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Abstract.  We consider methods for obtaining a multitude of struc-
tured laser beams (multiplexing) from an illuminating beam (both 
structured and unstructured) with the help of diffractive optical ele-
ments (DOEs). An approach of ‘intelligent multiplexing’ is pro-
posed to describe and develop the methods. A DOE is calculated 
that forms a set of five diffraction orders located in a line. An 
example of focusing a set of doughnut-shaped azimuthally polar-
ised laser beams using a diffraction beam splitter is presented. 
Efficient multiplexing of first-order vortex beams in a two-dimen-
sional region is implemented by a two-dimensional diffraction grat-
ing. An approach is proposed and realised in which the transmission 
functions of a two-dimensional diffraction beam splitter and the 
elements forming structured laser beams with specified parameters 
are combined into the transmission function of one element. Such 
DOEs can be used in optical communication systems for encoding 
and decoding data. The possibility of using binary curved fork-
shaped gratings for the formation of doughnut-shaped three-dimen-
sional vortex beams, which are detected outside the focal plane, is 
demonstrated. This approach provides additional advantages for 
safe data transmission; it can be used in laser processing of materi-
als and in laser manipulation applications.

Keywords: diffractive optical elements, structured laser beams, 
multiplexing, transmission function, diffraction orders.

1. Introduction

Optical multiplexing of laser beams implies the formation of 
a multitude of both identical and different beams arranged in 
accordance with some pattern. Moreover, the structure of the 
pattern can be one-, two- or even three-dimensional. This sig-
nificantly expands the capabilities of technologies used in 
such fields as laser manipulation [1], laser processing of mate-
rials [2] and optical communications [3]. Thus, the use of 
holographic optical tweezers in the form of several structured 
laser beams located at different points makes it possible to 
form a controlled fluid flow carrying arrays of nano- and mic-
roparticles along a given trajectory [4, 5], and the use of spec-
ified three-dimensional configurations of Gaussian beams 

allows one to produce various three-dimensional structures 
from captured microobjects [6 – 8]. When use is made of one- 
and two-dimensional arrays of various structured laser 
beams, it becomes possible to increase the processing speed of 
materials by several orders of magnitude in order to fabricate 
arrays of various nano- and microstructures, which are widely 
used in sensorics [9, 10]. The use of elements demultiplexing 
optical channels in communication lines can significantly 
increase the processing speed of incoming information in 
optical communications systems [11]. In optical communica-
tion systems, the demand for multiplexing and demultiplexing 
devices is determined by their ability to increase the through-
put capacity of communication channels based on spatial 
division multiplexing (SDM), one of the varieties of which are 
mode division multiplexing (MDM) systems. An integral part 
of this idea is special optical elements for the analysis and for-
mation of the transverse-mode composition of the light 
[12 – 16].

Currently, there are many approaches for calculating the 
elements generating single laser beams with desired proper-
ties, both iterative and non-iterative. To form sets of such 
beams, the calculated elements are usually combined with 
various diffractive optical elements (DOEs), for example, dif-
fraction gratings [17 – 19] (Fig. 1). In this case, DOEs natu-
rally produce multiple diffraction orders. Recently, many 
problems have arisen in which it is required to perform not 
only multiplexing of the initial beam into a multitude of such 
beams, but also to control their individual properties.

In this work, the general principles of the DOE design for 
the effective implementation of the intelligent multiplexing 
operation are systematically formulated. The methods for 
calculating the elements that multiplex the incident laser 
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Figure 1.  Formation of a one-dimensional array of doughnut-shaped 
light beams using a combination of a one-dimensional diffraction grat-
ing and a ring focuser.
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beam and form their specified one-, two- and three-dimen-
sional configurations are analysed and compared. These 
methods can be easily adapted for calculating elements oper-
ating in various spectral (from sub-millimetre to nanometre) 
regions and can be used in practical applications.

2. Formation of one-dimensional configurations 
of laser beams

Laser beam multiplexing for producing a specified one-
dimensional array of the beams is the simplest. In this case, it 
is necessary to control the distance between the beams being 
formed only in one coordinate. Consider an N-order diffrac-
tion beam splitter that can be easily used in combination with 
various structured laser beams. To calculate a DOE function-
ing as such a one-dimensional diffractive beam splitter, the 
superposition method with additional weighting coefficients 
can be used to control the energy directed to each diffraction 
order [20]. In this case, the element transmission function is 
calculated as

( ) ( ), arg exp iT x y C xn xn
n

N

1

n=
=

= G/ ,	 (1)

where (x, y) are the Cartesian coordinates in the plane of the 
element; N is the number of generated orders; vxn are the spa-
tial frequencies of various diffraction orders that determine 
their actual position; arg [...] is the function of the argument; 
and Cn are complex coefficients that make it possible to redis-
tribute energy between neighbouring diffraction orders. 
Spatial frequencies allow the position of all generated diffrac-
tion orders to be precisely controlled; in this case, any vxn val-
ues can be used without any restrictions.

Consider an example of calculating a DOE, which forms a 
set of five diffraction orders located in a line. When the DOE 
is illuminated by any given structured laser beam, a set of five 
such beams will be generated, for example, in the form of 
doughnuts in the case of using an illuminating azimuthally 
polarised beam. The introduction of phase differences 
between adjacent diffraction orders by changing the coeffi-
cients Cn allows introducing destructive interference and 
weakening the higher diffraction orders. The centres of the 
corresponding diffraction orders in the Cartesian coordinate 
system are determined by the coordinates xn

(c) = lfvxn /2p and 
y n

(c) = 0, where f is the focal length of the focusing system and 
l is the wavelength of the used laser light. In calculating the 
Cn coefficients, we used the gradient method [21], which 

allowed us to calculate the diffractive beam splitter that gen-
erates light orders with high (about 0.98) uniformity.

To simulate the focusing of a set of doughnut-shaped azi-
muthally polarised laser beams based on the calculated dif-
fractive beam splitter, we used the Richards – Wolf equation 
[22], which allows one to take into account the polarisation 
structure of the light field. The simulation took into account 
the fact that the laser beams are focused by a micro-lens with 
a numerical aperture NA = 0.5. Figure 2 shows the effect of a 
change in the period Tp between the centres of the neighbour-
ing generated light rings on the root-mean-square error of 
their formation. The period Tp is in the range 0.6 – 3 mm, and 
the diameter of the light rings at a maximum intensity level is 
0.9 mm. Figure 3 demonstrates good agreement between the 
experimentally and numerically obtained intensity distribu-
tions for all the considered periods Tp. The deviation in the 
distances between adjacent rings does not exceed 50 nm. In 
addition, the interference patterns obtained in these cases 
show that there are no significant changes in the phase struc-
ture of the generated fields.

To date, various methods for calculating one-dimensional 
diffractive beam splitters are known, including Dammann’s 
method [23 – 26], iterative methods (for example, the Newton 
method [27 – 29] or the Gerchberg – Saxton algorithm [30, 31]), 
the gradient method, and various hybrid techniques [21]. The 
indicated methods make it possible to ensure high values of 
the efficiency and uniformity of the generated beams, due to 
which they are widely used in devices for laser processing of 
materials when high accuracy and uniformity of the genera-
tion of specified light fields are required. Thus, the use of one-
dimensional binary light beam splitters made it possible to 
demonstrate printing of 107 functional structures per second 
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Figure 2.  Root-mean-square error of the formation of light rings as a 
function of the period Tp.
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Figure 3.  Numerically and experimentally obtained intensity distributions of doughnut-shaped laser beams formed by illumination of a diffractive 
beam splitter with an azimuthally polarised laser beam, as well as interferograms obtained for these fields as a result of their interference with a 
Gaussian beam with an oblique wavefront. 
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in thin films of gold [32], as well as to form arrays of micro-
holes in stainless steel up to 30 mm thick [33].

3. Formation of two-dimensional configurations 
of laser beams

Modification of equation (1) by adding another spatial fre-
quency vyn, which sets the position of the generated diffrac-
tion order in the direction perpendicular to the given spatial 
frequency vxn, allows it to be used to calculate two-dimen-
sional beam splitters

( ), arg exp i iT x y C x v yn xn yn
n

N

1

n= +
=

^ h= G/ .	 (2)

It should be noted that in calculating such two-dimen-
sional gratings, same iterative and enumeration methods are 
widely used as in the case of calculating one-dimensional grat-
ings. First, the transmission function of a one-dimensional 
grating is calculated by iterative method, and then the trans-
mission function of a two-dimensional grating is calculated as 
the product of the transmission functions of two one-dimen-
sional gratings rotated by 90° relative to each other [18]. 
However, this approach allows one to calculate only diffrac-
tive beam splitters that form diffraction orders arranged in 
square and rectangular patterns. In this case, if we set Cn = 1 
in equation (2), then in calculating the elements forming equi-
distant diffraction orders in Cartesian coordinates, there 
arises a situation for a large (more than 20) number of ele-
ments, when the intensity unevenness of the diffraction orders 
increases. A completely different situation takes place if the 
diffraction orders are arranged equidistantly in polar coordi-
nates. It was shown in [34 – 36] that the ratio of the minimum 
intensity to the maximum one is approximately 0.62, com-
pared with 0.34 in the case of Cartesian coordinates for 150 
diffraction orders being generated.

As in the case of one-dimensional diffraction gratings, a 
two-dimensional grating successfully produces a set of dif-
fraction orders if they are not too close to each other. When 
the diffraction orders separated by a distance comparable 
with their size are generated, the grating becomes very low-
frequency and actually degenerates into an element to pro-
duce Hermite – Gaussian modes [37, 38] (Fig. 4). Such ele-
ments can be effectively used for multiplexing first-order vor-
tex beams. In this case, the so-called Hermite – Gaussian 

beams with an embedded vortex are formed, which are 
described in the initial plane as [39]

( )exp i
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where Hn(x) and Hm(y) are the Hermite polynomials of the 
nth and mth orders; s is the size of the Gaussian beam waist; 
and s is the topological charge of the optical vortex embedded 
in the beam. The propagation of such a beam through a sys-
tem of paraxial lenses can be described using the fractional 
Fourier transform [40] in polar coordinates:
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where a = p/(2f ), f is the focal length; k = 2p /l is the wave 
number; and R is the radius of the input beam. Figure 5 shows 
the propagation of Hermite – Gaussian beams with an embed-
ded vortex from the initial plane (z = 0) through the focal 
plane of the optical system (z = f = 300 mm) to the output 
plane (z = 2f = 600 mm). It was previously theoretically shown 
that for n = 1 and m = 1, the light field formed in the focal 
plane is defined as [39]
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As follows from this equation, the intensity vanishes at 
the coordinate origin, as well as in the directions correspond-
ing to 45, 135, 225, and 315°, i.e., at the vertices of the square 
(diagonally). An experimental study of such beams showed 
that the number of generated first-order vortex beams in this 
case is defined as N = (n + 1)(m + 1) + nm (Fig. 6). 
Unfortunately, this approach cannot be applied to multiplex-
ing vortex beams of a higher order. This is explained by the 
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Figure 4.  Examples of elements for the formation of Hermite – Gaussian modes TEM10 and TEM11: (a, c) their phase functions and (b, d) inten-
sity distributions formed by them in the far zone.
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fact that the diameter of the generated light rings increases with 
increasing vortex beam order. As mentioned above, the ele-
ment for the formation of Hermite – Gaussian modes is actu-
ally a degenerate binary diffraction grating, which generates 
diffraction orders that are separated from each other by a dis-
tance comparable to their size. An increase in the diameter of 
multiplexed vortex beams and the presence of a phase delay 
between the generated diffraction orders leads in this case to 
the superposition of the initial multiplexed vortex beams and to 
distortion of the structure of the initial vortex beam.

Structured laser beams have been recently multiplexed 
using an approach in which the transmission functions of a 
two-dimensional diffractive beam splitter and elements form-
ing structured laser beams with given parameters are com-
bined into the transmission function of one element, for 
example, into the transmission functions of two-dimensional 
gratings and vortex/linear axicons [17, 33] or vortex beam 
shapers [41 – 45] (including perfect optical vortices [46]). In 
the latter case, this allows not only the formation of sets of 
different vortex beams in the required diffraction orders [47], 
but also the use of such elements for mode decomposition and 
analysis of the composition of the illuminating beam [48], for 
example, in optical communication systems for decoding data 
(including data encoded in cylindrically polarised beams) 
[49 – 52].

The use of the superposition method defined by equation 
(2) leads to a decrease in the diffraction efficiency of the for-
mation of light fields with an increase in the number of gener-
ated orders. This can be avoided by the use of composite dif-
fractive beam splitters, the area of which is divided into sepa-
rate areas (both angular and radial sectors) with their own 
transmission function that deflects the incident beam to the 
required diffraction order [53 – 58]. These methods are non-
iterative and also make it possible to control the polarisation 
of each generated laser beam from the set by adding an addi-
tional phase jump [53]. However, often such methods require 
high resolution in the manufacture of diffractive beam split-
ters, which increases the cost of their production.

4. Formation of three-dimensional 
configurations of laser beams

The next modification of the superposition method is to 
introduce into equation (1) another factor exp(ikr2/2f ) that 
actually adds a spherical wavefront to a specific laser beam 
going in the (n, m)th diffraction order, which allows shifting 
the generated beam along its propagation axis:

( ) /2, arg exp i i iT x y C x v y kr fn xn yn
n

N

1

2n= + +
=

_ i= G/ ,	 (6)

where r 2 = x2 + y2.
This makes it possible to form predetermined three-

dimensional configurations of laser beams. This approach 
has been considered in many papers [18, 59 – 62]. Three-
dimensional diffractive beam splitters calculated on the 
basis of the Talbot effect work in a similar way [63]. 
However, in all these cases, as in the case of two-dimensional 
diffractive beam splitters calculated in accordance with the 
superposition method, the diffraction efficiency of the for-
mation of diffraction orders decreases with increasing their 
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Figure 5.  Transformation of Hermite – Gaussian beams with an embed-
ded vortex passing through a lens system. The collecting lens is in the 
z = 0 plane.
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Figure 6.  Experimentally obtained intensity distributions and interferograms of various Hermite – Gaussian beams with an embedded vortex. The 
arrows indicate the positions of the phase singularities in the interferogram patterns.
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number, and, in addition, the phase structure of such ele-
ments has a rather irregular profile, which also complicates 
their manufacture.

There are simpler diffractive optical elements that can be 
used to form ordered three-dimensional arrays of structured 
laser beams, such as optical vortices. Such elements include 
the well-known spiral Fresnel zone plates and their various 
modifications (including so-called spiral Dammann zone 
plates [64]) and binary curved fork-shaped gratings.

A spiral Fresnel zone plate has the following transmission 
function:

arg( ) ( ), exp cosiT x y r p2d j= +7 A# -,	 (7)

where (r, j) are the polar coordinates in the plane of the ele-
ment; d = p /(lf); f is the focal length of the first diffraction 
order formed by the spiral Fresnel zone plate illuminated by 
the light with a wavelength l; and p is the topological charge 
of the vortex beam formed by the plate. The spiral Fresnel 
zone plate generates diffraction orders at various points along 
the propagation axis, and a vortex beam is formed in each of 
these orders, the topological charge of which is defined as pn, 
where n is the number of the diffraction order [65]. Moreover, 
such a plate can be used not only for the formation of various 
vortex beams, but also for their detection, since in this case 
the initial vortex beam with a topological charge l, illuminat-
ing the plate, is converted into a beam with a topological 
charge equal to l + pn in the nth diffraction order (Fig. 7). The 
combination of a spiral Fresnel zone plate with a fork-shaped 
diffractive grating also allows the formation of optical vortex 
beams with different topological charges in different diffrac-
tion orders, located both along and across the propagation 
axis, thereby ensuring the generation of the specified beams in 
accordance with the required three-dimensional profile.

Use of curved binary fork-shaped gratings with the trans-
mission function of the form

[ ( )]( , ) exp sgn cos cosir r r m
2

1t j p g b j j= + + -^ h& 0, r < R,

			   (8)

where g is the quantity reciprocal to the axicon period, which 
is an integral part of this curved grating, and b is the spatial 

frequency of the carrier grating, also allows the formation of 
vortex beams in various three-dimensional configurations (m 
is the vortex order). Since the optical element defined by 
equation  (8) is binary, not only ±1 diffraction orders are 
formed, but also other orders [66, 67], albeit with lower inten-
sity. We write in explicit form the expansion of the transmis-
sion function of such a grating in a Fourier series:

n( )( , ) cos coscr n r nmn
n 0

t j b j j= + +
3

=

rg/

	 n(i i i )b exp cosn r nmn
n

b j j= + +
3

3

= -

rg/ ,	 (9)

where cn = 0 for even orders n.
As follows from expression (9), each diffraction order cor-

responds to the formation of an optical vortex with the num-
ber nm. Moreover, the higher the diffraction order number n, 
the more it deviates from the optical axis: nbrcosj = nbx. 
Thus, diffraction orders ‘scatter’ in various directions. The 
presence of a conical wavefront exp(igr) in the transmission 
function of this element and its transformation in each dif-
fraction order into exp(ingr) lead to the formation of dough-
nut-shaped distributions in the focal plane that are indepen-
dent of the number of the optical vortex. The results of mod-
elling the action of such a binary curved fork-shaped grating 
with a radius of 3 mm, supplemented by a lens with a focal 
length f = 800 mm and illuminated by a flat laser beam at a 
wavelength of 532 nm, are shown in Figs 8 and 9.

It can be seen from Figs 8 and 9 that the parameter g is 
very important for shifting the maximum of the correspond-
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Figure 7.  Simulated longitudinal sections of the intensity distribu-
tions of vortex beams with topological charges of – 1, – 3, and – 5, 
passing through a spiral Fresnel zone plate with a topological charge 
p = 1.
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Figure 8.  Formation of a set of vortex conical beams using a binary 
curved fork-shaped grating with m = 1, b = 10 mm–1 and g = 1 mm–1:
(a) phase structure of the optical element and (b – d) patterns (negative 
images) of the transverse amplitude distribution (x Î [– 0.5 mm, 
0.5 mm], y Î[– 4 mm, 4 mm]) at distances from the initial plane z = (b) 
772, (c) 800 (focal plane of the lens) and (d) 832 mm.
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ing diffraction order from the focal plane. The larger the 
value of g, the greater the difference between the orders along 
the optical axis. Note also that the positive and negative dif-
fraction orders are shifted in opposite directions, and the 
negative ones are shifted by a smaller distance than the posi-
tive orders of the same number. (This effect was observed ear-
lier in [68].) In addition, at small values of the parameter g, the 
formation of high diffraction orders is more pronounced, 
which is due to the coefficients of the Fourier series in expres-
sion (9). Obviously, in all cases, the maximum energy falls on 
the ±1st diffraction orders. However, using Dummann grat-
ings or changing the level of binarisation of the grating [69], 
one can obtain gratings with a different fill factor and increase 
the energy contribution to other diffraction orders.

These results demonstrate the possibility of using binary 
curved fork-shaped gratings for the formation of three-
dimensional configurations of vortex beams, the focusing of 
which occurs in different planes. The use of such a grating as 
a detector allows one to add another degree of freedom  –  a 
change in the coordinates of the correlation peaks along the 
optical axis. This approach provides additional benefits for 
secure data transmission. Note that the formation of three-
dimensional configurations of doughnut-shaped vortex 
beams can also be used in laser processing of materials and in 
laser manipulation applications, for example, in single-pulse 
laser processing of bulk transparent materials to manufacture 
three-dimensional metamaterials [70] and to expand the func-
tionality of holographic optical tweezers [71].

5. Conclusions

The methods for DOE synthesis to produce one-, two- and 
three-dimensional beam configurations are analysed. The 

possibilities of DOEs for forming quasi-periodic distributions 
consisting of many separate structured beams in given 
domains of space are demonstrated. Due to the use of the 
iterative superposition method with additional weighting fac-
tors for calculating the DOE functioning as a one-dimen-
sional diffractive beam splitter, we have managed to obtain 
numerically and experimentally the intensity distributions of 
doughnut-shaped laser beams formed when the diffractive 
beam splitter is illuminated by a azimuthally polarised laser 
beam. The experimental results are in good agreement with 
the simulation results. Deviations in the distances between 
adjacent rings do not exceed 50 nm.

Methods for calculating two-dimensional diffraction grat-
ings for the efficient multiplexing of first-order vortex beams 
are proposed. Such gratings enable to generate experimen-
tally the so-called Hermite – Gaussian beams with an embed-
ded vortex formed. The number of generated first-order vor-
tex beams in this case is defined as N = (n + 1)(m + 1) + nm, 
where n and m are the orders of Hermite polynomials.

It is also shown that the addition of a spherical wavefront 
to a specific laser beam makes it possible to form specified 
three-dimensional configurations of laser beams. To imple-
ment this approach to the formation of ordered three-dimen-
sional arrays of optical vortices, it is proposed to use spiral 
Fresnel zone plates and their various modifications. To form 
optical vortex beams with different topological charges in dif-
ferent diffraction orders, use is made of a combination of a 
spiral Fresnel zone plate with a fork-shaped diffraction grat-
ing. When this element was illuminated with a Gaussian 
beam, optical vortex beams with different topological charges 
in different diffraction orders are obtained, located both 
along and across the propagation axis. Such a plate can be 
used not only for the formation of various vortex beams, but 
also for the safe decoding of data in optical communication 
systems.

Additional prospects for the application of the methods in 
question provide the use of dynamic spatial light modulators 
for temporal modulation, which actually corresponds to the 
transition to 4D dimension.
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