
Quantum Electronics  50 (8)  776 – 781  (2020)	 © 2020  Kvantovaya Elektronika and IOP Publishing Limited

Abstract.  We consider the effect of ion mobility on the threshold of 
relativistic self-induced transparency under irradiation of thin pla
sma layers by circularly polarised laser radiation. An analytical 
model of the motion of ions during the removal of electrons from the 
layer surface by the ponderomotive force of laser radiation is con-
structed. The model is used to analyse the motion of probe electrons 
in the resulting electromagnetic field. It is shown that the higher the 
ion mobility and the longer the laser pulse, the more stable the 
plasma layer to longitudinal perturbations of a finite value and the 
higher the threshold of self-induced transparency. These conclu-
sions are verified by one-dimensional numerical simulation of a 
complete system of kinetic equations for plasma and Maxwell’s 
equations.

Keywords: relativistic laser plasma, relativistic self-induced trans-
parency, laser acceleration of ions, multiply charged ions, petawatt 
lasers.

1. Introduction

To date, the development of technologies for producing pico- 
and femtosecond ultrahigh-power laser pulses has led to the 
fabrication of systems with a peak radiation power of several 
petawatts [1 – 3]. Focusing such radiation into a spot whose 
diameter corresponds to a diffraction limit (~1 – 2 mm) allows 
one to achieve a radiation intensity exceeding 1022 W cm–2, 
while the use of an intensity of about 1021 W cm–2 and higher 
is currently relatively routine for experiments. In particular, 
such intensities are characteristic of the problems of accelera-
tion of protons [4 – 8] and rather heavy ions [9], creation of a 
high-energy-density substance [10, 11], and also of the genera-
tion of multiply charged ions [12], bright gamma radiation 
[13, 14] and high-density electron – positron fluxes [15]. In most 
of these applications, we speak of the interaction with solid-
state targets that have a supercritical density at the moment of 
ionisation. Usually, the use of targets with near-critical den-
sity improves the interaction efficiency and is optimal; for 
example, ion acceleration using such targets has been previ-
ously demonstrated in [16 – 21] (see also reviews [22 – 24]).

In this regard, of particular importance is the correct det
ermination of the threshold of relativistic self-induced trans-
parency (RSIT). This effect was first described more than half 
a century ago by the example of a monochromatic plane wave 
propagating in an infinite homogeneous plasma [25]. In this 
approximation, the plasma is transparent when the condition

a > ath = n 10
2- 	 (1)

is met, where a = e e/(mwc) is the dimensionless amplitude of 
the laser pulse; e and w are the amplitude and frequency of the 
electromagnetic wave, respectively; e is the elementary charge; 
m is the mass of the electron; n0 = Ne0 /Nc = 4pe2Ne0 /(mw2) is 
the plasma overdense parameter; Ne0 is the unperturbed den-
sity of electrons in the plasma; and Nc is the critical density. 
When considering a practically more interesting case of irra-
diation of a semi-bounded plasma layer, the transparency 
threshold is generally the same [26], with the exception, at 
least, of a sharp boundary irradiated along the normal by a 
circularly polarised pulse [27]. In the latter case, the interac-
tion of laser radiation with matter is observed only in the skin 
layer of subwavelength thickness, and due to the use of circu-
lar polarisation, there is no effective heating of electrons; as a 
result, their temperature remains much lower than the relativ-
istic one [28]. These two circumstances lead to a significant 
increase in the influence of striction nonlinearity associated 
with a local change in the electron density under the action of 
the ponderomotive force from the electromagnetic field. As a 
result, the RSIT threshold ath increases. As was shown in [27], 
for the idealised case of negligible electron temperature and 
stationary ions, the threshold is expressed as
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In the ultrarelativistic limit reached at n 0 >> 1, this expression 
can be simplified:

ath » n
8

3 3
0
2 .	 (4) 

It follows from this expression that the threshold in this case 
increases with increasing plasma density much faster than 
according to the classical dependence (1). This property was 
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used in [17, 20] to increase the efficiency of laser-plasma accel-
eration of protons.

The threshold given by expression (2) was obtained under 
fairly strong assumptions and requires correction when, for 
example, the finite electron temperature and ion mobility are 
taken into account. In particular, as was shown in [28], the 
presence of a longitudinal spread in electron velocities leads 
to an inevitable escape of part of the high-energy electrons 
towards the radiation and the concomitant penetration of the 
radiation deep into the plasma. This escape is absent or negli-
gible for a small spread, but becomes significant for a large 
one. At a certain threshold longitudinal electron temperature, 
the dynamics of the interaction of laser radiation with plasma 
becomes practically indistinguishable from the RSIT dynam-
ics described in [29]. Thus, this temperature or the correspo
nding longitudinal momentum can also be considered as 
the RSIT threshold.

The threshold longitudinal momentum depends on the 
distribution of potentials near the boundary of the electron 
layer and, in particular, on the distribution of the ionic com-
ponent. It was assumed in [28] that the ions are motionless, 
but this assumption is true only if the laser pulse duration is 
sufficiently short compared to the inverse ion plasma fre-
quency: tL << pi

1w-  = (4pZ 2e2Ni /M )–1/2, where Z, M, and Ni 
are the ionisation yield, ion mass and ion density, respec-
tively. Even for targets with near-critical density, for which 
the electron plasma frequency wpe » w, this condition can be 
violated even for relatively short laser pulses. Indeed, wpi = 

/Zm M /
pe

1 2w ^ h  » w (Zm/M  )1/2, while the ratio (Zm/M  ) –1/2 » 40 
for protons and due to deep optical ionisation is only two to 
three times greater even for the most heavy ions. Therefore, 
the stationary-ion approximation is no longer fulfilled for pul
ses of about 100 fs duration, and in the case of denser targets, 
the approximation is not met even for shorter pulses. Thus, in 
many practically important cases, it is necessary to take into 
account the motion of ions.

Such an account, from the point of view of its influence on 
the RSIT threshold, was performed in [30]. It was shown that 
the redistribution of the ion component causes an increase in 
the threshold longitudinal momentum. However, in [30], the 
analysis was performed only for the case of a semi-infinite 
plasma layer in which the ions are accelerated in the snow-
plow or hole-boring regime. In the present work, we also 
study an interesting case of thin plasma layers in which ‘light 
sail’ ion acceleration is possible.

The paper is structured as follows. Section 2 presents an 
analytical method for solving the hydrodynamic equations of 
motion for the ion component in the process of removal of the 
electron layer from the layer surface by a laser pulse with a 
given envelope. In Section 3, we analyse the motion of probe 
electrons with a nonzero longitudinal momentum in quasi-sta
tionary laser-plasma structures with allowance for the redis-
tribution of the ion component. Based on this analysis, we det
ermine the dependence of the threshold value of the longitudi-
nal momentum at which the electron leaves the layer on the 
laser pulse amplitude and duration, as well as on the target 
density and the ion charge/mass ratio. Finally, in Section 4, 
by means of one-dimensional numerical simulation by the 
particle-in-cell method, the problem of the bleaching of a thin 
layer of a supercritical plasma is studied, in which, at some 
thicknesses, a sharp dependence of the nonlinear reflection 
coefficient on the ion mass is observed: the layer is transpar-
ent in the case of heavy ions and nontransparent in the case of 
relatively light ions.

2. Analytical model of the motion of ions

Let us consider the incidence of a circularly polarised, plane 
monochromatic electromagnetic wave onto a thick layer of a 
homogeneous supercritical plasma along the normal to the 
layer boundary. We will describe the plasma in the hydrody-
namic approximation. Since the characteristic response times 
of the electron and ion components differ by at least one and 
a half orders of magnitude, and the characteristic time of the 
reaction of electrons to an external action is usually much 
shorter than the characteristic time of a rise in the intensity of 
the incident laser pulse, the problem can be solved in the app
roximation of inertialess electrons that at each time moment 
are in the stationary state determined by the balance of forces 
acting on them: ponderomotive from the side of the electro-
magnetic wave and electrostatic associated with the separa-
tion of charges. We will also assume that the temperature of 
the electrons is zero, because it can be neglected in compari-
son with their oscillatory energy due to the low collision fre-
quency resulting from the relativistic electron velocity and the 
absence of effective collisionless heating due to the use of cir-
cularly polarised radiation incident along the normal. In this 
case, to construct stationary distributions, one can apply the 
method described, for example, in [31].

However, for sufficiently large field amplitudes and pla
sma densities, the problem can be simplified, since, as was 
shown in [17], in this case the spatial distribution of electrons 
is a cavity on the irradiated side of the plasma layer, com-
pletely devoid of electrons, and a thin electron layer at its 
boundary. Therefore, we assume that at each moment of time 
the displaced electrons form an infinitely thin, delta-shaped 
layer located at some point zb(t), determined by a simple bal-
ance of light pressure and electrostatic force (a more detailed 
derivation of the formula is given in [32]):

,
c
z

n
a t z2b b

0

w
=

^ h
.	 (5) 

The equations of motion for ions will be solved in Lag
rangian coordinates. We also restrict ourselves to the case of 
intensities at which the movement of ions in the wave field is 
not relativistic, which allows us to neglect the ponderomotive 
force as compared to the electrostatic one. In practice, this 
means that the pulse intensity should be less than 1024 W cm–2, 
which obviously exceeds the applicability limit of the equa-
tions used for electrons due to the absence of radiation losses 
and the production of electron – positron pairs [33].

Thus, the movement of the ionic liquid will be described 
by the system of equations:
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where E (t) is the longitudinal electric field; P and z are the 
momentum and coordinate of the Lagrangian element of the 
ionic liquid; and G = [1 + P2/(Mc)2 )]1/2 is its Lorentz factor.

A remarkable feature of the system under consideration is 
that the electric field acting on a certain element of the ionic 
liquid remains constant for a long time. This is due to the fact 
that while there is no intersection of the trajectories of the 
Lagrangian elements in one-dimensional geometry, the inte-
gral of the ion density in the range from the layer boundary to 
a given Lagrangian element remains constant. The intersec-
tion of the elements, as follows from the solution of the indi-
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cated system and from the numerical simulation of the com-
plete self-consistent system of kinetic equations and Maxwell’s 
equations, can occur over a considerable period of time after 
the start of interaction and, in addition, violates the applica-
bility condition of the simple single-flow hydrodynamic 
model. Note that this circumstance has already been noted 
and used in a slightly different interaction model in [34].

The main difference between the model considered in this 
paper and the model from [34] is that it takes into account 
that the motion of ions located at different points in space 
begins at different moments of time. We will consider this 
moment of time to be the moment at which the position of the 
boundary of the removed electrons is compared with the ini-
tial position of the Lagrangian element of the ionic liquid.

For further analysis, we assume that the laser pulse ampli-
tude increases linearly and starts from zero at time t = 0, then 
from relation (5), neglecting the delay effect, we obtain that 
the motion of the boundary of the electron layer is also linear. 
We introduce the velocity of this motion V = c2ai /(n0 wt), 
where ai is the laser pulse amplitude at time t = t. Then the 
approximation of the absence of delay is valid for V << c.

In these approximations, the electric field acting on the 
Lagrangian particle of the ionic liquid, which was at some 
point z0 at the initial moment of time, can be written as

E (t) = 4pZeNi0 z0 Q  t
V
z0

-c m = 
Ze

M
z t

V
zpi0

2

0
0w

Q -c m,	 (6)

where Ni0 and wpi0 are the ion density and ionic plasma fre-
quency of the unperturbed plasma, and Q (t) is the Heaviside 
function.

Thus, the system of equations of motion of the ionic liquid 
takes the form
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We introduce the dimensionless quantities z = wpi0 z/c, b = 
V/c, and h = wpi0t and integrate this system. We obtain the 
following implicit relationship between the current position 
of the Lagrangian particle z and its initial position z0:

( b 2 – 1) z3
0 + 2(h – b 2 z ) z2

0 + ( b 2 z2 – 2 – h2 ) z0 + 2z = 0. 	(7)

Knowing the relationship between the initial and final posi-
tions of the liquid layer, it is possible to express the ion density 
at an arbitrary point in time through the initial density:

Ni(z, h) = Ni0dz0 /dz.	 (8)

In the general case, equation (7) has three roots. The case, 
when two roots are complex and one is real, corresponds to 
single-flow movement. The case of three real roots corre-
sponds to the multi-flow motion, which is beyond the frame-
work of the single-flow hydrodynamic approximation in 
question.

To verify the adequacy of the analytical model, its results 
were compared with the results of numerical modelling of a 
complete self-consistent system of kinetic equations for 
plasma and Maxwell’s equations for electromagnetic fields by 
the particle-in-cell (PIC) method. Modelling was performed 
using the Picador software package [35] in one-dimensional 
geometry. The wavelength of the incident radiation was 1 mm, 
the length of the computational domain was 3 mm, the spatial 

step of the grid was 0.5 nm, and the number of particles in one 
cell was 30. The results obtained for two sets of pulse and 
plasma parameters are shown in Fig. 1.

We note a good agreement between the simulation results 
and the analytical model for relatively short laser pulses. For 
longer pulses, the simulation results differ from the predic-
tions of the analytical model, which is mainly due to the 
neglect of the finiteness of the electron layer thickness in it: 
because of this, the ions begin their motion with a slight delay. 
Nevertheless, a more detailed comparison showed that the 
range of durations for which the model is applicable is quite 
large.

3. Analysis of the motion of probe electrons

Let us now analyse the effect of ion motion on the RSIT 
threshold. Recall the bleaching mechanism in the case of 
the incidence of circularly polarised radiation on a sharp 
boundary of a supercritical plasma along the normal. The 
ponderomotive force exerted by the laser radiation on the 
electrons leads to their redistribution and the formation of 
a quasi-stationary distribution, which is a cavity on the 
irradiated side of the layer that is completely devoid of 
electrons and a sharp narrow peak at a point with coordi-
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Figure 1.  ( Colour online ) Distributions of fields and densities at vari-
ous parameters of laser radiation. Here t is the time of a linear increase 
in the pulse amplitude from zero to ai; ne = Ne  /Nc; ni = Ni /Nc.
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nate zb defined by expression (5). It was previously shown 
that such a distribution is stable at small longitudinal per-
turbations in the entire region of its existence [28, 29]. This 
is explained by the fact that in the region without electrons 

there is a barrier formed by ponderomotive and electro-
static potentials. Loss of stability is possible either when 
the amplitude reaches a certain threshold value [29], which 
leads to the disappearance of the barrier, or in the presence 
of perturbations of a finite value [28], which causes the 
emergence of electrons with an energy exceeding the height 
of the barrier. However, in both cases, the scenario of sta-
bility loss is the same. A significant part of the electrons 
flies towards the laser radiation, which leads to a decrease 
in the number of electrons reflecting the radiation, which 
makes it move deeper into the plasma. If at the same time 
the plasma layer has a finite thickness, then at some point 
in time the radiation reaches its boundary and passes 
through the initially transparent layer.

Perturbations of a finite value are associated with the 
presence of a longitudinal momentum in the electrons and 
can be caused either by their collisionless heating, which, alt
hough ineffective for circularly polarised pulses, is neverthe-
less present, or by the excitation of longitudinal oscillations 
due to the nonstationary behaviour of the electron removal 
process.

To determine at which characteristic longitudinal mom
enta of the electrons their movement towards the laser pulse 
begins, we analyse the dynamics of the probe electrons in sta-
tionary structures with allowance for the redistribution of ions 
in accordance with the model proposed in Section 2.

The Hamiltonian of electron motion has the following 
form in dimensionless quantities [28]:

H(z, pz) = +a z p z1 z
2 2 j+ -^ ^h h,	 (9)

where j (z) is the electrostatic potential normalised to mc 2/e 
and obtained in our case from the analytical solution of the 
above-described ion motion problem; and pz is the longitudi-
nal momentum of the probe electron, normalised to mc.

An example of the corresponding phase portrait is shown 
in Fig. 2. We note that in the region z > zb all the forces acting 

p z

z 0 zc zb
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1 + a 2 - j
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Figure 2.  ( Colour online ) Phase plane of the longitudinal motion of the 
probe electron near the boundary of the electron layer. Separatrixes are 
shown by dashed lines.
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Figure 3.  ( Colour online ) Analytically calculated dependences of the critical momentum on the electron density and the amplitude of the incident 
field for various incident pulse durations tL.
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on the electron are precisely compensated for, and therefore it 
can be omitted. For z < zb, there exists a region of infinite 
particle motion separated by separatrixes of the saddle near-
est to the electron layer boundary. If the electron at the layer 
boundary has a longitudinal momentum exceeding some crit-
ical momentum pcr, then it will be outside the separatrixes and 
will not return to the plasma layer. Therefore, the magnitude 
of this critical momentum can be considered a characteristic 
threshold value for the onset of the RSIT regime.

The critical longitudinal momentum is determined by the 
position of the saddle and is related to it by the expression 
following from the constancy of the Hamiltonian along the 
separatrix:

pcr
2  = 1a z z z a z1 c c b b

2 2 2j j+ - + - -^ ^ ^ ^h h h h8 B ,	 (10)

where zc is the position of the nearest saddle to the electron 
layer boundary.

When the movement of ions is taken into account, parti-
cles are redistributed, resulting in a decrease in the electro-
static potential difference. This leads to the fact that the deg
ree of electron stability at the layer boundary increases for 
targets with lower ion masses and in the case of longer inci-
dent pulses. This can be clearly seen from Fig. 3, which shows 
the dependences of the critical momentum calculated in the 
framework of the proposed model on the laser pulse ampli-
tude and plasma density for three pulse durations tL with an 
envelope in the form of an isosceles triangle. Note that for the 
largest of them, for n0 > 17, it is impossible to construct an 
analytical solution, since the single-flow condition is violated 
in this region of parameters.

4. Transparency in numerical simulation

An analysis of Fig. 3 shows that reaching the RSIT threshold 
requires relativistic values of the longitudinal momentum of 
electrons at the layer boundary, but, as mentioned above, 
heating is usually small for circular polarisation. Nevertheless, 
significant longitudinal heating can be observed in plasma 
layers, the thickness of which is comparable with the value of 
removal of electrons in them from the layer surface. Indeed, 
in this case, all the electrons of the layer are compressed into 
an ultrathin layer. This compression should lead to a substan-
tial heating of electrons in the layer. In addition, the electrons 
can acquire a significant longitudinal momentum in a sub-
stantially non-stationary regime of removal, which takes 
place at ai /n0 » 1, when the velocity of movement of the elec-
tron layer boundary approaches the speed of light. We show 
that in this case the transparency of the plasma layer can sub-
stantially depend on the mass of ions in it.

It is well known that plasma layers whose thickness L is less 
than some critical value determined by the ratio wL /c = 2a/n0 
are transparent to radiation, because the electrons in them are 
completely removed into a layer with a thickness less than the 
thickness of the skin layer [36, 37]. Figure 4 shows the depen-
dence of the transparency coefficient of such a layer on its 
thickness in the case when it consists of protons; the depen-
dence is obtained in the process of numerical simulation by 
the PIC method. The parameters used in the simulation are as 
follows: n0 = 10, ai = 27.8, tL = 3l/c, the spatial step is 1 nm, 
and the number of particles in one cell is 300. A characteristic 
feature is the presence of a critical value of the layer thickness, 
below which it is bleached.

However, this critical thickness turns out to depend on the 
mass of ions in the layer and the duration of the laser pulse. 
Figure 5 shows the dependence of the transparency coeffi-
cient on these two values. In these calculations, the layer thi
ckness was fixed, wL /c = 2 (L » 0.32 mm for a wavelength of 
1 mm). A characteristic feature is an increase in transparency 
with decreasing laser pulse duration, with the exception of the 
region c tL < L, where the laser pulse duration becomes com-
parable with the plasma layer thickness: In this region, the 
pulse does not have enough time to remove the electrons to 
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Figure 4.  Dependence of the transmission coefficient of the laser pulse, 
equal to the ratio of the total energy of the transmitted radiation to the 
energy of the incident pulse through a thin plasma layer consisting of 
protons, on the thickness of this layer. Parameters of numerical simula-
tion are given in the text.
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pass through the layer. In this case, the maximum duration at 
which transparency is observed decreases with decreasing ion 
mass, which qualitatively coincides with the conclusion (see 
Section 3) about greater stability of plasma layers with lighter 
ions.

5. Conclusions

Thus, we have analysed the effect of ion mobility on the RSIT 
threshold, which is determined by collisionless longitudinal 
heating of electrons and the excitation of longitudinal oscilla-
tions due to the non-stationary process of electrons’ removal 
from the layer surface in thin plasma layers with a near-criti-
cal density. An analytical model of the motion of ions has 
been constructed, on the basis of which a critical longitudinal 
momentum of electrons is determined, at which they escape 
towards the laser radiation, accompanied by the penetration 
of radiation into the bulk of the plasma. It is shown that the 
transparency threshold decreases with increasing ion mass 
and decreasing laser pulse duration.

Based on the analysis performed, we have predicted the 
dependence of the transparency coefficient of thin plasma lay-
ers on the mass of their constituent ions and the duration of 
the irradiating laser pulse. This dependence is qualitatively 
confirmed by one-dimensional numerical kinetic simulation, 
during which we have demonstrated the possibility of a tran-
sition from the total reflection regime to the almost complete 
transparency regime (with a transparency coefficient of more 
than 50 %) with varying plasma ion mass and/or laser pulse 
duration in the case of a fixed target thickness and electron 
density in it. These conclusions are important for the prob-
lems of ‘light sail’ laser-plasma ion acceleration, the optimum 
of which is achieved in targets with near-critical thicknesses.
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