
Quantum Electronics  50 (9)  882 – 887  (2020)	 © 2020  Kvantovaya Elektronika and IOP Publishing Limited

Abstract.  We present a model and numerical simulation of a dis-
tributed temperature sensor based on a two-pulse differential 
coherent optical time-domain reflectometer (COTDR). The differ-
ential phase measured using a phase-sensitive Rayleigh reflectom-
eter is shown to have a regular component, which is a linear func-
tion of temperature, and a random component, which is related to a 
random distribution of scattering centres in the fibre and restricts 
the accuracy of measurements of variations in temperature. 
Measurement accuracy can be improved by reducing the relative 
contribution of the random component via a decrease in pulse dura-
tion and/or an increase in the time delay between pulses. The spatial 
resolution of a differential two-pulse phase-sensitive reflectometer 
is shown to be determined by the time delay between pulses and to 
vary little with pulse duration. At a typical pulse duration (200 ns) 
and delay time (300 ns), the accuracy in measurements of variations 
in temperature in the 0.1-K range is 2 % and the spatial resolution 
is about 30 m.

Keywords: optical time-domain reflectometer, Rayleigh tempera-
ture sensor, phase-sensitive reflectometer, spatial resolution, mea-
surement accuracy.

1. Introduction

In the past few decades, distributed fibre-optic sensors 
(DFOS’s) have been widely used to resolve issues pertaining 
to the monitoring of infrastructure facilities and parameters 
of natural or artificial external physical fields acting on them.

The most in-demand DFOS’s are those for temperature, 
stress, and vibration measurements: distributed temperature 
sensors (DTS’s), distributed stress sensors (DSS’s), and dis-
tributed acoustic or vibration sensors (DAS’s/DVS’s) [1, 2], in 
which standard telecom optical fibre is used as a sensing ele-

ment. Traditionally, spontaneous Raman scattering (SRS) is 
used in the DTS’s [3 – 5]; spontaneous (or stimulated) Brillouin 
scattering (SBS) [6, 7], also temperature-sensitive, is used in 
the DSS’s; and Rayleigh scattering is used in the DAS’s/
DVS’s [8 – 11].

It is very tempting to use Rayleigh scattering-based 
DFOS’s for distributed temperature measurements. The fea-
sibility of this approach, based on the detection of tempera-
ture-induced changes in the interference structure of scattered 
light, was demonstrated by Rathod et al. [12] and Froggatt 
and Moore [13], who used reflectometers with frequency 
modulation of probe light: optical frequency domain reflec-
tometry (OFDR). However, the short operation range of 
OFDR limits potential application areas of such devices.

Koyamada et al. [14, 15] proposed and experimentally 
demonstrated a correlation method of distributed tempera-
ture measurements with the use of coherent optical time-
domain reflectometers (COTDRs). The principle of tempera-
ture measurements with a COTDR is based on the existence 
of a correlation between reflectograms obtained at a probe 
pulse frequency shift and a temperature change: reflecto-
grams in which frequency and temperature shifts are related 
in a certain way are as similar in shape as possible. However, 
practical implementation of a correlation OTDR for temper-
ature measurements is hindered by the long measurement 
time, the complexity of signal processing algorithms, and 
stringent requirements for performance characteristics of the 
components involved.

It is only very recently that Nikitin et al. [16] have experi-
mentally implemented a DTS based on a differential two-
pulse COTDR that meets requirements for industrial applica-
tion in terms of both sensitivity and operation range.

This paper presents the first model and numerical simula-
tion of a DTS based on a two-pulse differential COTDR 
operating according to a scheme proposed by Treshchikov et 
al. [17]. Previously reported theoretical and experimental 
studies examined only DAS’s/DVS’s based on single-pulse 
COTDRs [18 – 24]. It was not analysed in those reports 
whether the types of COTDRs examined were applicable to 
temperature measurements.

2. Model of scattering

A numerical model of scattered light relies on the following 
propositions:

1. The time sample spacing, dt = 1 ns, is chosen to be 
much smaller than the probe pulse duration, tp = 200 ns:

dt <<  tp.	 (1)
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2. In a real fibre, the number of scattering centres (SCs) is 
large, but Rayleigh scattering parameters can be described 
with sufficient accuracy by a small number of such centres. 
To speed up computations, the model contains the minimum 
number of scatterers at which the main statistical characteris-
tics of scattered light still persist. This condition is well ful-
filled if the number of SCs per sample spacing is ten. A time 
sample spacing of 1 ns corresponds to a spatial spacing of 
10 cm, so the average density of SC arrangement was taken 
to be 1 cm–1.

3. A change in fibre temperature leads to a change in rela-
tive phase shifts of partial waves scattered by different SCs. 
Such changes in relative phase shifts are due to both tempera-
ture variations of the refractive index of the fibre and the shift 
of the position of the SCs as a result of its thermal expansion. 
In our model, a real variation in the refractive index and 
expansion are replaced by the variation in an equivalent 
refractive index:

neq(T ) = n0 + n0 b(T – T0),	 (2)

b = m + c = 9.15 ´ 10–6 K–1,	 (3)

where n0 is the refractive index (RI) at the initial temperature 
T0; m is the thermo-optic coefficient (that of quartz is ~8.6 ´ 
10–6 K–1); and c is the thermal expansion coefficient (~0.55 ´ 
10–6 K–1) [25].

3. Model of a coherent reflectometer

Figure 1 shows a schematic of a COTDR. The probe pulse 
shape is described by the function E0(t). Probe light backscat-
tering by each SC in the sensing fibre produces partial scat-
tered waves, and their constructive or destructive interference 
yields a reflectogram. The complex amplitude of the reflecto-
gram at time t is the sum of partial signals backscattered by 
scattering centres with coordinates xm at instants in time 
before t by
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where the coefficient a determines the fraction of the power of 
the backscattered light propagating in the mode (a = 2 ´ 10–4 
for single-mode fibre); n(z) is the spatial RI profile along the 
fibre; c = 3 ´ 109 m s–1 is the speed of light in vacuum; k = 2p/l 
is the wavenumber corresponding to the wavelength l = 
1.55 mm; and M is the total number of SCs in the fibre section 
under study.

An external influence changes the position of scattering 
centres and/or the refractive index n(z), leading to a change in 
the complex amplitude E(t). A reflectogram shows the photo-
detector current as a function of time: X(t) ~ |E(t)|2.

Using this model and the MATLAB environment, we 
wrote a program simulating the operation of a COTDR. The 
program allows one to perform calculations for various pulse 

shapes, with allowance for signal attenuation. The influence 
of nonlinear effects is left out of consideration.

The operating principle of a differential phase-sensitive 
coherent reflectometer is to measure the phase difference Dj 
between reflectograms of two pulses, which in what follows 
will be referred to as a differential phase:

Dj = j1 – j2.	 (5)

It should be emphasised that, in the two-pulse configuration, 
one determines the phase difference (Dj) rather than the 
absolute phase.

The model of scattering for rectangular probe pulses is 
illustrated by Fig. 2.

The temperature distribution in the fibre, T(z), varies 
stepwise, with a constant step dT. The total variation in 
temperature, DTj (z), is proportional to the number of 
steps, j :

DTj (z) = Tj  – T0 = dTj,  j = 0, . . . , m.	 (6)

The temperature step dT is chosen such that the change in the 
phase shift of scattered light does not exceed p/10.

The principle of measuring the differential phase was 
described elsewhere [16, 17]. It consists in probing fibre by a 
sequence of four pairs of pulses. The second pulse has a fixed 
delay t, and the phase shift between the pulses in a pair is 
periodically changed so that it takes values of 0, p/2, p, and 
3p/2 (Fig. 3). One measures four reflectograms, i.e. time 
dependences of the photodetector current: Xi (t), where i = 
1 – 4. Using the four reflectograms [X1 (t), X2 (t), X3 (t), and 
X4 (t)] obtained from the pairs of probe pulses, one calculates 
the differential phase Dj(t), which is a function of time t, 
moreover, a random function, and is represented as a phase 
reflectogram: differential phase as a function of signal delay 
time. The relations between Dj(t) and reflectograms have the 
following form:

AOM EDFALaser

Sensing fibre

Photodetector

ADC

Circulator

Figure 1.  Schematic of a COTDR. The laser and acousto-optic modu-
lator (AOM) produce a probe coherent light pulse or a pair of pulses, 
the erbium-doped fibre amplifier (EDFA) amplifies the signal before it 
enters the sensing fibre, and the circulator directs the backscattered sig-
nal to a photodetector connected to an ADC.

COTDR

2nd
SC

3rd
SC

mth
SC

Figure 2.  Model of scattering for rectangular probe pulses.
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Since the system initially has some nonzero differential 
phase at the initial temperature T0, it is convenient to describe 
variations in temperature using the quantity

( , ) ( , ) ( , ) .t T t T t Ti i i 0jD D D= -j ju 	 (8)

It will be referred to as the temperature variation of the dif-
ferential phase.

The nominal temperature variation of the differential 
phase between signals scattered by two scattering regions 
(Fig. 2) is described by the following relation [16]:

2 c Tp
l

t bD D=ju  º .TaD 	 (9)

The proportionality coefficient between the differential phase 
and the variation in temperature is

2 .cpa
l

t b= 	 (10)

For example, at standard parameters of an acousto-optic 
reflectometer (t = 300 ns, l = 1.55 mm, and b = 9.15 ́  10–6 K–1) 
we obtain in the case of two scattering regions aest = 
3348 rad K–1.

4. Numerical simulation parameters

In this study, we numerically simulate the two-pulse configu-
ration that was studied experimentally by Nikitin et al. [16]. 
Numerical simulation was carried out with parameters indi-
cated below.

The temperature step, dT = 0.1 mK, was chosen such that 
the change in the differential phase did not exceed p/10. To 
exclude uncertainty in calculating the phase Dj from a tan-
gent, Dj = arctanx ± mp  (where m is an integer), we applied 

the phase continuity constraint, which is implemented in 
practice by the unwrapping algorithm [26].

5. Simulation results

5.1. Differential phase as a function of variation in temperature

The slope of the dependence of the temperature variation of 
the differential phase, Dju , on the variation in temperature for 
five independent fibre sections (channels) is shown in Fig. 4. 
The calculation results approach the nominal linear depen-
dence with a slope aest = 3348 rad K–1. The differential phase 
has a regular component, which tends to the nominal depen-
dence on the variation in temperature, and an irregular com-
ponent, due to the random character of the distribution of 
SCs over the fibre.

5.2. Error in measurements of the variation in temperature

The relative error in measurements of the variation in tem-
perature is defined as follows:

( )
( )
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T

T T
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sD D
D D

=
- ,	 (11)

where DTmeas is the variation in temperature measured in a 
numerical experiment; DTnom is the nominal variation in tem-
perature; and s(DTmeas – DTnom) is the standard deviation.

The numerical simulation results on the dependence of the 
relative error on the variation in temperature are presented in 
Fig. 5. It is seen that increasing the variation in temperature 
leads to a decrease in relative measurement error.

Figure 6 shows the relative error in measurements of the 
variation in temperature as a function of pulse duration at 
constant t = 300 ns and a variation in temperature DT = 
0.4 mK. Reducing the pulse duration also leads to decrease in 
measurement error.

Figure 7 shows the relative error in measurements of the 
variation in temperature as a function of the time delay of the 
second pulse relative to the first pulse at a constant pulse 

Pulse duration, tp/ns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      200
Delay time, t/ns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                       300
Time sample spacing, dt/ns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   1
Wavelength, l/nm   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     1550

Number of SCs/m–1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     100

Initial RI, n0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                          1.45

Temperature step, dT/mK  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  0.1
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Figure 3.  Two-pulse COTDR scheme.
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Figure 4.  Temperature variation of the differential phase as a function 
of the variation in temperature for five independent fibre sections 
(channels). We present the average proportionality coefficient a for five 
channels. The nominal value is aest = 3348 rad K–1.
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duration tp = 200 ns (temperature range DT = 0.4 mK). It is 
seen that increasing the time delay t reduces the error in mea-
surements of the variation in temperature.

5.3. Spatial resolution

To assess the spatial resolution of a DTS, the temperature is 
set in the form of a step of height DT = 0.2 mK. The tempera-
ture profile calculated using our model is shown in Fig. 8. We 
determine spatial resolution Lsp as the distance between the 
points at which the changes in temperature are 10 % and 90 % 
of the nominal increase in temperature. Spatial resolution and 
its standard deviation were determined by averaging over at 
least 50 implementations.

Figure 9 shows spatial resolution as a function of pulse 
duration at constant t = 300 ns, and Fig. 10 shows the spatial 
resolution of a DTS as a function of the time delay between 
two pulses at a constant pulse duration tp = 200 ns.

6. Discussion

6.1. Temperature measurement error

The principle of measuring the variation in temperature with 
a distributed sensor is to measure the differential phase Dj 

DT/K
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Figure 5.  Relative error in measurements of variations in temperature 
as a function of the variation in temperature at a pulse duration tp = 
200 ns and delay time t = 300 ns.
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Figure 6.  Relative error in measurements of variations in temperature 
(DT = 0.4 mK) as a function of probe pulse duration at constant t = 300 ns.
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Figure 7.  Relative error in measurements of variations in temperature 
as a function of delay time t at a constant probe pulse duration tp = 200 ns.
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Figure 8.  Illustration of the principle of estimating the spatial resolu-
tion Lsp of a DTS. The short-dashed line shows the given spatial profile 
(step) of the variation in temperature, the solid line shows the DTS sig-
nal obtained by numerical simulation, and the horizontal long-dashed 
lines represent the 10 % and 90 % levels relative to the nominal increase 
in temperature.
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Figure 9.  Spatial resolution of a DTS as a function of probe pulse dura-
tion at constant t = 300 ns.
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due to the variation in temperature between the reflectograms 
of two fibre sections separated by

Dl = ct/(2n),	 (12)

where n is the refractive index. The temperature variation of 
the differential phase has a regular component, Djreg, deter-
mined by the variation in optical path length between two 
reflecting regions:

Djreg = areg DT.	 (13)

At the same time, the measured differential phase Dj = 
j1 – j2 has a random (irregular) component as well, due to 
variations in parameters of ‘irregular grids’. The irregular 
component originates from the random distribution of scat-
tering centres over the fibre and restricts the accuracy of mea-
surements of the variation in temperature.

As follows from our numerical simulations, the relative 
error in measurements of variations in temperature, d(DTmeas), 
decreases with increasing temperature range DT and is 2 % at 
DT = 0.1 K, tp = 200 ns, and t = 300 ns (Fig. 5). The decrease 
in measurement error with increasing DT can be accounted 
for by the fact that the regular component Djreg increases lin-
early with an increase in the variation in temperature, whereas 
the irregular component rises more slowly, usually as TD . 
The contribution of the irregular component to the differen-
tial phase depends on pulse duration and can be reduced, as 
follows from Fig. 6. At the narrow interval DT = 0.4 K and 
t = 300 ns, relative error is 7.7 % at tp = 200 ns and 1.0 % at 
tp = 50 ns.

Another way of improving measurement accuracy is by 
increasing the time delay t between the pulses in a pair 
(Fig.  7), but this impairs spatial resolution, as discussed 
below.

6.2. Spatial resolving power

Accuracy in determining the place of an external influence is 
characterised by the spatial resolution of the DTS. An ana-
lytical estimate of this quantity is given by the formula

Lsp = ut'/2,	 (14)

where u = c/n and t' is a probe signal parameter. In the case 
of amplitude detection, it is the pulse duration tp; in the case 
of the two-pulse configuration, it is the delay time t. For a 
DTS based on a phase-sensitive reflectometer and having 
standard parameters tp = 200 ns and t = 300 ns, formula (14) 
gives an estimate Lsp = 32 m.

Numerical simulation results confirm the above simple 
estimate: the spatial resolving power of the DTS varies little 
with pulse duration and is proportional to the delay time 
(Figs 9, 10).

7. Conclusions

Using mathematical modelling, we have studied a new type of 
distributed temperature sensor based on a two-pulse coherent 
reflectometer (COTDR). We have constructed a numerical 
model for a distributed Rayleigh scattering-based differential 
temperature sensor and analysed its operation using numeri-
cal simulation.

By means of a numerical experiment, we have demon-
strated high sensitivity of the distributed temperature mea-
surement method in question, which allows one to detect tem-
perature changes as small as a few thousandths of a degree 
Celsius.

At a typical pulse duration (200 ns) and delay time 
(300 ns), the error in measurements of variations in tempera-
ture in the 0.1-K range is 2 %.

The accuracy of two-pulse measurements of an external 
influence on fibre has been shown to be limited by the fact 
that, along with the determinate component of the differential 
phase, there is a random component, which is determined by 
unpredictable variations in the scattering phases of the first 
and second light pulses upon changes in temperature.

The accuracy in measurements of variations in tempera-
ture can be improved by increasing the relative fraction of the 
regular component of the differential phase via an increase in 
the time delay between pulses or a decrease in the contribu-
tion of the irregular component on account of a reduction in 
pulse duration.

The increase in relative temperature measurement error 
with increasing temperature measurement range DT is due to 
the weaker dependence of the random phase shift on DT (1/2 
power) in comparison with the linear dependence of the regu-
lar component of the phase shift on DT.

The spatial resolving power of the differential phase-sen-
sitive reflectometer is determined by the time delay between 
pulses, varies little with pulse duration, and is ~30 m at tp = 
200 ns and t = 300 ns.

The method considered in this paper allows one to mea-
sure only variations in temperature rather than its absolute 
value. Because of this, real measurements should be made 
continuously over a time during which the temperature 
change of interest can occur.
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