluctuations. However, the problem of finding real quasi-par-
ticles of the system was actually left unsolved, and the calcula-
tions were performed for a certain set of hypothetical spectra 
and structures of excited states, consistent in the 
Thomas – Fermi limit, but not based on a rigorous solution of 
the equations for condensate and quasi-particles. Accordingly, 
the influence of the boundary conditions on the statistics was 
justified only qualitatively and the detailed mechanism of its 
implementation remained unclear. 

In this paper, we consider specific model traps, for which 
the quasi-particles of the system and their energies in a wide 
range of interparticle scattering intensities are found explicitly 
and consistently with the condensate density profile. This 
allows, on the one hand, the analytical study of the Bose 
gas statistics not only in the region of applicability of the 
Thomas – Fermi approximation, but also in the region of 
parameters where the wave functions of the condensate and 
quasi-particles can substantially depend on the interaction 
strength. On the other hand, a description of the evolution of 
fluctuations during a continuous transition from the ideal gas 
limit to the Thomas – Fermi limit clearly shows why the influ-
ence of the boundary conditions on statistics is preserved for 
the Bose gas with significant interaction. 

2. Distribution of the number of particles inside 
and outside the condensate. Role of boundary 
conditions in the origin of fluctuations 

The analysis carried out is based on the Bogoliubov – Popov 
approximation [9, 10], which is applicable when the Bose gas 
temperature T is well below the critical temperature, T << Tc. 
This approximation assumes splitting of the field operator of 
a many-particle system into two parts: 

( ) ( ) ( )Nr r rex0G Hy f y= +t t , 
(1)

( ) ( ) ( )u b br r rex j j j j
j

y u= +
@*t t t^ h/ .

The first part describes a condensate with a spatial profile f(r) 
and the expected large number of particles áN0ñ in it; the anni-
hilation operator corresponding to this spatial mode is 
replaced with the classical non-operator numerical value 

N0G H . The second part, denoted by the subscript ex (excita-
tion), is an operator additive and describes the excitation 
quasi-particles existing against the background of the con-
densate, described by the creation/annihilation operators b j

@t  
тв b jt  and two-component wave functions (uj , uj). The con-
densate wave function (chosen purely real) is described by the 

Gross – Pitaevsky equation, while the quasi-particles and 
their energies Ej are governed by the Bogoliubov – de Gennes 
system of equations: 
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Both equations include the external trapping potential U(r) 
and depend on the averaged profiles of the condensate density 
áN0ñ f2(r) and the particle density outside the condensate 
ánexñ(r). The interparticle scattering intensity is characterised 
by the interaction constant g and m is the chemical potential. 
The averaging is performed with the density matrix 
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which characterises the equilibrium system and is diagonal in 
the quasi-particle number representation. 

The problem of describing fluctuations implies finding the 
probability distribution r0(N0) that describes the random 
number of particles in the condensate N0. The same problem 
can be reformulated as a search for the distribution rex(Nex) of 
the total number Nex of particles outside the condensate, 
because the total number of particles in the entire system is 
fixed: N = N0 + Nex = const. An efficient method of analysing 
statistics is to use the characteristic function Q(u): 

Q (u) º Tr eiuNexrt
t^ h, 

(3)
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It allows presenting the desired distributions in the form of 
Fourier integrals, as well as expressing the distribution 
moments (mathematical expectation, variance s2, asymmetry 
coefficient g) through generating cumulants: 
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In such a description, we consider two model traps that 
hold the gas in a cubic volume Vtrap = [0, L] × [0, L] × [0, L] and 
differ only in the boundary conditions imposed on the 
Gross – Pitaevsky and Bogoliubov – de Gennes equations (2). 
In the first case, we consider the boundary conditions to be 
periodic in all directions, which corresponds to a completely 
homogeneous system. In the second case, we impose periodic 
boundary conditions along only two directions, while along 
the third direction the zero boundary conditions are imposed. 
The wave function of the condensate along this inhomoge-
neous direction, depending on the magnitude of the interac-
tion constant g, varies from half the sine period (ideal gas) to 
almost constant in the central part of the trap and rapidly 
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decreasing to zero in narrow boundary regions 
(Thomas – Fermi limit). The role of the interaction for such 
‘flat’ potentials is characterised by the ratio of the character-
istic kinetic energy e* = 2 2' p /(2mL2) and the interparticle 
interaction energy gáN0ñ/V. In terms of spatial scales (more 
frequently used in the description of experiments), interparti-
cle scattering is characterised by the healing length

mg N
V

2 0

2'
G H

x = ,

at which the condensate effectively shields the perturbation 
of the external potential. Relatively strong interactions 
bringing the system closer to the Thomas – Fermi limit cor-
respond to the inequality L/x >> 1, or, in terms of energies, 
gáN0ñ/V >>  e*.

The considered trap configurations are remarkable for the 
fact that the characteristic function and cumulants for them 
are reduced to fairly simple explicit expressions (which has 
not yet been achieved for an arbitrary trapping potential 
because in the exponent the operator Nex ex exy y= @t t t  is present, 
whose expression through operators b j

@t  and b jt  is compli-
cated). Namely, using the spectrum of eigenvalues of the so-
called modified Schrödinger equation [11], 
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the following result can be obtained: 
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where G (m) is the gamma function. Here the characteristic 
function Q is written in terms of the argument z º eiu – 1, the 
sums and products are taken over all nontrivial quasi-parti-
cles of the system (except for the Goldstone mode), D jj º 
g áN0ñò fj

*f2fj d3r are the diagonal overlaps of the solutions of 
Eqn (5) with the weight determined by the condensate wave 
function (coinciding with the lowest-energy solution of the 
same equation). The contribution of each quasi-particle to the 
fluctuations is represented by two expressions zj

(±), which 
contain both thermal terms (with the Boltzmann exponent in 
the denominator) and quantum terms (associated exclusively 
with the nontrivial transformation of particles into quasi-par-
ticles and leading, in particular, to quantum depletion of the 
condensate). 

For periodic boundary conditions along all directions, the 
result (6) is exact [12, 13], and the modified Schrödinger equa-
tion (5) is equivalent to the common single-particle 
Schrödinger equation in the initial trap without interaction. 
For the considered mixed boundary conditions, expressions 
(6) are a very good approximation based on a specific ‘quasi-
diagonal’ structure of quasi-particles – each of them is mainly 
formed by only one mode of the modified Schrödinger equa-
tion (5), which determines at least 97 % contribution to the 
quasi-particle norm. This feature was described in detail in 
[14] for a one-dimensional inhomogeneous problem, and its 

transfer to the 3D configuration under consideration is pro-
vided by the possibility of separation of variables in Eqns (2). 

The difference of the characteristic function (6) from the 
characteristic function calculated for an ideal gas (see, e.g., 
[4]) is not reduced to replacing the spectrum of noninteracting 
particles with the spectrum of quasi-particles forming an ideal 
gas in the Bogoliubov – Popov approximation. The fact is that 
the direct calculation of the characteristic function for an 
interacting gas implies not only the transition from particles 
to quasi-particles, but also a subsequent return to the particle 
basis. This circumstance is reflected in the following funda-
mental property: the characteristic function (6) contains, 
along with the spectrum of quasi-particles {Ej}, also the spec-
trum of the single-particle modified Schrödinger equation 
{ej}, i.e., it does not lose information about the initial parti-
cles that are transformed into the Bogoliubov quasi-particles. 

Information on the single-particle spectrum is most fully 
preserved, as shown in [8], at the temperatures of the system 
T >> (e*)1/4 (gáN0ñ/V) 3/4, corresponding to the so-called ther-
mal fluctuation regime. In this case, the cumulant 2ku , which 
determines the variance, as well as all the higher-order cumu-
lants, are caused primarily by temperature factors. The ther-
mal regime of statistics does not contradict the approaching 
of the system to the Thomas – Fermi limit, i.e., the inequality 
L/x >> 1, written in terms of characteristic energies as 
g áN0ñ/V  > e*. Moreover, from the above criterion of the ther-
mal regime of fluctuations it follows that, at an arbitrary 
intensity of interparticle interaction, it is exactly this regime 
that is invariably realised for the considered systems when 
passing to the thermodynamic limit, when at constant tem-
perature T < < Tc, gas concentration N/V, and coupling con-
stant g, the trap size L increases, enhancing the inequality 
e*/T << 1. It is easy to verify that the quantum contributions 
in this case remain significant only for the average value, 
which corresponds to the expected depletion of the conden-
sate (in this case quantum depletion may well prevail over the 
thermal one). 

In the thermal regime of fluctuations, the first cumulant 
(mathematical expectation) and all the higher-order cumu-
lants (including the second one associated with variance) are 
formed from the contributions of individual quasi-particles 
according to strongly differing scenarios. For the mathemati-
cal expectation of the number of particles outside the conden-
sate, the contributions of individual energy levels decrease 
slowly with an increase in the corresponding energies. Thus, 
in the principal order, it is described by the expression 

áNexñ = 
e e

/
R T g N V

12
2/ /

1

3 2 0
3 2

-
G Hpk +

**
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where the factor R is equal to p3/2z(3/2)/8 for a gas that is close 
to ideal (z is the Riemann zeta function) and decreases 
smoothly with increasing constant g, appreciably decreasing 
upon passing to the range of parameters in which the second 
term is comparable with the first one or exceeds it. Expression 
(7) is derived by integration over all quasi-particles and turns 
out to be independent of the imposed boundary conditions – 
so many excited levels make an effective contribution that 
changing a small group of them does not affect the result. At 
the same time, for higher-order cumulants, the contributions 
of individual quasi-particles rapidly decrease with increasing 
their energies, so that the resulting cumulant value coincides 
in order of magnitude with the contribution of a single level 
with low energy. Accordingly, in the limit of a large system, 
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e*/T << 1, the values of the considered cumulants are as fol-
lows: 
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It has been taken into account that for low-energy quasi-par-
ticles that make the largest contribution to fluctuations, no 
essentially exponential decay of population manifests itself, 
i.e., we can assume exp(Ej /T ) – 1 - Ej /T.  Expressions (8) 
coincide with those that determine the main orders of the 
cumulants of an ideal gas, up to redefinition of the coeffi-
cients Sm by the sums G (m)åj (e*/ej)m  over the single-particle 
states of the trap with energies ej. 

The obtained law of cumulant scaling (8) determines the 
non-Gaussian character of fluctuations, just as it occurs in an 
ideal gas [4, 7]. Indeed, introducing instead of the number of 
particles Nex outside the condensate the random variable x = 
(Nex – áNexñ)/s, naturally centred and normalised by the stan-
dard deviation s, it is easy to see that the corresponding nor-
malised higher-order cumulants in the large system limit 
e*/T ® 0 do not vanish, but tend to constants:  /( )

m
x

m
m
"k k s=u u  

/S S /
m

m
2
2 . Direct calculation shows that the numbers Sm 

depend on the boundary conditions imposed on the system, 
and therefore, the normalised probability distributions of 
the particle number in the condensate and outside it, as well 
as the principal orders of all the higher-order moments of 
these distributions, starting from the variance, also depend 
on the boundary conditions. This statement is illustrated in 
Fig. 1, according to which the statistical distribution of the 
particle number in the condensate at the interaction inten-
sity corresponding to L/x = 20 looks wider and more asym-
metric for boundary conditions that violate the homogene-
ity of the system. 

It is interesting to consider how the evolution of the stud-
ied statistics occurs when the intensity of the interparticle 
interaction changes. In the case of a homogeneous trap with 

all periodic boundary conditions for which the energies {ej} 
do not depend on the magnitude of the interaction constant g, 
this evolution actually reduces to the effect of fluctuation 
squeezing, well known in quantum optics [15, 16] and found 
in relation to statistics of Bose atoms in Ref. [12]. This effect 
consists in the fact that with an increase in the interaction 
constant g in expressions (8), the terms containing the overlap 
integrals D jj º g áN0ñò fj

*f2fj  d3r in the denominator signifi-
cantly decrease. As a result, the higher-order cumulants 
(starting from the second one, which determines the variance) 
fall, decreasing with approaching the Thomas – Fermi limit 
(L/x >> 1) to half of their values calculated in the absence of 
interaction. 

In the case of a trap with zero boundary conditions along 
one of the axes, the effect of squeezing of fluctuations is also 
present, but does not completely describe the statistics behav-
iour. These boundary conditions violate the homogeneity of 
the system, because of which the existing quasi-particles and 
their energies turn out to depend on the magnitude of the 
interaction constant that determines the wave function of the 
condensate. With increasing interparticle scattering, the con-
densate density profile along the inhomogeneous direction 
becomes more flat in the central part of the trap and more and 
more sharply changing in the boundary region. Accordingly, 
the energies of the eigenstates of the modified Schrödinger 
equation {ej} decrease, which makes the excited energy levels 
of the system more accessible, facilitating, in turn, enhanced 
fluctuations and increase in cumulants (8) (the eigenstates of 
the projection of Eqn (5) onto the inhomogeneous direction 
with zero boundary conditions are described in detail in [14]). 
Such an effect of the transformation of quasi-particles acts 
oppositely to the squeezing of fluctuations. 

The combined effect of both considered mechanisms is 
illustrated in Fig. 2, which shows the evolution of the stan-
dard (root-mean-square) deviation of the number of con-
densed particles. In a regime of almost homogeneous gas, the 
standard deviation decreases regardless of the boundary con-
ditions in accordance with the effect of fluctuations squeez-
ing. However, with an increase in the interaction constant to 
a value corresponding to L/x - 3, the condensate in an inho-
mogeneous trap begins to experience substantial rearrange-
ment, which activates the effect of transformation of quasi-
particles. In the range of parameters L/x - 7, it begins to 
prevail over the effect of fluctuation squeezing. As a result, in 
an inhomogeneous trap, the variance only increases with a 
further increase in the interaction (and does not fall, as in the 
case of a completely homogeneous system) and in the 
Thomas – Fermi limit tends to a value exceeding the variance 
in an ideal gas. Similar behaviour and similar differences for 
the considered boundary conditions are also demonstrated by 
the other higher-order cumulants. 

It should be noted that for the traps being compared, the 
differences in statistics with scattering enhancement only 
increase (of course, provided that the system remain in the 
regime of thermal fluctuations). The maximum difference is 
achieved when approaching the Thomas – Fermi limit, which 
may look somewhat unexpected, because in this case, the con-
densate most efficiently shields the external potential and its 
perturbations. However, within the framework of a rigorous 
description no contradiction arises, since the information 
about the single-particle spectrum is preserved by a conse-
quent transformation from particles to quasi-particles diago-
nalising the Hamiltonian of the system, and then back to the 
initial particles whose statistics are analysed. 
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Figure 1. Probability distributions of the total number Nex of particles 
outside the condensate for a homogeneous cubic trap with all periodic 
boundary conditions (solid curve) and zero boundary conditions along 
one of the directions (dashed curve). The distributions are centred at the 
corresponding average values and normalised to the characteristic vari-
ance scale T/e* >> 1, similar for the two trap configurations being com-
pared. The calculations were carried out in the thermodynamic limit for 
the thermal fluctuations regime, the interparticle interaction corre-
sponds to the ratio of the trap length and shielding length L/x = 20.
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For trapping potentials of a more general form, the analy-
sis of statistics is not so simple because of the nontrivial struc-
ture of quasi-particles, which leads to a much more cumber-
some representation of the characteristic function. The effect 
of transformation of quasi-particles is also less transparent, 
since in the general case a variation in the interaction intensity 
can noticeably change the decomposition of each quasi-parti-
cle int a set of modes of the modified Schrödinger equation 
(5). For more complex traps the influence of boundary condi-
tions can quantitatively differ significantly from that shown 
in the considered example; the dependence of statistics on the 
intensity of interparticle scattering can also be noticeably dif-
ferent. However, the order of magnitude of the effects of the 
boundary conditions that do not disappear in the thermody-
namic limit is preserved. 

3. Discussion of results 

The studied example clearly demonstrates that the depen-
dence of the statistical distribution of the number of boson 
particles inside and outside the condensate on the boundary 
conditions remains significant and is not suppressed in the 
presence of interparticle interaction, even strong enough 
when the system approaches the Thomas – Fermi asymptotic 
regime. The indicated dependence manifests itself in the prin-
cipal order of magnitude for the variances of distributions 
and all the higher-order moments and cumulants. This con-
clusion can be generalised to the case of a trap that holds a 
Bose gas in a volume of arbitrary shape and, most likely, 
remains valid for any 3D atomic trap with a sufficiently rapid 
growth of the single-particle spectrum. 

The nontrivial feature of the discussed statistics should be 
taken into account for the correct interpretation of the results 
of experiments with Bose systems carried out in nearly homo-
geneous traps, as well as analysing fluctuations of the Bose 
condensate and any other characteristics of the Bose gas that 
cannot be reduced to the average number of particles in the 
condensate and outside it. In addition, the study suggests an 
experiment on directly detecting the influence of boundary 

conditions on condensate fluctuations – switching boundary 
conditions similar to that described for model traps seems to 
be feasible in laboratory conditions, and the necessary mea-
surement accuracy is considered achievable in the near future.
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Figure 2. Dependence of the standard deviation of the number of par-
ticles in the condensate s on the intensity of interparticle scattering for 
a large 3D Bose system, the statistics of which are determined by ther-
mal factors: the case of all periodic boundary conditions (solid curve) 
and zero boundary conditions along one of the directions (dashed curve). 
The deviation is normalized to its natural scale T/e* >> 1, interparticle 
scattering is characterised by the ratio of the trap length L to the healing 
length x. Asymptotic values corresponding to the Thomas – Fermi limit 
L/x >> 1 are shown by a dotted line for each boundary condition.


