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Abstract.  Based on the theory of the thermodynamic equilibrium 
in a system of quantum vortices in superfluid liquids and in a 
Bose – Einstein condensate in the presence of a counterflow of 
normal and superfluid components, we investigate the structure of 
a chaotic tangle of quantum vortices in turbulent superfluid liq-
uids. Using the characteristic functional method, the properties of 
hydrodynamic vortex filaments are examined. It is shown that the 
average curvature of the vortex lines is on the order of the inter-
vortex distance, with the proportionality coefficient being inde-
pendent of the counterflow velocity. It is found that the degree of 
anisotropy of the vortex loops does not depend on the applied 
counterflow velocity. The obtained results explain the origin of 
the anisotropy as well as the relationship between the curvature of 
the lines and the intervortex space and their dependence on the 
parameters of the problem.

Keywords: Bose – Einstein condensate, quantum vortices, superfluid 
turbulence, topological defects.

1. Introduction

Interest in thermodynamically equilibrium quantum vorti-
ces is explained by several reasons. First of all, thermody-
namic (produced by thermal fluctuations) quantum vortices 
determine many physical properties of quantum liquids, 
such as phase transition or kinetic properties (see, for exam-
ple, [1]). In this sense, the problem under study is of undoubted 
interest.

Another motivation is associated with the theory of quan-
tum turbulence, namely, the problem of stochastic dynamics 
of quantum vortex filaments in flowing (and counterflowing) 
superfluid liquids and in a Bose – Einstein condensate. The 
theory of quantum turbulence, initiated by the works of 
Feynman [2] and Onsager [3], has always attracted rapt atten-
tion of physicists. Important stages in the study of quantum 
turbulence are the invention of a macroscopic theory (Vinen 
[4]), as well as the first numerical work (Schwartz [5]), in 
which various characteristics of a vortex tangle were obtained. 
To date, the theory of quantum turbulence is an actively 
developing discipline with a large number of applications in 

various fields of physics, from research on ultracold atoms 
and heavy ions to classical turbulence and physics of neutron 
stars. An example is the theory of classical turbulence [6], the 
theory of cosmic strings [7], the theory of dislocations in sol-
ids [8], and the theory of phase transitions [1]. The concept of 
quantum turbulence is also used in studies of quark – gluon 
plasma [9] and neutron stars [10]. It is worth mentioning two 
recent international conferences that discussed the problems 
listed above: INT Program INT-19-1a ‘Quantum Turbulence: 
Cold Atoms, Heavy Ions, and Neutron Stars’ (Seattle, USA, 
2019), http://www.int.washington.edu/PROGRAMS/19-1a/ 
and ‘Turbulence of All Kinds’ (Osaka City University, 2020), 
https://sites.google.com/view/toak2.

Quantum turbulence in a Bose – Einstein condensate is 
usually examined by using a macroscopic wave function 
obeying the nonlinear Schrödinger equation. Studies of the 
dynamics of ultracold atoms, both theoretical and experimen-
tal, are very numerous (see, for example, [11 – 14].

The bulk of our ideas about the structure and dynamics of 
vortex tangles is obtained from experiments and direct 
numerical simulations. Theoretical research is far behind. Of 
course, this situation is unsatisfactory for theorists, but it is 
equally unsatisfactory in general. Indeed, for numerical stud-
ies and experimental measurements to be more efficient and 
reliable, scientists obviously need support and new ideas 
based on analytical investigations. The absence of a consis-
tent theory is explained, firstly, by the unusual complexity of 
the problem and, secondly, by the fact that the dynamics of 
vortices is described by a phenomenological approach, and 
many elements of evolution, for example, reconnection of fil-
aments, are artificial (see review [15]). Thus, there is a need for 
some particular approach to the general problem. An impor-
tant version of this approach is the study of thermodynamic 
equilibrium in a system of quantum vortices in the case of a 
counterflow of normal and superfluid components. As was 
shown earlier, this problem has an analytical solution (see [16] 
and references therein); therefore, there are reasons to clarify 
many aspects of structure and dynamics.

In this work, we study the problem of the structure of a 
thermodynamically equilibrium chaotic tangle of quantum 
vortex filaments in superfluid liquids and in a Bose – Einstein 
condensate in the presence of a counterflow of normal and 
superfluid components. Based on the Gibbs distribution 
determined earlier, we employ the characteristic functional 
method to obtain the results on the structure of the vortex 
tangle. In particular, the average curvature of the vortex lines, 
as well as the anisotropy coefficient of the vortex tangle, is 
calculated. The results are compared with similar data 
obtained for the case of quantum turbulence.
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2. Quantum turbulence, vortex tangle properties

The term ‘quantum turbulence’ was introduced by Feynman 
in his fundamental work [2] (see also [4]). He described this 
phenomenon as the appearance of an unordered set of quan-
tum vortex lines or a vortex tangle in superfluid helium 
(He II), with the tangle resisting the flow of a normal compo-
nent that transfers entropy. Vortex filaments are one-dimen-
sional structures around which a superfluid component hav-
ing a velocity us can circularly move with quantized circula-
tion d nsu =l ky . A vortex filament can be described in a 
parametric form by the function s(x, t), where s are the radius 
vectors of the points of the line, and the parameter x ‘recalcu-
lates’ the points of the line; often, the quantity x is a parameter 
of the arc length. The set of lines {s(xj, t)} (  j is the loop number) 
evolves, obeying the equations of motion and boundary condi-
tions. The subscript j denotes the number of the vortex loops. 
Sometimes, for brevity, we will denote the vortex configuration 
as s(x), implying the combination of all the loops,  s(x) = 

j jj ( )s, x  included in the vortex tangle. To get an idea of the 
physics of quantum turbulence and the structure of a vortex 
tangle, we refer readers to our review article [15].

We present several results (numerical and experimental 
[5, 17]) concerning the structure of a vortex tangle. One of the 
most widely accepted results is that the density L of the vortex 
lines (total length of the filaments per unit volume) is propor-
tional to the square of the difference between the velocities of 
the normal (un) and superfluid (us) components uns (or coun-
terflow velocity):

L ns
2 2g u= ,	 (1)

where g = g(t) is some temperature-dependent function.
Another example concerns the average curvature of the 

vortex lines, R–1. The value of R has the order of the intervor-
tex (interline) distance d = L–1/2:

/ ( ) ( ) ( )R c T L1 j jj j
2

2
2x x= =s sll ll ,	 (2)

where the primes denote the derivatives with respect to x. In 
the temperature range 1 2K KTG G  (the usual interval for 
numerical studies of quantum turbulence), the coefficient 
c2(T ) varies from 3.5 to unity. Consequently, for low tem-
peratures, at which the interaction of the vortices with the 
normal component is weak, the vortex lines are more ‘bro-
ken’. It is noteworthy that c2(T ) is independent of the applied 
velocity uns.

Then, in numerical simulation and in the experiment, 
anisotropy of vortex filaments was observed with respect to 
the vector uns directed along the z axis:

,( ) ( ) ( ) ( )I Ij j j jx x xx y y yyx x x x= =s s s sl l l l ,

	 ( ) ( ) Ij jz z zzx x =s sl l .	 (3)

Despite numerous works on quantum turbulence, there 
are still no studies in which relations (1) – (3) would be 
obtained on the basis of any consistent theory. The origin and 
physical meaning of these relationships are unclear. Quite a 
mystery is the fact that the parameters Ixx, Iyy, and Izz, charac-
terising anisotropy are independent of the value of the applied 
counterflow velocity uns, although the presence of a counter-
flow is the source of anisotropy.

Continuing sequentially our research, we set the goal to 
study the problem of the structure of a vortex tangle for ther-
modynamically equilibrium vortex filaments. In our work 
[18, 19], we used the Langevin approach to demonstrate the 
existence of thermodynamic equilibrium of an ensemble of 
vortex filaments in quiescent superfluid helium, as well as in 
the presence of a counterflow of normal and superfluid com-
ponents. We briefly outline the main results. Based on the 
Langevin approach for the dynamics of vortex filaments, we 
have shown that the corresponding Fokker – Planck equation 
has a solution in the form of the Gibbs distribution for the 
probability distribution functional:

({ ( ) ) exp
({ }) ( )

P t N
k T

E s
s

P
B

snx
u u

= -
- -; E ,	 (4)

where N is the normalisation factor. The energy E({s}) and the 
Lamb momentum P({s}) are defined as integrals along the line 
(see, for example, [20]):
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Here rs is the density of the superfluid component and k is the 
circulation quantum.

In our previous work [16], we used the Gibbs distribution 
(4) to construct a statistical sum corresponding to the Gibbs 
distribution and to calculate the density L of vortex filaments. 
The obtained result coincides with dependence (1) observed in 
the experiment. Note that the quantity L is related to the 
parameters of the problem as follows:

T( )L f
v

s ns2

2
2 2

e
k r u= ,	 (6)

where  f (T ) is a temperature function of the order of unity and 
ev is the energy of the unit length of the filament in the local 
approximation [16].

3. Characteristic functional

To calculate the structural characteristics (2) and (3) of a vor-
tex tangle, we need a powerful analytical tool, often used in 
statistical problems, the so-called characteristic functional 
(see, for example, [21]). For a set of chaotic vortex lines, this 
approach was proposed by Migdal [22, 23]. Following these 
works, we define the characteristic functional W({Pj(xj)}) as 
the average:

({ ( )}) exp ( ) ( )i dW sP P
l

j j
0

x x x x= l; Ey .

Averaging can be performed using the probability distribu-
tion functional (4) through the path integral:

j j({ ( ) ( ) ( ( ))exp ( ) ( )D i dW P sP s s Pj

l

0
x x x x x x=}j) l; Eyy .	 (7)

The characteristic functional (7) allows us to calculate the 
average of any value (depending on the configuration of the 
vortex lines) by simple functional differentiation. For exam-
ple, the average tangent vector j a( )x jsl  or the correlation 
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function of the tangential vectors of various elements of the 
vortex filament jj b(xa(x ) )j jssl l  are easily expressed in terms 
of the characteristic functional W({Pj (xj)}) (7) in accordance 
with the rules

ja ( )x
( )

W
( )j
j j P 0

d
x

= a
=

i Pd
sl ,	 (8)

jj (xa b(x W) )
( )( ) ( )j j

j j j j P

2

0

d
x

= a b

=

s
1

s
( ) i P 2dxi Pd

l l .	 (9)

While the characteristic functional is determined by the aver-
aging procedure as an auxiliary quantity, it plays an essential 
independent role in stochastic theories. For example, in the 
problems of statistical physics of many-particle systems, the 
use of the characteristic functional (in this theory it is usually 
called the generating functional) allows us to obtain a brief 
description of statistical properties in terms of the Green’s 
function and equations for them (see, for example, [21, 22]). 
Another example is the theory of classical turbulence, where 
the basic kinetic equation for the characteristic functional 
(called the Hopf equation) is derived directly from the 
Navier – Stokes equations without resorting to a distribution 
function that is in any case unknown (see, for example, 
[24, 25]).

We proceed to the calculation of the characteristic func-
tional. At this stage, we restrict ourselves to the expression for 
energy in the local approximation [16], and also consider the 
case of loops of the same size l. As will be seen from what fol-
lows, despite these limitations, we obtain results related to the 
structural properties of the vortex tangle and close to those 
observed in the experiment. In the local approximation, the 
energy of the vortex loop is proportional to the length of the 
filament, | ( ) | ldE sloc v ve x e= =xly . The energy of the unit 
length of the vortex line is expresses as

ln a
R

4
s

v

2

0pe
r k

= b l,	 (10)

where a0 is the radius of the core of the vortex filament, and 
the upper cutoff parameter for the logarithm á R ñ coincides 
with the average radius of curvature of the vortex filament, 
which is related to the filament density L as á R ñ » L–1/2.

As the next step, we use the so-called Gaussian approxi-
mation, which is widely used in the theory of polymer chains. 
The essence of this approach is to ease the strict condition  
|  s'(x) | = 1 and change it using a fuzzy (Gaussian) distribution 
of the link length with the same integral value (see, for exam-
ple, book [26]). Given that, we will represent the local energy 
in the form

( ( )) dE sloc v
2e x x= ly .

In the Gaussian approximation, the probability distribu-
tion functional (4) has the form:

exp{ ( )} ( ( ))v dP Ns s 2x be x x= - l; y

	 ( ) ( )ds s
2ns
s

#b
r k

x x xu+ l Ey .	 (11)

The probability distribution functional (11) should be supple-
mented with a factor related to the calculation of vortex con-
figurations by lattice models [16]. This procedure can be per-
formed by using the replacemen 2/ a( )3v v"be be + , where a is 
the step of the (cubic) lattice. Next, we will use the redefined 
value of ev.

Thus, the probability distribution functional P{s(x)} has a 
Gaussian form [quadratic in the variable  s'(x)], and therefore 
the characteristic functional (7) can be calculated analytically 
in a general form. Let us briefly describe this procedure. Since 
the exponential includes derivatives of different orders, it is 
convenient to perform the one-dimensional Fourier trans-
form along the line i) ( )exp( )p ps spx x=( / . The calculation 
of the characteristic functional (7) based on the probability 
distribution functional (11) is performed using the standard 
‘full-square procedure’ (see, for example, [27]). Having com-
pleted this procedure, we obtain

({ ( )}) exp ( ) ( ) ( )W p P p N p P pP ( ) ( ) ( )

p

= - -a ab b
; E/ .	 (12)

The matrix N(ab)( p) has the form:
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		  (13)

The characteristic functional W({P( p)}) (12) with the 
matrix N(ab)( p) (13) is the starting point for studying the sta-
tistical properties of a vortex tangle.

4. Some statistical properties of a vortex tangle

This section describes some statistical properties of a vortex 
tangle, which follow from the above-developed formalism. 
We restrict ourselves to calculating the curvature and anisot-
ropy of the vortex loops. To this end, we perform the inverse 
Fourier transform in the expression for the matrix N(ab)(  p) 
and calculate the correlation function á s' (x1) s' (x2) ñ of orien-
tations of various line elements.

In accordance with the rules of working with the charac-
teristic functional [see formulae (8) and (9)], we can obtain the 
relations:
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e
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z z( ) ( ) ( )1
2

v
1 1 2dx x

be
x x= -s sl l 	 (15)

for the correlation functions of the transverse components of 
the tangential vectors á sx' (x1) sx' (x2) ñ and á sy' (x1) sy' (x2) ñ, as 
well as the correlation functions of the longitudinal compo-
nents á sz' (x1) sz' (x2) ñ taken at different points x1 and x2 along 
the vortex line. The terms with the delta function appeared 
due to the fact that, in the absence of a relative velocity uns, 
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the probability distribution functional (11) is the Wiener dis-
tribution for random walks. In this sense, the result is trivial.

The second term in expression (14) is associated with the 
action of the counterflow. In contrast to the term with the 
delta function, it describes a smooth change in the tangential 
vector s' (x) along the line. The characteristic length over 
which the tangential vector changes is a quantity that is 
inverse to the factor in the exponent after the argument 
| x1 –  x2 |. By definition, it is the average radius with a curva-
ture R. However, the expression under the root is a combina-
tion that is included in the formula for the density of vortex 
lines (6). Combining the result of (14) with formulae (1) and 
(6), we arrive at the relation

T( )c R 2 v

s
2

d
ge
kr

= = .	 (16)

Thus, we obtained a remarkable result: the average radius 
with a curvature R is of the order of the average intervortex 
distance d = L–1/2 [cf. formula (2)]. In the temperature range 
1 2K KTG G , the coefficient c2(T ) varies from 5 to 1.5 and 
does not depend on the value of the applied counterflow 
velocity. In order of magnitude and in a characteristic change, 
the functions c2(T ), obtained in our work and in numerical 
studies on quantum turbulence, correspond to each other.

We discuss the anisotropy of the vortex loops and their 
orientation with respect to the applied velocity. From the 
form of the matrix N (ab)( p) (13) and the form of the matrix 
elements for the correlation functions of the tangential vec-
tors in the x-space (14) and (15), it follows that the vortex 
tabgle must be anisotropic, i.e., have different transverse and 
longitudinal (with respect to the velocity uns) sizes. However, 
it is impossible to directly compare the corresponding quanti-
ties with the coefficients Ixx, Iyy, and Izz obtained in numerical 
calculations [see relation (3)] for the following reason: the cor-
relators á sx' (x1) sx' (x2) ñ and á sz'(x1) sz'(x2) ñ contain delta func-
tions of the difference of arguments x1 – x2, and there arises 
infinity for coinciding arguments. This is a direct consequence 
of the random nature of the walk for the vortex line resulting 
from the Wiener distribution for the probability distribution 
functional (11).

To overcome this difficulty, we study the three-dimen-
sional configuration and dimensions of the vortex loops. In 
three-dimensional space, the square of the distance D2 
between the points of the vortex loop separated by the dis-
tance along the line can be obtained from the expression for 
the correlation function of the tangential vector using the 
rule [27]

ss s s

s ( ) ( ) ( ) ( )d d d d D1 2 1 2
00

1 1
0

2 2
0

2x x x x x x x x= =s ssl l l lyy y y .

On the other hand, knowing the expressions for the trans-
verse, á sx' (x1) sx' (x2) ñ, and longitudinal, á sz'(x1) sz'(x2) ñ, corre-
lation functions [see formulae (14) and (15 )], it is possible to 
calculate the same value componentwise. The calculations 
lead to the following result:

{ [ ( )] }expD R s R ss 3 1,x y
2

be be
= + - + - +

v v
/ ,	 (17)

D s1z
v

2

be
= .	 (18)

The contribution to the three-dimensional size of the terms in 
the correlators associated with the delta function has the form 
of a random walk, D µ s , as it should be due to the Wiener 
nature of the probability distribution functional (11). As for 
the contribution of the second term related to the action of 
the applied velocity, for sufficiently long loops (s >> R), the 
dependence on the radius of curvature and, therefore, on the 
relative velocity [see relation (16)] disappears. Since our calcu-
lations were performed for loops of the same size, it is not 
entirely clear how the second term in (17) should be modified 
in the case of loops of different sizes. To do this, one needs to 
know the size distribution of the loops, but this is a separate 
problem to be still solved. It is obvious, however, that appro-
priate manipulations should lead to some temperature depen-
dence. Summing up, we can argue that the vortex tangle really 
exhibits anisotropic properties and the ratio of its longitudi-
nal and transverse sizes does not depend on the applied veloc-
ity, as is the case in quantum turbulence. The physical mean-
ing of this unusual phenomenon is that, depending on the 
applied velocity, vortex tangles of different intensities, but 
with the same statistical properties, are generated. In particu-
lar, at a very low velocity (uns ® 0) a small number of vortex 
loops will be generated, but the degree of their anisotropy will 
be the same as in a dense vortex tangle.

5. Conclusions

Based on the characteristic functional method, we have stud-
ied the properties of an ensemble of quantum vortices in 
superfluid liquids in the presence of a counterflow of normal 
and superfluid components. As in our previous work [16], it 
was established that there are two populations of vortex fila-
ments. These are the thermodynamic vortices generated by 
thermal fluctuations, and the hydrodynamic vortices associ-
ated with the counterflow velocity. Based on the exact calcu-
lation of the characteristic functional, we have obtained the 
correlation functions of tangential vectors that determine the 
properties of a vortex tangle. In particular, we have shown 
that the average radius of curvature R of the vortex lines is 
on the order of the intervortex distance d. The proportional-
ity coefficient c2(T ) is a function of temperature (on the order 
of unity) and does not depend on the applied counterflow 
velocity.

Our calculations of quantitative characteristics show that 
the degree of anisotropy of the vortex tangle is also indepen-
dent of the applied counterflow velocity. Previously, similar 
results were found only numerically for the case of quantum 
turbulence. So far, no theoretical methods have been devel-
oped to obtain such a dependence, and the physical nature of 
the revealed properties (in particular, independence from the 
applied velocity) was unclear. The results of this work are in 
order of magnitude consistent with data for turbulent flows. 
However, our results have been obtained for the thermody-
namically equilibrium case, and it is not yet clear how it 
relates to the case of quantum turbulence. This issue, as well 
as other issues concerning the connection of thermodynamic 
equilibrium with a turbulent flow, are of great interest; it is 
assumed that they will all be investigated in the future.
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