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Abstract. The iso-intensity line curvature algorithm in laser ekta-
cytometry of red blood cells is investigated by numerical simula-
tion. The algorithm is designed to measure the average deformabil-
ity, as well as the width and asymmetry of the red blood cell deform-
ability distribution in a blood sample under study. The accuracy 
and scope of the algorithm are determined. Using a bimodal ensem-
ble as an example, the possibility of determining the fraction of 
weakly deformable red blood cells in a blood sample by laser ekta-
cytometry is demonstrated.

Keywords: deformability of red blood cells, laser diffractometry, 
erythrocyte deformability distribution.

1. Introduction

Ektacytometry is a blood test designed to measure the deform-
ability of red blood cells, i.e. the ability of blood cells to 
change their shape under the influence of external forces. 
Measurement of this parameter is important for assessing the 
general state of the human body, as well as for the diagnosis 
and treatment of diseases such as sickle cell anaemia [1 – 3], 
malaria [4], ischemia [5], and many others [6, 7]. In a laser 
ektacytometer, a suspension of red blood cells deformed by 
viscous friction forces is illuminated with a laser beam. In this 
case, a light scattering pattern is observed in the far diffrac-
tion zone, which contains information about the shapes of 
blood cells in a given shear stress field. The task of the theory 
is to relate the parameters of the observed diffraction pattern 
with the characteristics of the red blood cell ensemble. 
Algorithms for processing laser ektacytometry data are con-
structed on this basis.

The analysis of the diffraction pattern is carried out on the 
basis of the concept of an iso-intensity line. This is the name 
of the line on the observation screen, on which the intensity of 
the scattered light has a certain constant value. For normal 
blood samples, the iso-intensity line looks like an ellipse. The 
appearance of a fraction of hard cells in the human blood 
leads to the fact that the iso-intensity line becomes diamond-
shaped. This line shape is typical for the blood of patients 
with sickle cell anaemia [1].

In our works [8 – 15], we have proposed algorithms for 
processing laser ektacytometry data, which make it possible 

to measure population characteristics of a blood sample, such 
as average deformability, as well as width, asymmetry, and 
coefficient of kurtosis in the erythrocyte deformability distri-
bution. The line curvature algorithm [10, 13] uses as input the 
coordinates of the polar points of the iso-intensity line and 
the parameters of the curvature of the line at these points.

For the practical application of the line curvature algo-
rithm, it is required to evaluate its accuracy, as well as the 
area of its applicability both with respect to the permissible 
heterogeneity of the red blood cell ensemble and with respect 
to a fragment of the diffraction pattern suitable for measure-
ments. In this paper, we use numerical simulation to test the 
line curvature algorithm under ideal conditions when the 
input data for it are specified exactly. Of particular interest is 
the possibility of measuring the fraction of weakly deform-
able red blood cells in a blood sample by laser ektacytometry. 
This issue is also considered in this work.

2. Laser ektacytometry of red blood cells

In a laser ektacytometer, a highly diluted suspension of red 
blood cells is poured into a thin gap between the walls of two 
transparent coaxial cups, one of which is stationary and the 
other can rotate at a given angular velocity (a so-called 
Couette cell) [16 – 19]. The rotation of the movable cup cre-
ates a uniform field of shear stresses in the suspension, which 
pulls the erythrocytes along the flow. The suspension is illu-
minated with a laser beam and the resulting light scattering 
pattern is observed. The optical layout of the ektacytometer is 
shown in Fig. 1. It includes a laser, a Couette cell, and a dif-
fraction pattern observation screen.

To obtain a high-quality diffraction pattern, a highly 
coherent laser beam is required. An ektacytometer video cam-
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Figure 1. Optical layout of a laser ektacytometer of red blood cells. 



889Line curvature algorithm in laser ektacytometry of red blood cells

era recording a diffraction pattern must have a resolution of 
about 100 megapixels and a dynamic range of light intensity 
measurement of at least 50 [20].

2.1. Characteristics of the red blood cell ensemble

Following works [10, 13], red blood cells in the shear flow of 
a laser ektacytometer will be modelled by elliptical disks 
with semi-axes a and b. Taking into account the inhomoge-
neity of the ensemble in particle shapes, we will consider the 
semi-axes a and b as random variables and describe them by 
the formulae

a = a0(1 + e),   b = b0(1 – e).

Here a0 and b0 are the average sizes of the semi-axes; and e is 
a random parameter, the average value of which is assumed 
to be zero:

á eñ = 0. (1)

The ensemble of red blood cells is characterised by para-
meters

s
b
a

0

0= ,  m = á e2 ñ,  n = á e3 ñ. (2)

These parameters describe the average deformability, width 
and asymmetry of the erythrocyte deformability distribution.

2.2. Line curvature algorithm

The construction of an algorithm for processing laser ektacy-
tometry data includes two main procedures. First, on the 
basis of a certain model of an ensemble of red blood cells, we 
solve the direct problem of scattering a laser beam by an 
ensemble of particles and calculate the parameters of the dif-
fraction pattern to be measured. Then we solve the inverse 
scattering problem and express the desired characteristics of 
the red blood cell ensemble through the parameters of the dif-
fraction pattern. The solution to the inverse scattering prob-
lem is approximate. It is possible on the basis of additional 
assumptions regarding the properties of the erythrocyte 
ensemble and the area of the diffraction pattern used for mea-
surements. These assumptions make it possible to single out 
small parameters of the problem, linearise the diffractometric 
equations, and find their analytical solution. As a result, we 
obtain formulae expressing the desired characteristics of an 
ensemble of red blood celld through the parameters of the dif-
fraction pattern.

The input data for the line curvature algorithm are the 
parameters of the diffraction pattern arising from the scatter-
ing of the laser beam by an erythrocyte suspension. These are 
such parameters as the normalised light intensity Iu  on the iso-
intensity line selected for measurements, the coordinates of 
the polar points of this line (xp, 0) and (0, yp), as well as the 
radii of its curvature R(xp, 0) º R(xp) and R(0, yp) º R( yp) at 
the indicated points. Here we use a Cartesian coordinate sys-
tem, the origin of which is located in the centre of the diffrac-
tion pattern (the point of incidence of a direct laser beam on 
the screen). The x axis is horizontal, and the y axis is vertical. 
One of them is parallel to the direction of the flow in the 
Couette cell, and the other is perpendicular to it. An example 
of a diffraction pattern, an iso-intensity line and circles of cur-
vature of this line at polar points are shown in Fig. 2.

The line curvature algorithm is based on the use of formu-
lae [13]

, µs
QqC

Q
q s
C C s q1 1 2 2

1 1

1 1

2
1

1
=
+ -

= + -` j ,

q s
C C s

2
1
2
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1n = -` j.
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0
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 (5)

8 ; 16 4q q q q1 0 2 0= + = + ; (6)

and I and I(0) are the light intensities at the iso-intensity line 
and in the centre of the diffraction pattern, respectively. Our 
task is to evaluate the accuracy of formulae (3) – (6) and deter-
mine the area of their applicability. Let us make this estimate 
under the conditions when the input data for the line curva-
ture algorithm are specified exactly. To this end, we use the 
model of a bimodal ensemble of red blood cells.

3. Bimodal ensemble of red blood cells

In the particular case of a bimodal (i.e., two-component) 
erythrocyte ensemble, the random parameter e has only two 
possible values, i.e. e1 and e2. These values correspond to two 
types (shapes) of particles in the ensemble. The sizes of the 
semi-axes of the elliptical disks of the first and second types 
are determined by the expressions

(0, yp)

(xp, 0)

x

y

a b c

0

Figure 2. (a) Example of a diffraction pattern, (b) iso-intensity line, and 
(c) circles with radii R(xp, 0) and R(0, yp)  at polar points.
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(1 ), (1 )a a b b1 0 1 1 0 1e e= + = - ,

(1 ), (1 )a a b b2 0 2 2 0 2e e= + = - .
 (7)

Let p be the fraction of particles of the first type (hard cells) in 
the ensemble of red blood cells. Then, according to formulae 
(1) and (2),

(1 ) 0, (1 )µp p p p1 2 1
2

2
2e e e e+ - = = + - ,

(1 )p p1
3

2
3n e e= + - .

 (8)

Shape parameters of bimodal ensemble components (aspect 
ratios) are expressed as

,s
b
a s

b
a1

2
1 2= = 2

1
. (9)

Without loss of generality, we will assume that s1 < s2, i.e., 
particles of the first type are more rigid than particles of the 
second type.

It follows from formulae (7) – (9) that

,s s
s s

s s
s s1

1
1

2
2

2e e=
+
-

=
+
- , (10)

where

; ( ) ( 1/2)s M M s s M s s p2
1 2 1 2= + + = - - . (11)

Thus, specifying the shapes of the components of the 
bimodal ensemble, s1 and s2, and the fraction of particles of 
the first type, p, we can calculate the parameters e1, e2, and s 
by formulae (10) and (11).

Solving equations (8) with respect to the quantities e1, e2, 
and p, we find the expressions

µ
,

µ
p

2
1 1

4 2
4

2 3 1

2 3

n
n e

m
n n

= +
+

=
- +

c m ,

μ
2

4
2

2 3

e
m

n n
=
+ + .

 (12)

It follows from equations (10) that

1
1 ,s s s s

1
11

1
1

2
2

2

e
e

e
e

=
-
+

=
-
+ . (13)

Thus, having determined the parameters s, μ, and n using the 
line curvature algorithm, we can calculate the parameters of 
the bimodal ensemble p, s1, and s2 by formulae (12) and (13). 
This means that for a bimodal ensemble of red blood cels, 
laser ektacytometry makes it possible to determine the pro-
portion of rigid cells p in the ensemble of erythrocytes and the 
cell shapes (aspect ratios) s1 and s2 of both components of the 
ensemble.

3.1. Scattering of a laser beam by a bimodal ensemble of red 
blood cells

Let us estimate the accuracy of measuring the parameters of a 
bimodal erythrocyte ensemble using the line curvature algo-
rithm. Let us consider the scattering of a laser beam by an 
ensemble of elliptical disks located in a certain plane perpen-

dicular to the laser beam. We will assume that the major axes 
of the ellipses are parallel to each other, and the centres of the 
disks are randomly distributed in the indicated plane. In this 
case, the distribution of the light intensity in the far diffrac-
tion zone is described by the formula [8]

1 | | ( )I I N ab z
k G

4 0
2g x=

2
` j . (14)

Here, angle brackets denote averaging over parameters a and b;

( , ) ; ( )
( )

x y z
k a x b y G

J22 2 2 2 1
2

x x x
x

x
= = + = ; E ;

( ) 8 [ ( ) 2 ( )] ( )
d
dG G J J J3 0 1 1x

x x
x x x x= = -l ;

 (15)

x, y are the Cartesian coordinates of a point on the observa-
tion screen in the coordinate system, the origin of which is at 
the centre of the diffraction pattern; I0 is the intensity of the 
incident laser beam; N is the number of particles illuminated 
by the laser beam; z is the distance from the measurement 
volume to the observation screen; k = 2p/l is the wave num-
ber; l is the wavelength of the light; and J0(x) and J1(x) are the 
Bessel functions of the zero and first orders, respectively. The 
parameter  | g |2 is determined by the thickness and optical 
density of the disk. The function G(x)  satisfies the condition 
G(0) = 1. Note that formula (14) describes the distribution of 
the light intensity at those points of the observation screen 
where the direct laser beam does not fall.

In particular, for a bimodal ensemble of red blood cells 
with characteristics a1, b1 and a2, b2, as well as the fractions p 
of particles of the first type, we obtain the expression

21 | |I I N
4 0 g=

 ( ) (1 ) ( )p a b z
k G p a b z

k G
2

1 2 2

2

2# x x+ -1 1` `j j; E ,

where

;z
k a x b y z

k a x b y1 1
2 2

1
2 2

2 2
2 2

2
2 2x x= + = + . (16)

Light intensity at the centre of the diffraction pattern is 
expressed as

2(0) | | ( )I I N p a b z
k p a b z

k
4
1 10

2

2 2

2
g= + -1 1` `j j; E .

The normalised intensity has the form

( , )
(0) ( ) (1 )( )

( ) ( ) (1 )( ) ( )
I I x y

I
I

p a b p a b
p a b G p a b G

1 1
2

2 2
2

1 1
2

1 2 2
2

2x x
= = =

+ -

+ -u u . (17)

Formulae (16) and (17) describe the distribution of the light 
intensity in the diffraction pattern arising from the scattering 
of a laser beam by a bimodal (in shape) ensemble of particles.

3.2. Iso-intensity line

The intensity of the scattered light on the iso-intensity line has 
a certain constant value:

constI =u . (18)
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Formulae (16) – (18) implicitly define the function  x = 
x(y) or y = y(x), which describes the shape of the iso-intensity 
line. The points of intersection of the iso-intensity line with 
the Cartesian coordinate axes are called polar. We are inter-
ested in the ratio of the coordinates of the polar points D = 
yp /xp, as well as in the curvature parameters C1 and C2 of the 
iso-intensity line at these points.

To normalise the coordinates, we introduce the parameter  
c0 = a b0 0 , which characterises the average size of a red 
blood cell, as well as the dimensionless quantities U and V, 
determined by the formulae

,U s z
k c x V s z

k c y1
0 0= = .

In these variables, the iso-intensity line is described by the 
function U(V ) or V(U ), and its parameters take the form

( )
( )
, | ( ) ( ) |, | ( ) ( ) |D s

U
V

C s U U C s V V
0
0 1 0 0 0 01 2= = =ll ll . (19)

The iso-intensity line shape is determined by the equation

( , )I I U V=u u

= 
(1 ) (1 )(1 )

(1 ) ( ) (1 )(1 ) ( )
const

p p
p G p G

1
2 2

2
2 2

1
2 2

1 2
2 2

2

e e
e x e x
- + - -

- + - -
=

or the equation

(1 ) ( ) (1 )(1 ) ( ) constp G p G1
2 2

1 2
2 2

2e x e x- + - - = , (20)

where

U V(1 ) (1 )1 1
2 2

1
2 2x e e= + + - ;

U V( ) ( )1 12 2
2 2

2
2 2x e e= + + - .

 (21)

For the normalised coordinates of the polar points Up = 
U(0) and Vp = V(0), we obtain the transcendental equations

G G

(1 ) (1 )(1 )

(1 ) [(1 ) ] (1 )(1 ) [(1 ) ]
I

p p

p U p U1
2 2

1 2
2 2

2p p

1
2 2

2
2 2e e

e e e e
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- + - -

- + + - - +u ,

  (22)
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I

p p

p V p V

1 1 1

1 1 1 1 1p p

1
2 2

2
2 2

1
2 2

1 2
2 2

2

e e

e e e e
=

- + - -

- - + - - -u ,

  (23)

where the function G is defined by formula (15).

3.3. Iso-intensity line curvature parameters

Let us calculate the curvature parameter C2 of the iso-inten-
sity line at the upper polar point. To this end, we use formulae 
(20) and (21), in which we will consider the variable V as a 
function of the variable U. Differentiating equality (20) with 
respect to U, we obtain

U U
d d(1 ) ( ) (1 )(1 ) ( ) 0
d d

p G p G1
2 2

1
1

2
2 2

2
2e x x e x x

- + - - =l l , (24)

where
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d
d
U

U VV1 11

1

1
2

1
2x

x
e e

=
+ + - l

;

( ) ( )
;

d
d

d
d

U
U VV

V
U
V1 12

2

2
2

2
2x

x
e e

=
+ + -

=
l

l .

In particular, for U = 0 we have 

( ) ( )
d
dp G
U

1
U

1
2 2

10
1

0
e x x
-

=
l

 (1 )( ) ( )
d
dp G
U

1 0
U

2
2 2

20
2

0
e x x

+ - - =
=

l , (25)

U

( ) ( ) ( )
d
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U

V V1 0 01

0 10

1
2x
x

e
=

-
=
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 = 
( ) ( )

( ) ( ) ( )
(1 ) (0)

V
V V

V
1 0

1 0 0
1

1
2

1e
e

e
-

-
= -

l
l , (26)

U

( ) ( ) ( )
d
d
U

V V1 0 02

0 20

2
2x
x

e
=
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=

l

 = 
( ) ( )

( ) ( ) ( )
(1 ) (0)

V
V V

V
1 0

1 0 02

2

2

2e
e

e
-

-
= -

l
l , (27)

where

( 0) (1 ) (0)U V10 1 1x x e= = = - ;

( 0) (1 ) (0)U V20 2 2x x e= = = - .

 (28)

It follows from (25) – (27) that

( 0) 0, 0, 0d dV U
U U0

1 2

0

x x
= = = =

= =d dU U
l . (29)

Now we differentiate equality (24) with respect to U and 
obtain

(1 ) ( ) ( )d
d
dp G

U
G

U
1
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1
1
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1 2

2
1e x x x x

- +d
ll lc m; E

 (1 )(1 ) ( ) ( )d
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U
G

U
02

2 2
2

2
2

2 2

2
2e x x x x

+ - - + =d
ll lc m; E .

Setting here U = 0 and taking formulae (29) into account, we 
have

U
d( ) ( )
d

p G1
U

1
2 2

10 2

2
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e x x
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Setting here U = 0 and taking (29) into account, we obtain
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Substituting these expressions into formula (30), we find
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Thus,
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  (31)

Here,  x10 and x20 are determined by formulae (28). Substituting 
(31) into formula (19) for C2, we obtain

[(1 ) ] [(1 ) ]
[(1 ) ] [(1 ) ]

C s
h G V h G V
g G V g G V

p p

p p

V

V
2

1 1 2 2

1 1 2 2

e e
e e

=
- + -

- + -

V

V

l l

l l
, (32)

where

(1 )(1 ) ; (1 )(1 ) (1 )g p g pV1 1 1
4

2 2 2
4e e e e= - + = - + -V ;

 (33)

(1 ) (1 ) ; (1 ) (1 ) (1 )h p h pV V1 1
3

1
2

2 2
3

2
2e e e e= - + = - + - .

Similarly, we find the parameter of the curvature of the 
iso-intensity line for the right polar point:

[( ) ] [( ) ]
[( ) ] [( ) ]

C s h G U h G U
g G U g G U1

1 1
1 1

p p

p p

U U

U U
1

1 2

1 2

e e
e e

=
+ + +

+ + +

2

2

1

1

l l

l l
, (34)

where

(1 ) (1 ) ; (1 ) (1 )(1 )g p g pU1
4

1 2 2
4

2e e e e= - + = - + -U1 ; 

(35)

(1 ) (1 ) ; (1 ) (1 ) (1 )h p h pU1
2

1
3

2 2
2

2
3e e e e= - + = - + -U1 .

The function G' in expressions (32) and (34) is defined by for-
mula (15).

4. Testing the algorithm

The test procedure for the line curvature algorithm is as 
follows. Setting the parameters of the bimodal ensemble of 
erythrocytes s1, s2, and p, we calculate the parameters e1, e2, 
and s by formulae (10) and (11). Then we determine the 
parameters D, С1, and С2 by formulae (19), (22), (23), and 
(32) – (35). After that, setting the parameter Iu  and using 
the line curvature algorithm, we find the parameters s, μ, 
and n by formulae (3) – (6). Finally, using formulae (12) 
and (13), we determine the parameters  s1, s2, and p. In these 
calculations, only formulae (3) – (6) are approximate. The 
rest of the formulae in the framework of the adopted model 
of light scattering by red blood cells are accurate. Therefore, 
comparing the obtained values of  s1, s2, and p with the 
initially specified ones, we will be able to estimate the accu-
racy of formulae (3) – (6) describing the line curvature algo-
rithm.

4.1. Calculation results

We have performed numerical calculations for the following 
parameter values:

s1 = 1,  .5 2.5s1 2G G ,  0.02 0.2IG Gu ,  0.1 0.9pG G .

In this case, the parameter s2 changed with a step of 0.25; the 
parameter p, with a step of 0.1; and the parameter Iu , with a 
step of 0.005. Then the initially set values of s1, s2, and p were 
compared with those calculated using formulae (3) – (6).

The calculation results are presented in Table 1. It indi-
cates the ranges of parameter values for which the line curva-
ture algorithm determined the characteristics of a bimodal 
erythrocyte ensemble with an error of less than 10 %. The 
obtained data show that, for certain values of the parameters, 
the line curvature algorithm provides measurement accuracy 
sufficient for practical applications.

It can be seen from Table 1 that, for a symmetric ensemble 
of red blood cells, when p = 0.5, the line curvature algorithm 
works well over the entire investigated range of variation of 
the parameter Iu , from 0.02 to 0.2. In this case, the error in 
determining the parameters s1, s2, and p using the line curva-
ture algorithm does not exceed 10 %. If the ensemble of eryth-
rocytes is asymmetric, i.e. p ≠ 0.5, then the permissible values 
of the parameter Iu  do not exceed 0.12. For strongly asym-
metric ensembles of red blood cells, when p = 0.1 or 0.9, the 
aspect ratio for a soft particle (parameter s2) can be measured 
with an error of less than 10 % only for the range of values 
. .s1 5 2 252G G . 
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4.2. Discussion of the results

In this work, we have tested the algorithm for processing 
erythrocyte laser ektacytometry data, designed to determine 
the parameters of erythrocyte deformability distribution. 
Relying on the analysis of the diffraction pattern that occurs 
when a laser beam is scattered by an ensemble of blood cells 
deformed by viscous friction forces, the line curvature algo-
rithm determines three population characteristics of a blood 
sample, namely, the average deformability of erythrocytes, as 
well as the width and asymmetry of their deformability distri-
bution. In the particular case of a bimodal ensemble, these 
data are sufficient to determine the proportion of hard eryth-

rocytes in a blood sample, as well as the shape (aspect ratio) 
of both components of the ensemble. Regarding our assump-
tion that the bimodal ensemble of red blood cells contains 
rigid (non-deformable) cells, we note that these cells are 
indeed present in human blood in diseases such as hereditary 
spherocytosis, sickle cell anaemia, and malaria. In addition, 
we plan to test the line curvature algorithm on specially pre-
pared blood samples, when some of the cells are treated with 
a glutaraldehyde solution.

We have tested the operation of the line curvature algo-
rithm under ideal conditions, when the input data for the 
algorithm are precisely specified. The verification has been 
performed by the method of numerical simulation for a 
bimodal ensemble of red blood cells with a rigid cell compo-
nent. The region of applicability of the algorithm is found, for 
which the error in determining the parameters of the bimodal 
ensemble does not exceed 10 %.

The calculation results show that the highest measure-
ment accuracy is achieved for a symmetric ensemble of 
cells when both components of the ensemble (soft and hard 
erythrocytes) are represented in equal amounts. In this 
case, a wide area of the diffraction pattern is suitable for 
measurements, within which the intensity of the scattered 
light on the iso-intensity line is 2 % – 20 % of the intensity of 
the central diffraction maximum. For strongly asymmetric 
ensembles, when the fraction of one of the ensemble com-
ponents is 10 %, only a narrow region of the diffraction 
pattern is suitable for the analysis, within which the inten-
sity of the scattered light on the iso-intensity line is 2 % – 3 % 
of the intensity of the central diffraction maximum. 
Another limitation is associated with the fact that high 
measurement accuracy is achieved only for weakly inho-
mogeneous ensembles of red blood cells, when the aspect 
ratio for the soft component of the ensemble does not 
exceed 2.25. This, in turn, imposes a limitation on the per-
missible value of the shear stress acting on blood cells in 
the shear flow of the laser ektacytometer.

5. Conclusions

Using the numerical simulation method, we have tested the 
line curvature algorithm designed to measure the average 
deformability of red blood cells, as well as the width and 
asymmetry of their deformability distribution. It is shown 
that this algorithm provides a measurement accuracy suffi-
cient for practical applications. In particular, it allows one to 
measure the proportion of weakly deformable erythrocytes in 
a test blood sample. The highest measurement accuracy is 
achieved when the peripheral part of the diffraction pattern is 
used for the analysis, where the light intensity is 5 % – 10 % of 
the intensity of the central diffraction maximum. As for the 
shear stress acting on blood cells in the shear flow of the ekta-
cytometer, optimal operation of the algorithm is expected 
when it does not exceed the value at which the deformation of 
normal blood cells is characterised by an aspect ratio (length 
to width ratio) of 2.5. The data obtained will be used in the 
design and development of an improved model of a laser 
ektacytometer of red blood cells.
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Table 1. Data obtained by numerical simulation.

Fraction of 
rigid cells p

Aspect ratio s2
Normalised 
intensity Iu

0.1 1.5 2.25s2G G 0.02 0.025IG Gu

0.2 1.5 0.025 IG Gu  0.03

0.2 1.75 0.035 IG Gu  0.04

0.2 2.0 0.035 IG Gu  0.04

0.2 2.25 0.04 IG Gu  0.045

0.2 2.5 0.045 IG Gu  0.05

0.3 1.5 0.025 IG Gu  0.04

0.3 1.75 0.03 IG Gu  0.05

0.3 2.0 0.04 IG Gu  0.06

0.3 2.25  0.05 IG Gu  0.07

0.3 2.5 0.06 IG Gu  0.08

0.4 1.5 0.02 IG Gu  0.065

0.4 1.75 0.025 IG Gu  0.075

0.4 2.0 0.04 IG Gu  0.09

0.4 2.25 0.05 IG Gu  0.1

0.4 2.5 0.065 IG Gu  0.115

0.5 1.5 2.5s2G G 0.02 IG Gu  0.2

0.6 1.5 0.02 IG Gu  0.08

0.6 1.75 0.02 IG Gu  0.095

0.6 2.0 0.03 IG Gu  0.105

0.6 2.25 0.045 IG Gu  0.12

0.6 2.5 0.055 IG Gu  0.115

0.7 1.5 0.02 IG Gu  0.055

0.7 1.75 0.02 IG Gu  0.065

0.7 2.0 0.025 IG Gu  0.075

0.7 2.25 0.035 IG Gu  0.075

0.7 2.5 0.05 IG Gu  0.075

0.8 1.5 0.02 IG Gu  0.05

0.8 1.75 0.02 IG Gu  0.045

0.8 2.0 0.025 IG Gu  0.045

0.8 2.25 0.03 IG Gu  0.045

0.8 2.5 0.04 IG Gu  0.045

0.9 1.5 0.02 IG Gu  0.035

0.9 1.75 0.02 IG Gu  0.03

0.9 2.0 0.02 IG Gu  0.025

0.9 2.25 0.02
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