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Abstract.  Differences in correlation measurements of the parame-
ters of pulsed hyperspectral optical fields using symmetric and 
asymmetric interferometers are considered. It is shown analytically 
that the resulting cross-correlation function is sensitive to phase 
perturbations in the original wave field. The considered setup, 
which contains a telescopic reflective 4f system of parabolic mir-
rors in one arm, demonstrates that in the case of an asymmetric 
interferometer, the presence of aberrations leads to degradation of 
the reconstructed image, whereas in the case of symmetric interfer-
ometers these aberrations do not affect the result.

Keywords: hyperspectral fields, correlation measurements, sym-
metric and asymmetric interferometers.

Hyperspectral interferometry (HI), first demonstrated in 
work [1], is a powerful tool for determining the shape of a 
broadband wavefront and for measuring both the amplitude 
and phase characteristics of objects, including those with 
refractive index dispersion. A distinctive feature of HI is 
obtaining the spatial distribution of broadband wavefronts 
with high spectral resolution, which allows one to reconstruct 
information about the object topography or the spatial distri-
bution of its refractive index as a function of the radiation 
frequency. To implement this into practice, a series of inter-
ferograms is recorded when one signal shifts in time relative 
to the other in one of the interferometer’s arms. Thus, the 
recorded series of broadband radiation interferograms repre-
sents a correlation function [1], to which the Fourier spectros-
copy formalism is applied, which gives information about the 
spectral power density.

Modern HI methods can be systemised depending on the 
type of the radiation source used. The first type includes 
broadband sources with low temporal and high spatial coher-
ence [2, 3]. These are heat sources [1] and light-emitting diodes 
[4], the individual radiation spectral components of which do 
not have to be strictly phase-matched, as in the case of the 
second type sources that generate ultrashort laser pulses by 
locking the laser resonator modes. HI with low-coherent radi-
ation sources is commonly used to study objects placed in one 

of the arms of an asymmetric interferometer [5, 6]. It is also 
important to note that obtaining radiation with such coherent 
properties is usually associated with energy losses, which 
makes HI methods sensitive to noise. In addition, when prop-
agating through an optical system, the spectral composition 
of radiation may change due to inhomogeneous spectral 
absorption, chromatic aberrations resulting from the pres-
ence of optical elements with refractive index dispersion, and 
other wavefront distortions. It is assumed that the noise aris-
ing in the system can be described by a model of identically 
distributed additive noise with a Gaussian distribution of its 
standard deviation [7]. A significant improvement in this HI 
type was due to the use of more advanced noise suppression 
algorithms based on the use of sparse representations of 
hyperspectral images [7, 8].

Another class of HI methods is used to characterise ultra-
short laser pulses [9, 10]. Here, interference patterns are also 
sequentially recorded depending on the time delay between 
the signals, but now a pair of pulses acts as signals, and both 
asymmetric [9] and symmetric [10] interferometers are used. 
Due to a physical generation mechanism that uses mode lock-
ing to form ultrashort pulses, laser radiation can have a 
unique spatio-temporal distribution and spectral phase, which 
is also often associated with various spatiotemporal connec-
tivity effects [11]. To solve modern scientific problems involv-
ing the use of ultrashort laser pulses, it is extremely important 
to have access to all the characteristics of a broadband com-
plex-valued field.

Special attention should be paid to hyperspectral mea-
surements implemented in the terahertz (THz) frequency 
range in the pulsed regime, in which solutions to both pre-
viously mentioned problems, namely characterisation of 
objects [12] and wavefront metrology [13 – 15], have already 
been demonstrated using a method known as terahertz 
pulse time-domain holography (THz PTDH). Despite the 
fact that interferometric recording, although in a slightly 
different form, is still possible here [16], in general, these 
methods already go beyond interferometry and relate to 
digital holography, since instead of recording the results of 
interference between the reference and object waves, elec-
tro-optical detection is implemented here [17]. It is based 
on recording the correlation function of a THz pulse with 
a reference femtosecond pulse of the near-infrared spec-
trum range, which allows us to consider the latter as a 
delta-function during measurements. Owing to these fea-
tures, these methods provide direct access to the spectral 
phase, which implies that the phase spectral distribution 
can be directly calculated using the Fourier transform 
applied to the measured temporal dependence of the real 
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part of the THz field amplitude. It should be noted sepa-
rately that this feature is one of the major differences 
between the hyperspectral holographic methods of the THz 
frequency range and the HI methods used for measuring 
fields of pulsed femtosecond radiation [9, 10], in which the 
use of the Fourier transform does not provide access to the 
signal’s spectral phase in one of the interferometer’s arms, 
and additional iterative algorithms are then used to obtain 
it. Also, speaking about the differences in the THz-range 
techniques, it is worth mentioning work [18], in which imag-
ing is implemented by measuring the cross-correlation func-
tion between two terahertz pulses, but not only by the inter-
action of optical and THz radiations.

The aim of this work is to consider and analyse the features 
of the correlation measurement of femtosecond broadband 
laser fields using the HI methods. While in the HI methods 
employing continuous-wave broadband sources, obtaining the 
phase characteristics of radiation passed through the object 
under study assumes the presence of a perfectly collimated 
plane wavefront in both arms, the existence of a consistent 
spectral phase for individual frequency components introduces 
additional specificity in the case of ultrashort pulse sources. 
Therefore, a more complicated case, when the wavefront con-

tains a spatial-phase structure different from the structure of a 
plane wave requires a separate study.

Figure 1 shows a scheme of the HI setup used in this 
work. It is based on an asymmetric Mach – Zehnder inter-
ferometer with a delay line (DL) in the reference arm. A 
beam in the object arm, formed by a pellicle beam splitter 
(BS), passes through the object, and its image is formed on 
the matrix photodetector (CMOS) using a telescopic reflex 
4f system that has a unit magnification factor and consists 
of two parabolic mirrors (PM). Note that off-axis para-
bolic mirrors in the 4f-system design are commonly used in 
setups operating with ultrashort pulses, which are extremely 
sensitive to the effects of refractive index dispersion that 
manifest themselves during the propagation of such pulses 
through optically transparent materials. The reference and 
object waves overlap in the recording plane. As will be clear 
from what follows, an important aspect of this work is the 
absence of a telescopic 4f system in the reference arm, similar 
to that used in the object arm, which makes the reference 
wave susceptible to diffraction. Thus, if there is a perturba-
tion in both interferometer arms, diffraction provides a phase 
shift at each spatial point of the cross-correlation function, 
which leads to distortion of the reconstructed image.
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Figure 1. Schematic of the setup for correlation measurements of the parameters of pulsed hyperspectral optical fields using digital holography 
methods:         
(BS) beam splitter; (DL) motorised delay line; (PM) parabolic mirror; (CMOS) detector. The insets show the characteristics of simulated pulses.
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In this work, we consider the solution of direct and inverse 
problems, which consist in simulating the process of forming 
cross-correlation signals at the detector and extracting the 
amplitude – phase characteristics from them. Two different 
cases are considered (Fig. 1): case 1 corresponds to a plane 
wavefront at the setup input, and case 2 assumes the presence 
of phase distortions of the wavefront.

Insets in Fig. 1 show the characteristics of the simulated 
pulses. The following parameters were used in the simulation: 
the initial pulse duration was t = 10 fs, the reference pulse dis-
placements relative to the object pulse were in the range 
– 30 ̧  30 fs. These phase distortions of the input pulse were set 
by using a phase mask with a spatial distribution correspond-
ing to the standard ‘peaks’ function in MATLAB. It was 
assumed that the maximum height difference in the mask was 
15l0, where l0 = 800 nm, and the refractive index was 1.4. 
Figure 1 also shows the original femtosecond pulse and its tem-
poral spectrum.

Consider a mathematical model for this type of HI. The 
final cross-correlation function recorded on the detector can 
be written as follows:

3

( , , ) [ ( , , ) ( , , )]I x y AS O x y b x y
0
;t n n= oy

 [ ( , , ) ( , , )] ( 2 )exp i dAS R x y b x y 2;pn n nt n+ -o , (1)

where O(x, y, v) is the spatial-frequency function of the object’s 
field; R(x, y, v) is the reference field function; b(x, y, v) is the 
accumulated wavefront perturbation in the BS1 plane (we 
consider the approximation in which the object is located infi-
nitely close to BS1); the reference beam’s phase shift is deter-
mined by the parameter t. Here, we first describe the general 
case when the reference and object wavefronts can undergo 
diffraction, which can be taken into account using the ASv 

wavefront propagation operator for time frequencies, as was 
done in our previous work [10 – 13]. In this case, we only con-
sider positive frequencies v > 0 that have a physical meaning. 
Then this cross-correlation function can be represented in the 
form:

3
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Here “*” is the complex conjugation. The subsequent Fourier 
transform in q frequencies for the cross-correlation function 
yeilds the expression
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and integration by t yields

3

( ) ( )exp i dq q2p dt t- =
3-

y ,

where d(q) is the Dirac delta function. Accordingly, Eqn (3) 
takes the form:
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Thus, for solutions having physical meaning at frequen-
cies v > 0 and q > 0, we obtain:

( , , ) [ ( , , ) ( , , )]I x y q AS O x y q b x y qq=

 { [ ( , , ) ( , , )]}AS R x y q b x y q *
q# . (5)

Equation (5) describes the resulting cross-correlation 
function in the frequency domain q. An important conse-
quence of this is that if the wavefront propagation operator 
ASq acts equally in the reference and object arms, then the 
perturbation b(x, y, q) does not contribute to the cross-corre-
lation function’s phase by virtue of the product b(x, y, q) ́  
b(x, y, q)*. Herewith, if the object arm contains a 4f system with 
a unit magnification coefficient (as shown in Fig. 1), the result-
ing equation for I(x, y, q) does not contain the ASq operator 
in the first multiplier. Therefore, this result will depend on the 
perturbation {ASq[b(x, y, q)]}* in the second multiplier. Thus, 
if b(x, y, q) in the reference beam is a plane wave (the pertur-
bation is absent, case 1 in Fig. 1), then {ASq[b(x, y, q)]}* = 
b(x, y, q)*, and the contribution of this perturbation to the 
phase will also be compensated for by the product b(x, y, q) ́  
b(x, y, q)*. However, if b(x, y, q) describes a structure differ-
ent from the structure of a plane wave (case 2 in Fig. 1), we 
obtain b(x, y, q){ASq[b(x, y, q)]}*, and the perturbation phase 
b(x, y, q) will affect the result of image reconstruction.

Figure 2 shows the result of solving the inverse problem, 
and the reconstructed phase distributions of the wave field for 
cases 1 and 2 are given for different frequencies. It can be seen 
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that in the case of a plane wavefront in both arms of an asym-
metric interferometer, the cross-correlation function’s phase 
correctly displays the object. If the original wavefront has 
phase inhomogeneities, the reconstructed spatial-phase char-
acteristics of the radiation will be distorted by fluctuations 
both at the edges and at the centre of the image, which will 
not allow correct determination of the object profile.

Thus, in this work, we have considered the features of cor-
relation measurements of parameters of pulsed hyperspectral 
optical fields in an asymmetric interferometer. Based on the 
analytical equation (5), the impact of diffraction on the spa-
tial-phase structure of the reference and object waves has 
been analysed and the HI model limitedness to the case of 
using a plane wavefront at the asymmetric interferometer 
input is justified. Thus, it is shown that in the scheme using a 
4f system in the object beam, the resulting cross-correlation 
function depends on the degree of phase perturbation in the 
original wave field. A significant difference is observed in the 
quality of phase image reconstruction of an object with an 
originally plane wavefront and a wavefront having certain 
accumulated phase perturbation. Therefore, in general case, 
the complete reconstruction of the phase characteristics of a 
pulsed wavefront requires algorithms that allow spectral match-
ing of the pulse’s individual frequency components [9, 10].

Acknowledgements. This work was supported by the Russian 
Foundation for Basic Research (Grant No. 18-32-20215).

References
 1. Itoh K. et al. Appl. Opt., 29 (11), 1625 (1990).
 2. Naik D.N., Pedrini G., Takeda M., Osten W. Opt. Lett., 39, 1857 

(2014).
 3. Kalenkov S.G., Kalenkov G.S., Shtanko A.E. J. Opt. Soc. Am. B, 

34, B49 (2017).
 4. Claus D., Pedrini G., Buchta D., Osten W. Proc. SPIE, 10335, 

103351H (2017).
 5. Kalenkov G.S., Kalenkov S.G., Shtan’ko A.E. Quantum Electron., 

45 (4), 333 (2015) [ Kvantovaya Elektron., 45 (4), 333 (2015)].
 6. Kalenkov G.S., Kalenkov S.G., Shtan’ko A.E. Izmerit. Tekhn., 

(11), 21 (2012).
 7. Shevkunov I., Katkovnik V., Claus D., Pedrini G., Petrov N.V., 

Egiazarian K. Opt. Laser Eng., 127, 105973 (2020).

 8. Shevkunov I., Katkovnik V., Claus D., Pedrini G., Petrov N.V., 
Egiazarian K. Sensors, 19, 5188 (2019).

 9. Pariente G., Gallet V., Borot A., Gobert O., Quere F. Nat. 
Photonics, 10, 547 (2016).

10. Borot A., Quere F. Opt. Express, 26, 26444 (2018).
11. Akturk S., Gu X., Bowlan P., Trebino R. J. Opt., 12, 093001 

(2010).
12. Petrov N.V., Kulya M.S., Tsypkin A.N., Bespalov V.G., 

Gorodetsky A. IEEE Trans. Terahertz Sci. Technol., 6, 464 (2016).
13. Kulya M.S., Semenova V.A., Bespalov V.G., Petrov N.V. Sci. 

Rep., 8, 1 (2018).
14. Kulya M., Petrov N.V., Katkovnik V., Egiazarian K. Appl. Opt., 

58, G61 (2019).
15. Kulya M., Petrov N.V., Tsypkin A., Egiazarian K., Katkovnik V. 

Opt. Express, 27, 18456 (2019).
16. Chizhov P.A. et al. Quantum Electron., 45 (5), 434 (2015) 

[ Kvantovaya Elektron., 45 (5), 434 (2015)].
17. Gallot G., Grischkowsky D. J. Opt. Soc. Am. B,  16 (8), 1204 

(1999).
18. Ushakov A. et al. J. Opt. Soc. Am. B,  35 (5), 1159 (2018).

2

-2

-2 2

0

0

y /
m

m

x/mm
-2 20

x/mm
-2 20

x/mm
-2 20

x/mm
-2 20

x/mm

-2 20
x/mm

-2 20
x/mm

-2 20
x/mm

-2 20
x/mm

-2 20
x/mm

2

-2

0

y /
m

m

2

-2

0

y /
m

m

2

-2

0

y /
m

m
2

-2

0

y /
m

m

2

2

2
-2

-2

-2

0

0

0

y /
m

m

2

-2

0

y /
m

m
2

-2

0

y /
m

m

2

-2

0

y /
m

m

2

-2

0

y /
m

m

q = 0.38 ´ 1015 Hzq = 0.33 ´ 1015 Hzq = 0.28 ´ 1015 Hzq = 0.23 ´ 1015 Hzq = 0.18 ´ 1015 Hz

P
h

as
e /

ra
d

P
h

as
e /

ra
d

Figure 2. Spatial-phase structures of the cross-correlation function I(x, y, q) for several frequencies q. Case 1 (upper row) displays a plane wave-
front; case 2 (bottom row) shows a wavefront with accumulated phase perturbations.


