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Abstract.  A review is presented of recent works on optical unipolar 
pulses, whose electric area (integral of the electric field strength 
over time) is nonzero, which determines the predominant direction 
of the electric field strength. It is shown that the existence of unipo-
lar pulses does not contradict Maxwell’s equations, and that unipo-
lar pulses can propagate in waveguides. It is emphasised that, along 
with the spectral, energy, and polarisation parameters, the electric 
area of short light pulses is also an important characteristic. The 
unidirectional action of these pulses on microobjects indicates that 
it is promising to develop methods for generating radiation with 
such properties. We disciuss methods for the generation, propaga-
tion, and interaction of unipolar light with classical and quantum 
systems, as well as methods for recording the electric area of light 
pulses.

Keywords: unipolar light, extremely short pulses, unipolar pulses, 
pulse electric area.

1. Introduction 

Immediately after the appearance of lasers, active research 
began on ways to reduce the duration of laser pulses [1]. The 
extreme importance of this area is evidenced, in particular, by 
the Nobel Prize in Physics 2018 [2]. To date, it has been pos-
sible to obtain pulses with a duration of the order of one oscil-
lation period of a light wave in the femto- and attosecond 
ranges [3 – 7]. Extremely short pulses (ESPs), containing a few 
cycles of field oscillations, up to a single cycle, play an 
extremely important role in modern physics and other fields 
that use its achievements. The duration of pulses in the atto-
second range is comparable to the characteristic periods of 
electron motion in atoms and molecules; therefore, attosec-
ond pulses are a unique tool for monitoring and controlling 
the dynamics of electron wave packets in atoms and solids [8]. 
On the way to further shortening the duration, new and 
unusual problems for optics appear. For example, an unex-
pected question arose about what might be the features of the 
‘structure’ of electric and magnetic fields inside such pulses, 
which is somewhat different from that of the usual multicycle 
pulses described in the framework of the standard concepts of 
carrier frequency, phase and slowly varying amplitude. We 
have to abandon these concepts here, and in the theoretical 
description, it is necessary to turn directly to the original 
Maxwell’s equations. The limiting possibility from the point 
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of view of reducing the pulse duration is the generation of 
subcycle unipolar radiation pulses with a significant single 
burst of the electric field strength, which, unlike the case of 
bipolar pulses, does not change direction during the entire 
pulse (a more rigorous definition is given below). Among 
potential consumers of ultrashort and extremely short laser 
pulses, the European Extreme Light Infrastructure (ELI) pro-
gramme should be mentioned, the purpose of which is to 
obtain super-intense light fields with a peak intensity suffi-
cient for the manifestation of essential quantum-electrody-
namic properties of the electron--positron vacuum [9]. There 
is reason to believe that the efficiency of action on various 
objects is greater precisely for quasi-unipolar radiation pulses 
(see below). 

In this review, the terminology is given, the important 
concept of the light pulse electric area is introduced, the objec-
tions that the authors had to face when discussing the prob-
lem of unipolar light are considered, and well-known qualita-
tive, semiquantitative, and more rigorous mathematical sub-
stantiations of implementing possible schemes for generating 
unipolar light and its properties are presented. The results of 
so far few papers are presented, in which situations with the 
appearance of pulses with the property of unipolarity were 
directly analysed. Considering that most of the works in this 
area are of a theoretical nature, the presentation is structured 
in such a way that the essence of the problems involved is 
understandable not only to theoreticians, but primarily to 
experimental physicists who may be interested in the problem 
of obtaining unipolar light. 

2. Electric area of a light pulse and the degree 
of unipolarity

A light pulse, e.g., generated by a mode-locked laser, is a lim-
ited or localised ‘bunch’ of electromagnetic field travelling in 
space, containing from a few to hundreds and thousands 
(depending on the duration) cycles of the electric (and mag-
netic) field strength variation. According to the usual con-
cepts, in the case of linearly polarised radiation, the vector of 
the electric (and magnetic) field strength changes the sign at a 
distance of half the wavelength. Such a pulse, passing a point 
R = (x, y, z) in space, produces an alternating local field in it 
during the pulse duration. For each point R in space, the fol-
lowing quantity can be introduced, referred to as the electric 
field area: 

3
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(integral of the electric field strength vector E over time t 
[10,  11], which in accordance with the above definition is also 
a vector quantity). Note that for a conventional multicycle 
optical pulse, each component of such a vector and its length 
must be equal to zero. Thus, ‘ordinary’ light pulses, according 
to the introduced terminology, are bipolar. In unipolar pulses 
(UPs), which are the subject of this review, as a result of the 
integration of the electric field strength vector, there will be 
nonzero components of the electric area. For a quantitative 
characteristic, a quantity is introduced, which is called the 
degree of unipolarity [12 – 15] and shows the fraction of uni-
polar light in a pulse: 
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A fully unipolar pulse corresponds to x = 1, and a usual bipo-
lar pulse to x = 0. Both the electric area and the degree of 
unipolarity are quantities that change in space. Below it will 
be shown that the electric area obeys a certain conservation 
law (the so-called electric area conservation rule). The degree 
of unipolarity is not subject to any general conservation rules. 

Figure 1 schematically shows the temporal behavior of the 
field strength at a certain point in space, when an extremely 
short light pulse passes through it, in situations of interest to 
us. The case in Fig. 1a corresponds to a bipolar single-cycle 
pulse. It has only one well-defined cycle of field strength oscil-
lations. The electric area of such a pulse and the degree of 
unipolarity x are equal to zero. Figures 1b and 1c show a so-
called subcycle, or halfcycle pulse. Its name is due to the pat-
tern of the field change, in which there is a half cycle of oscil-
lations, or, in other words, one half-wave with a large ampli-
tude. The tail of the pulse, or the pedestal of the opposite sign, 
has a smaller amplitude. In this case, the integral of the field 
strength can also be zero, and if the area of the negative part 
is less than the area of the positive one, or vice versa, it is non-
zero. Finally, Fig. 1d shows a unipolar pulse. Here the inte-
gral is not equal to zero and the degree of unipolarity is x = 1. 
Sometimes in the literature, a unipolar pulse is called a video 
pulse. This term is borrowed from radio engineering and 
seems to us not entirely successful for use in optics, since has 
no appropriate physical meaning. 

3. Pro and con arguments about the existence 
of unipolar light

It is the possibility of the existence of pulses with a nonzero 
electric area in the optical range that is often questioned. A 
number of arguments are presented here. One of them 
reduces to the statement that the existence of a component 
at a zero frequency in the Fourier expansion of the pulse 
indicates the presence of an electrostatic field, which a 
travelling wave cannot have. The argument is strange, 
since there is no such field in a travelling space-limited 
wave outside the pulse. The magnitude of the field is mea-
sured by its effect on probe charges. An example from 
mechanics suggests itself here. If a short-term force acts on 
the body, which does not change direction during the time 
of exposure, then in the Fourier expansion of such a force 
there will also be a component at a zero frequency. 
However, this fact does not give rise to the conclusion 
about the existence of a constant force that would act on 
the body. It is also impossible to agree with the objection 
that the presence of a field component at a zero frequency 
contradicts the wave properties of light. Maxwell’s equa-
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Figure 1.  (a) Bipolar single cycle, (b, c) subcycle and (d) unipolar pulses.
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tions by no means prohibit the existence of such pulses. 
This circumstance follows already from the fact that the 
three-dimensional wave equation in vacuum, which fol-
lows directly from Maxwell’s equations, admits, according 
to D’Alembert, the existence of a plane-wave solution in 
the form of pulses of arbitrary shape  E(z, t) = E(z – ct), 
which move in vacuum with the speed of light c along the 
z axis. Since E(z, t) is an arbitrary function, it corresponds 
to unipolar pulses, for which the sign of the electric field 
amplitude does not change during propagation. 

The argument that a nonzero pulse area corresponds to a 
nonzero field amplitude with zero frequency, which, accord-
ingly, ‘cannot propagate’ is also unacceptable. This is evi-
denced by the just-mentioned d’Alembert solution in the form 
of a traveling pulse, in which a zero-frequency component 
may well be present. The point is that the (phase) velocity is 
determined not simply by the radiation frequency, but by its 
ratio to the wave number. The latter in a vacuum is simply 
proportional to the frequency, which leads to a finite propa-
gation velocity. Thus, unipolar pulses can propagate in a 
vacuum and even in a waveguide, which will be demonstrated 
below. The next question is whether there are sources of such 
waves. 

4. Qualitative picture of the emergence 
of a unipolar light pulse 

Faced with objections to the possibility of obtaining pulses of 
unipolar light, the authors can give an elementary example 
from the course of general physics, explaining the emergence 
of radiation when a charge moves. Indeed, free moving 
charges, which acquire a short-term acceleration, begin to 
radiate. In textbooks [16], this is usually illustrated as shown 
in Fig. 2. 

The charge q is at the origin of coordinates 0 until the 
moment of time t = 0. Then an external force acts on it dur-
ing the time t; at the end of the exposure time, the charge 
continues to move uniformly and rectilinearly with a veloc-
ity u. We consider the nonrelativistic case u << c. Let us 
imagine a picture of lines of force in space some time T after 
the termination of the force action. Then, in space far from 
the charge, three regions can be distinguished. Outside a 

sphere with a larger radius (of the order of cT), the field 
strength pattern will be the same as before the charge began 
to move. A field of a moving charge is formed inside a sphere 
of a smaller radius. In our case (u << c) the charge does not 
have time to go far from the point of origin of motion, and 
so the pattern of lines of force will coincide with that for the 
charge at rest. All changes in the direction of the lines of 
force will occur between these two spheres expanding at the 
speed of light. With such a break in the lines of force inside 
the sphere, one can distinguish a component orthogonal to 
the direction of the lines of force of the resting and moving 
charges. This component is responsible for producing a uni-
polar wave emitted by a charge during its acceleration. This 
is shown schematically in Fig. 2a. Details of the derivation 
are given in Ref. [16]. For the field strength E in a unipolar 
wave at a distance R from the origin of coordinates in the 
case of ‘pulsed’ acceleration a = u/t during time t, the fol-
lowing expression is obtained: 

( , ) sinE R t
c R
qa
2 q= .	 (3)

Note that the duration of such a pulse is equal to t, and it 
determines the spectral range and width of the radiation spec-
trum. The dependence on the angle q between the direction of 
motion and the direction of radiation propagation is taken 
into account by the factor sinq. Thus, the charge becomes a 
source of a unipolar spherical wave with an amplitude 
depending on the observation angle with respect to the direc-
tion of the charge movement. Strictly speaking, for the charge 
to produce only one unipolar wave and the electric area to be 
different from zero, the charge must continue to move. If the 
charge cannot leave the limited area, then it will have to stop, 
which means that a break in the lines of force will reappear, 
but in a different direction; the charge will again generate a 
unipolar wave, in which the vector of the electric field strength 
will have the opposite direction. As a result of acceleration, 
uniform movement and deceleration of the charge, radiation 
of two unipolar pulses with opposite signs will appear. 
Moreover, it is easy to verify that the electric area of such 
radiation at a considerable distance from the region of charge 
motion is zero, even if acceleration and deceleration occur 
during different times. 

The conclusion about the existence of radiation from a 
charge moving with acceleration is confirmed by the well-
known rigorous solution of the problem, based on Maxwell’s 
equations [17]. It turns out that the low-frequency part of the 
spectrum of the vector potential is inversely proportional to 
the frequency, and this indicates the presence of a constant 
component in the radiation pulse accompanying the acceler-
ated motion of the charge. The corresponding calculations 
are given in [18]. 

Speaking about the first significant works in the field of 
unipolar pulses, we should mention the work of Bessonov 
[19]. It draws attention to the well-known fact that a charge 
moving with acceleration emits a unipolar pulse. In Ref. [19], 
as far as we know, an expression of form (1) was considered 
for the first time. However, the author did not introduce the 
concept of the electric area; instead, for unipolar pulses he 
introduced the term ‘strange electromagnetic waves’. The 
main processes in which acceleration of free charges takes 
place and such waves arise were listed: bremsstrahlung, radi-
ation accompanying beta decay of nuclei, radiation of elec-
trons accompanying Compton scattering of gamma quanta, 

0

q

q

a b

Figure 2.  Schematic illustration of the unipolar pulse emergence: (a) a 
break in the force lines of the electric field of a positive point charge 
arising during its acceleration, and (b) the components of the electric 
strength vector in the break zone of the lines of force, indicating the ap-
pearance of a unipolar radiation pulse; q is the angle between the direc-
tions of charge movement and propagation of radiation.
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radiation of charged particles in magnetic fields, radiation 
of cosmic rays in the magnetic field of the Earth, and radia-
tion of positrons reflected from the surface of crystals.

In the subsequent papers [20, 21], Bessonov notes that, 
strictly speaking, unipolar pulses can arise only due to the 
infinite motion of particles. In other cases, conditionally 
strange waves may occur, when pulses with different polari-
ties are separated in time. Then he schematically analyses 
examples of obtaining such conditionally strange waves and 
using interference schemes to manipulate such pulses. 

In our opinion, the term ‘strange waves’, used in contrast 
to the usual ones, in which the sign of the field changes, in 
relation to unipolar waves is not quite good. The corre-
sponding term ‘strangeness parameter’ as applied to the 
time integral of the electric field strength is not quite good as 
well. It does not reveal the physical meaning of the quantity. 
The terms ‘unipolar’, ‘bipolar’, ‘electric area’, and ‘zero elec-
tric area’ in combination with the word ‘pulse’ are more 
acceptable for opticians and laser physicists who are starting 
to deal with this issue. The term ‘degree of unipolarity’ 
defined by Eqn (2) is also appropriate and has a clear physi-
cal meaning. 

In preprint [22] entitled ‘A bounded source cannot emit a 
unipolar electromagnetic wave’ it is noted that the problem 
was identified one and a half hundred years ago by Stokes, 
who also showed that a bounded sound source in the three-
dimensional case cannot be unipolar. At the same time, a 
plane acoustic wave can have any shape and be unipolar. The 
title of the work already contains a statement, but one of the 
arguments is formulated in it not quite accurately. The pres-
ence of a constant component in the spectrum of a unipolar 
pulse is interpreted as the existence of an electrostatic compo-
nent. The fact that this is not the case for a unipolar wave was 
already noted at the beginning of the review. 

The assertion contained in the title of Ref. [22] is not quite 
correct: it denies the possibility of obtaining a wave that con-
tains, e.g., two unipolar pulses separatedt in time, and the 
possibility of obtaining a nonzero electric area. Let us show 
that this is not the case with the following example. Let the 
negative charge first rest at point 1, then accelerate on a way 
to point 2, and move uniformly from point 2 to point 3. At 
point 3 it acquires negative acceleration, decelerates and stops 
at point 4. The distance between points 2 and 3 can reach 
several meters (of the order of the laboratory room size), and 
the path segments where acceleration and deceleration occur 
can be extremely small. In this case, the source is limited in 
space. The situation is illustrated in Fig. 3. 

If the accelerations in path segments 1 – 2 and 3 – 4 are the 
same and differ only in sign, then two unipolar pulses of the 
same shape will arrive at point A with some time delay. Their 
z-components have the same sign, and y-components have 
different signs. If we calculate the electric area of the pulse 
according to formula (1), its z-component will be nonzero, 
and the y-component will be zero. At point B, the electric area 
is also nonzero, since the pulses have different amplitudes due 
to different distances from the source and different directions 
of observation. At a significant distance, at point C, when the 
pulses can be assumed to propagate in one direction, they 
have the same shape, but opposite orientations of the electric 
field strength vector, and their area is zero. That is, on a labo-
ratory scale, it seems quite realistic to create a limited source 
and obtain pulses with a nonzero area. 

Looking ahead, it should be noted (Section 12 is devoted 
to these issues in the review) that in many problems of the 

radiation – matter interaction it is not the very existence of a 
nonzero electric area measured over an infinite time interval 
that is important, but the presence of single unipolar bursts of 
short-duration and large amplitude in the radiation. The con-
dition of finite motion does not impose restrictions on the 
possibility of obtaining such pulses. The effect of unipolar 
pulses on charged particles, both free and bound, gives a dif-
ferent result than the effect of a bipolar pulse containing a few 
oscillation cycles. The action of a multi-cycle pulse is efficient 
only when the carrier frequency is in resonance with the tran-
sition in the quantum system. A single unipolar pulse can 
have a non-selective effect. Trains of two or more unipolar 
pulses can act like resonant radiation. 

5. Possibility of generating unipolar light 
in the one-dimensional geometry 
of the experiment 

The fundamental possibility of the existence of unipolar 
pulses in the above understanding (both in the rigorous and in 
the extended physical sense) is beyond doubt. However, there 
is a problem of their practical implementation in the optical 
and adjacent ranges, where the usual radiation sources are 
oscillating dipoles and varying alternating currents. The wave 
equation in the one-dimensional case has the following form 
[23 – 25]: 

¶
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We wrote the wave equation (4) in scalar form, since 
below we will consider linearly polarised radiation. The 
sources of the field in (4) are the second derivative of the 
medium polarisation P and the first derivative of the current 
density j. 

The differences between the one-dimensional problem and 
the three-dimensional one were considered in Refs  [26,  27]. 
Consider first the one-dimensional case. Note that we are 
interested in extremely short pulses, and accordingly, the 

y

z

x

A C

B

0

4

3

2

1

Figure 3.  Schematic representation of the finite motion of a charge. The 
origin is located in the middle of segment 1 – 4 at point 0. Points A and 
C are located on the z axis: point A near the segment, point C at a con-
siderable distance from it. Point B is located near the line segment in the 
area of negative values of the coordinate y.
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movement of charges causing a change in the field will be 
short-time; also, due to the one-dimensionality, we assume 
the radiation to have linear polarisation, i.e., all charges move 
along one direction. Figure 4 illustrates the considered situa-
tion, when charges move in a thin flat layer of the medium M 
located in the x, y plane, and radiation occurs mainly along 
the z axis. 

In this case, at the point z0 near the layer M one-dimen-
sional wave equation (4) can be applied, which cannot be 
done at point z00, which is located at a considerable distance 
from the medium. The expression for the field produced by 
dipoles and currents is as follows [26, 27]:

, t
|

¶
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|
dE z t c z
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P z c
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z z
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Here the integration is carried out over the layer between 
the points with coordinates z1 and z2. Let us pay attention to 
the fact that the field turns out to be proportional to the first 
derivative of polarisation and to the current density. 

For clear illustration of the difference between a one-
dimensional situation and a three-dimensional one, which, in 
principle, makes it possible to obtain a unipolar pulse, let us 
consider the time dependence of the charge displacement and 
its derivatives in a case of interest for the subsequent analysis. 
Figure 5 shows the situation when at the initial moment of 
time the charge is at rest. Then, if this charge is part of the 
dipole, the dipole moment is zero, and if the charge is a free 
carrier in the conductor, the current is zero. 

Then, under the action of an external field, occurring in 
the interval from 0 to t0, the charge begins to move, acceler-
ates, slows down and stops. The magnitude of the velocity 
V(t) in the case of a dipole will be proportional to the first 
derivative of the dipole moment, and in the case of interpret-
ing this motion as a current in a conductor, to the magnitude 
of the current j. The acceleration a(t) is proportional to the 
second derivative of the dipole moment and the first deriva-
tive of the current, respectively. If the charges of the dipoles 
remain in a displaced position, then the substance is polar-
ised. Stopping charges in a conductor means termination of 
the current. Obviously, in a three-dimensional problem, when 
we calculate the fields far from the source, such a movement 

of charges will produce a single-cycle bipolar pulse with a zero 
electric area if the dependence of acceleration on time is bipo-
lar. In a one-dimensional problem, formally, according to 
Eqn (5), we can obtain a strictly unipolar pulse, since the first 
derivative of polarisation and the current are proportional to 
the speed of the charge. This consideration should be accom-
panied by the following comment. In a one-dimensional 
problem, we neglect those fields that arise, e.g., when the 
source of the field is a pulse of current in a real system. Due to 
the requirement for the circuit closedness, i.e., the presence of 
a section of the circuit, albeit far from a conducting flat layer 
of large dimensions, where the current should flow in the 
opposite direction, there is a radiation field source with a dif-
ferent sign. 

It is clear that the one-dimensional problem is a math-
ematical idealisation, applicable for calculations when, 
e.g., waves can be considered plane and the diffraction of 
radiation can be neglected. Such situations are encoun-
tered in practice, and one-dimensional problems are a good 
approximation for many problems in nonlinear optics and 
laser physics. An example of obtaining a unipolar pulse in 
a linear medium with a one-dimensional geometry of the 
experiment is given in [26]. It considers a thin flat layer of 
matter, which is excited by a single-cycle pulse with a plane 
wavefront propagating along the z axis. The medium is 
excited by a single-cycle pulse (Fig. 6a), consisting of two 
half-waves of opposite polarity. The first half-wave will 
accelerate the charges of the medium, and the second will 
stop their movement. If the charges stop and do not return 
to their original position, as shown in Fig. 5, then the 
velocity of the charge does not change sign. In the one-
dimensional case, this behavior of charges will provide a 
source of a unipolar pulse, i.e., the reflected field will be a 
subcycle pulse (Fig. 6b). In the direction of the transmitted 
radiation, this pulse will add up with the transmitted bipo-
lar one. Numerical calculations of reflected radiation per-
formed in [26] confirm this conclusion. 
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Figure 4.  Illustration of the applicability of one-dimensional and three-
dimensional approximations. In the x, y plane there is a layer of the 
medium M, in which the charges move parallel to the y axis.
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Figure 5.  Dependences of displacement x, velocity V and acceleration a 
of the charge on time t.
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This example is a clear illustration of the possibility of 
obtaining unipolar and subcycle pulses in a fairly simple and 
practically realisable situation. Note that the one-dimensional 
geometry considered in this section is valid near a layer that 
has finite dimensions. At a distance greater than the dimen-
sions of the layer, the one-dimensional approximation is 
invalid, and it is necessary to take into account the three-
dimensional geometry when calculating the field. This will 
lead to the disappearance of unipolarity, because the field will 
be proportional to the acceleration of charges, rather than 
their velocity (see Fig. 5). 

6. Basic properties of unipolar light pulses 
and the rule of conservation of the pulse 
electric area 

To derive the properties of unipolar light pulses, we use 
Maxwell’s equation for the electrodynamics of continuous 
media, which relates the curl of the electric field strength E 
with the change in magnetic flux density B [28]. Maxwell’s 
equations relate the strengths of electric and magnetic fields 
to the motion of charges. Let us pay attention to the equation 
relating the electric field strength E to the magnetic flux den-
sity B:

¶
¶rot c t

E B1
=- .	 (6)

Imagine a system of charges localised in space, onto which a 
sufficiently short radiation pulse is incident. If the system is 
dissipative, i.e., the motion of charges is accompanied by 
energy losses leading to deceleration and stopping, we assume 
that the pulse acts on a steady system that does not produce 
changing fields. Since the duration and energy of the pulse are 

finite, then after its interaction with charges, which should be 
accompanied by re-emission and dissipation of the pulse 
energy through nonradiation channels, the electric and mag-
netic fields in the system will become zero, and in the case of 
the existence of static fields, they will stop changing in time. 
This means that before the impact of the pulse and after the 
termination of its effects, the derivatives of the magnetic flux 
density will be equal. If we integrate both sides of Eqn (6) over 
the specified time interval, then on the left-hand side of the 
equation we obtain the electric area of the pulse, from which 
the derivatives with respect to spatial coordinates are taken 
according to the rules of the curl operation. Since we are inte-
grating the time derivative of the magnetic induction, the 
right-hand side will be zero. Thus, for each point in space in 
the selected area, 

rotSE = 0,	 (7)

where SE is the electric area of the pulse (1). Note that we 
consider dissipative media and that the radiation began to act 
on an isolated system, in which all the processes of energy dis-
sipation had ended before. In this case, the integration inter-
val ends after the end of all processes that have arisen in the 
system under the action of a radiation pulse. This means that 
the static fields on the right-hand side of the equation, if they 
exist, must be equal at the time moments of minus/plus infin-
ity (if this is not the case, then no energy dissipation has 
occurred in the system), which are indicated as the limits of 
integration. We emphasise that equation (7) is valid for any 
media in which radiation propagates – linear and nonlinear, 
isotropic and anisotropic, and with absorption and amplifica-
tion. 

Equation (7) turns into a rule for the conservation of the 
electric area in the plane wave approximation, in which the 
field strengths depend only on one Cartesian coordinate z (the 
longitudinal coordinate along the direction of preferential 
propagation of radiation). In this case,

Ed
d
z
S 0= .	 (8)

The one-dimensional version is the most illustrative, and 
it is easier to check it during simulation. At first glance, the 
result looks paradoxical. It would seem that amplification 
or absorption of radiation should lead to a change in the 
pulse area. However, as shown in direct numerical calcula-
tions of the propagation of unipolar pulses in amplifying 
and absorbing media [11], relation (8) is satisfied. In this 
case, the degree of unipolarity (2) is not preserved. When a 
unipolar pulse passes through an absorbing and amplifying 
medium, its value decreases. As noted in [11], intuitive 
expectations of a certain behavior of pulses in typical situa-
tions of their absorption or amplification, which are based 
on the known solutions for multicycle bipolar pulses, do not 
work in the case of unipolar pulses. For example, a decrease 
in the peak amplitude of a pulse in an absorbing medium is 
accompanied by a proportional increase in its duration, so 
that the area of the pulse is actually conserved. The area 
conservation rule has predictive power. Thus, a necessary 
condition for the emergence of unipolar pulses from pulses 
with a zero area in one-dimensional geometry is the appear-
ance of a counterpropagating wave, for example, when a 
pulse is reflected from a medium. This is illustrated by the 
above example of reflection of a single-cycle pulse from a 

Incident pulse

Reflected pulse

Transmitted pulse

a

b

Figure 6.  Reflection of a single-cycle pulse from a thin metal layer ac-
cording to [26]: (a) single-cycle pulse incident on the layer, and (b) trans-
mitted and reflected subcycle pulses. 
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thin layer (see Fig. 6). During the propagation of light in a 
medium in the direction of the initial bipolar pulse, its trans-
formation into a unipolar pulse is impossible. If such a result 
arises in the course of calculations, then there is an error in 
the theoretical model or calculations. Note also that the 
constancy of the electric area was violated in simplified one-
dimensional models, when their authors assumed the pulse 
to be sufficiently short and neglected relaxation. Such 
assumptions led them to the conclusion that the electric area 
of the pulse changes during the one-dimensional propaga-
tion of light in the medium (see, e.g., [29 – 31]), which contra-
dicts the conservation rule.

In fact, discussing relations (7) and (8), we deal with a new 
conservation law, first formulated in [10]. Undoubtedly, this 
law, which we call the rule, will play an important role in the 
physics of unipolar light, being a criterion for checking the 
correctness of calculation and experimental results. 

Naturally, these relations, like any conservation law, are 
insufficient to determine the electric area itself under the con-
ditions of a specific experiment. To do this, for the medium it 
is necessary to specify the type constitutive relations between 
the electric displacement D and magnetic flux density B, on 
the one hand, and the electric and magnetic field strengths E 
and H, on the other hand. Thus, an important mechanism for 
generating electromagnetic radiation is the accelerated 
motion of electric charges. In a vacuum, the electric displace-
ment coincides with the electric field strength, so that the rel-
evant Maxwell’s equation has the form

divE = 4pr,	 (9)

where r is the density of electric charges, which we will assume 
to be given, neglecting the effects of the emerging radiation on 
the distribution of the charge density. 

Following Ref. [32], we integrate Eqn (14) over time also 
in infinite limits: 

divSE = 4pQ,	 (10)

where

3
( ) ( , )dQ t tr rr=

3-
y

is the density of the charge flowing through the vicinity of the 
point r = (x, y, z) for the entire infinite time interval. We 
assume the finiteness of this value, which excludes, e.g., the 
presence of immobile electric charges. 

Equations (7) and (10) make it possible to determine the 
electric area SE from a given distribution of the charge density 
Q. Formally, they coincide with the basic equations of elec-
trostatics [17, 28] when replacing E ® SE and r ® Q.

7. Propagation of unipolar light, influence 
of diffraction, and optical waveguides 
for the transmission of unipolar light 

Consider the process of propagation of a unipolar pulse in a 
space free of matter. It can be often heard that during propa-
gation, a unipolar pulse should turn into a bipolar one. The 
statement that the propagation of a unipolar wave always 
leads to the loss of unipolarity and its transformation into a 
bipolar one is not entirely true and requires clarification. 

Therefore, the issue of changes in the degree of unipolarity 
and their causes should be considered separately. Suppose, 
for example, we have a certain source that produced a spheri-
cal unipolar wave (similar to the accelerated charge in the 
example mentioned above, see Fig. 2). Such a wave will not 
lose its unipolarity. Indeed, in free space, it travels at the 
speed of light, and there is no reason for any changes to 
appear. 

The situation will change if such a wave meets an obsta-
cle on its way. Then we should deal with the phenomenon of 
diffraction and a change in unipolarity associated with the 
fact that the interaction of the wave with the material 
medium causes the movement of charges in it. It should be 
emphasised here that the reaction of the charges of the 
medium will be the cause leading to a change in unipolarity. 
In optics, they usually deal with holes of various shapes in 
screens. The space – time Fourier transform allows consider-
ing any spatially limited wave after passing through a hole in 
the screen, regardless of whether it is bipolar or unipolar, as 
a superposition of monochromatic waves with different fre-
quencies and propagation directions. Waves traveling at an 
angle to the main direction of propagation have a delay rela-
tive to waves travelling in the main direction. This leads to 
the appearance of a component of the opposite sign in the 
initially unipolar fragment of the wave. This approach was 
demonstrated in [33]. 

Understanding just such a physical picture, leading to the 
disappearance of unipolarity, is important, since sometimes it 
is replaced by formal mathematical constructions, behind 
which the physics of the phenomenon is lost. In Refs [34, 35], 
the scalar diffraction problem is considered as applied to an 
extremely short unipolar pulse. The authors replace the real 
pulse with a finite duration and the time dependence of the 
field with a delta function. The approach using delta func-
tions is criticised in Ref. [36], since such a pulse has an infi-
nitely wide spectrum and infinitely high energy. Therefore, 
nothing can be said about the range of applicability of the 
results of this approach. In Ref. [36], the change in the tempo-
ral and spatial wave profiles due to diffraction was calculated 
for a plane wave with a unipolar time dependence of the 
intensity in the form of a Gaussian profile, which is incident 
on a screen with ‘soft edges’, which also form a Gaussian spa-
tial profile. The paper shows the main changes that should 
occur with unipolar pulses when they are diffracted by a hole 
in the screen. This is primarily the loss of unipolarity. The 
time dependence of the field strength in the far zone becomes 
proportional to the time derivative of the field strength in the 
near zone. 

The conclusion that the unipolar field becomes bipolar in 
the far zone can be made based on the qualitative reasoning 
presented at the beginning of the review. In the one-dimen-
sional problem, the field is proportional to the current or the 
first derivative of the medium polarisation, and in the three-
dimensional problem, it is proportional to the derivative of 
the current and the second derivative of the polarisation. 
Consequently, the far field will be proportional to the time 
derivative of the near field. Accurate calculations clarify the 
details of the dependence of the pulse on time and coordinates 
and confirm the fundamentally important conclusion about 
the loss of unipolarity. Worth mentioning are the results of 
Ref. [37], where the action of a focusing lens on a single-cycle 
pulse was considered. The calculation showed that, at the 
focus, the initially unipolar pulse becomes bipolar. Paper [38] 
should also be mentioned, where it was shown that in the case 
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of unipolar pulse diffraction, the field in the far zone is pro-
portional to the time derivative of the near-field distribution. 
Note that the approaches that find application in the analysis 
of temporal behaviour of single-cycle terahertz pulses during 
focusing and diffraction [39 – 41] can also be applied to unipo-
lar pulses. 

An inevitable spreading of a radiation packet in a vac-
uum and in any homogeneous linear medium as it propa-
gates, as well as the presence of obstacles in the path of 
unipolar pulses, lead to the possible loss of unipolarity. 
The traditional way of suppressing the spreading of pulses 
in space is the use of waveguides (optical fibres). However, 
conventional waveguides, both metallic and dielectric, 
have frequency dispersion, due to which the pulse duration 
gradually increases and the wave packet spreads in the lon-
gitudinal direction. In dielectric fibres, the waveguide dis-
persion is complemented by the material dispersion of the 
fibre material. 

The authors of Ref. [42] propose a possible way of solving 
the problem of transporting quasi-unipolar pulses by using 
hollow metal waveguides with a nonsimply connected cross 
section. In fact, this is an optical analogue of the well-known 
coaxial electric cable, which successfully transmits pulses of 
any polarity in the radiofrequency range. In such a wave-
guide, radiation propagates in the space between two concen-
tric metal surfaces, in which, unlike a standard coaxial electric 
cable, there is no dielectric. For ideal metals with infinitely 
high conductivity, the electromagnetic field of the principal 
wave (mode) is purely transverse and, regardless of the radia-
tion frequency, such waves propagate with the same phase 
velocity equal to the speed of light in vacuum [17]. Thus, fre-
quency dispersion is suppressed in coaxial waveguides, and 
the dynamics of the transverse field components, as in the 
plane-wave approximation, is described by a one-dimensional 
wave equation. Accordingly, in principle, it is possible to 
propagate pulses of arbitrary shape, including unipolar ones, 
over considerable distances. 

8. Diffraction radiation as a source of unipolar 
light 

Diffraction radiation arises when free charges move near the 
edges of metal screens. For the first time, a correct theoreti-
cal description of the phenomenon was obtained in Ref. [43]. 
The physical cause of radiation is the currents in the conduc-
tor, which are induced by a rapidly moving charge [18]. Note 
that by its nature it is close to the Smith – Purcell radiation 
[44], which arises when charges move above a periodic metal 
structure. Diffraction radiation is a source of information 
about the characteristics of charged particle beams. There 
are a sufficient number of studies devoted to calculating the 
spectral and energy characteristics of such radiation [45]. 
They depend on the energy and spatial characteristics of the 
beam; therefore, diffraction radiation can be observed in the 
optical range [46]. 

Diffraction radiation is interesting in that the pulses of the 
electromagnetic field arising when a charged particle passes 
near the edge of the screen can be unipolar. This occurs in the 
case of the so-called backward diffraction radiation (BDR) at 
a certain observation angle, namely, perpendicular to the 
edge of the screen and the direction of movement of charges 
(Fig. 7). 

The details of the experiment are described in Ref. [47], 
the authors of which report on the observation of unipolar 

subnanosecond pulses during the BDR process. Although 
the region of the radiation spectrum in Ref. [47] was far 
from the optical range, this work, in our opinion, is an 
important attempt to experimentally confirm the existence 
of such radiation. The transition to the region of high fre-
quencies in such an experiment is associated only with a 
change in the characteristics of the electron beam. Study of 
the generation of diffraction radiation poses interesting 
problems that are not typical for the optical range. For 
example, is it possible to amplify unipolar radiation and 
create a kind of a laser that generates unipolar pulses? If 
we talk about the possibility of realising stimulated radia-
tion in the case of diffraction radiation of charged parti-
cles, then a similar attempt was made in Ref. [48], in which, 
in the author’s opinion, it was possible to experimentally 
observe stimulated coherent diffraction radiation. 
However, the author does not report on attempts to obtain 
unipolar stimulated emission, although there are no funda-
mental obstacles to the realisation of this possibility. It 
should be recalled that stimulated emission arises not only 
in purely quantum systems with pronounced discrete 
energy levels, in which optical lasers are traditionally used. 
Stimulated emission can be observed in classical systems 
and have a classical interpretation [49]. The issue of stimu-
lated unipolar radiation is extremely interesting and 
requires study. 

9. Formation of unipolar solitons in nonlinear 
media 

Another example that can underlie the appearance of unipo-
lar pulses is soliton unipolar solutions of the equations of 
nonlinear optics in media with different types of nonlinearity. 
The existence of a unipolar soliton in a resonant two-level 
absorbing medium was shown for the first time in the theo-
retical paper [50]. The existence of such a solution can be 
associated with the phenomenon of self-induced transparency 
(SIT). In this phenomenon, a short laser pulse with the dura-
tion shorter than the times of longitudinal (T1) and transverse 
(T2) relaxation of the medium (for which the interaction of 
light with matter is coherent), can propagate in a medium 
without losses, like a 2p soliton [51]. Recall that the first theo-
retical and experimental studies of the SIT phenomenon were 
carried out for multi-cycle pulses using the approximations of 
slowly varying amplitudes and a rotating wave in the theo-
retical description [51 – 55], which corresponded to the experi-
mental capabilities of those years when only nano- and sub-
nanosecond pulses were available. 
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Unipolar BDR pulse

Figure 7.  Schematic of the experiment for observing a unipolar BDR 
pulse. The y-axis coincides with the direction of motion of the charge e–, 
the z axis coincides with the propagation direction of a unipolar BDR 
pulse, the x axis is perpendicular to the plane of the figure and, accord-
ingly, is parallel to the edge of the metal screen. 
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In Ref. [50], an analytical solution of the Maxwell – Bloch 
equations was obtained without using slow-amplitude and 
rotating-wave approximations in the form of a unipolar pulse 
with a hyperbolic secant shape. The very fact of the existence 
of soliton solutions of the equations of nonlinear optics in the 
form of unipolar pulses was established, but no schemes for 
obtaining these solitons were proposed in practice. Interest in 
such problems revived some time later, when the generation 
of femtosecond pulses containing several oscillation cycles 
was practically realised, and the theoretical description 
required the solution of the exact Maxwell – Bloch equations 
without the approximation of slow envelopes. 

Solutions in the form of unipolar pulses in the one-
dimensional geometry of light propagation were obtained in 
subsequent works, where the problem of the propagation of 
a short pulse was solved using the Maxwell – Bloch equa-
tions. It was shown [29, 30] that a unipolar pulse can propa-
gate in a two-level medium with a duration that is both lon-
ger than the period of the resonant transition in a two-level 
system, and much shorter. In the case of an absorbing 
medium for a very short pulse, the authors again come to a 
unipolar 2p pulse of self-induced transparency. In an ampli-
fying medium, the pulse becomes bipolar, and as it propa-
gates, the spectrum shifts towards higher frequencies. In 
[56], the propagation of an initially bipolar pulse containing 
several oscillation cycles in a Raman-active medium was 
considered. It was shown by a numerical solution that dur-
ing propagation, the pulse turns into a unipolar one. The 
next theoretical work [57] considers the propagation of a 
high-power femtosecond pulse in a metal, where the field 
acts on conduction electrons. The authors analytically show 
that the existence of unipolar solitons similar to 2p SIT 
pulses is possible. 

Unipolar solitons were found in a multilevel quantum sys-
tem [58]. Also, unipolar solitons were found in a medium con-
sisting of nonlinear oscillators with quadratic and cubic non-
linearities [59]. Unipolar pulses, in the opinion of the authors 
of Ref. [60], can be formed when a very short laser pulse prop-
agates in an atomic gas, when high-intensity radiation actively 
ionises atoms. In the methodological note [31], the propaga-
tion of short pulses in a medium consisting of two-level 
absorbing and amplifying particles is considered, and the 
existence of unipolar pulses is also shown. It should be noted 
that in a number of the above-mentioned works, in the course 
of analytical transformations of the original Maxwell – Bloch 
equations, assumptions were made and terms taking into 
account the reaction of the medium to the action of the elec-
tric field of a light pulse were discarded, after which it was 
possible to obtain an equation of the sine-Gordon type for the 
electric area of the pulse. Then the conclusion followed about 
the change in the electric area of the pulse during propagation 
in the medium. As noted in Ref. [11], this conclusion contra-
dicts the conservation rule for the electric area of a pulse in a 
one-dimensional situation. 

Numerical calculations free of simplification of the orig-
inal equations are more correct. In [61], a half-cycle pulse 
was obtained by numerical simulation of the coherent prop-
agation of a multi-cycle pulse in a two-level resonant 
medium. The system of Maxwell – Bloch equations was 
solved numerically without the approximations of slowly 
varying amplitudes and rotating wave. It was shown that 
during propagation, the initial pulse is split into three pulses. 
The first one is bipolar, consisting of several cycles, the sec-
ond one is unipolar and the third one is unipolar, but with a 

different sign. The last two pulses are unipolar solitons. 
Since the pulse reflected from the medium remains bipolar, 
the pulses propagating in the medium should all together 
have zero electric area. 

Similar schemes for obtaining a half-cycle pulse in the 
form of solitons during the coherent propagation of an ini-
tially multi-cycle bipolar pulse in a two-level medium have 
been considered by other authors. For example, in Ref. [62] 
this possibility was studied theoretically in the case when the 
initially bipolar pulse propagates in an asymmetric two-level 
medium with a constant dipole moment. The revealed mecha-
nism for the formation of a subcycle soliton consists in non-
linear self-shaping and frequency conversion during reso-
nance coherent interaction of a pulse with a medium. Later, 
the authors demonstrated the possibility of obtaining a sub-
cycle soliton in an inversion symmetric medium [63] using a 
similar mechanism. In the papers mentioned above, the study 
of the formation of a half-cycle pulse due to the SIT phenom-
enon was carried out mainly for a two-level model of a reso-
nant medium. Recently, the possibility of the appearance of 
unipolar pulses in the form of solitons was demonstrated the-
oretically [64] in a medium of four-level atoms. Although the 
above schemes are difficult to implement in practice, soliton 
mechanisms for producing unipolar pulses may turn out to be 
attractive for the practical generation of unipolar pulses (see 
also [65 – 68]). 

The next group of theoretical studies, worth mentioning 
in this review, is devoted to the possibility of dissipative soli-
tons in the form of unipolar pulses. Many laser systems 
include an amplifier and an absorber, which allows the gen-
eration of short radiation pulses through mode locking. This 
is a particular situation of a more general case, when energy is 
supplied to the system to compensate for the losses existing in 
it. For example, in the case of SIT solitons in a real experi-
ment, damping will always occur, which will inevitably lead 
to their disappearance. If the damping is compensated for by 
amplification, then such a dissipative soliton can exist indefi-
nitely. 

The possibility of obtaining a half-cycle pulse in the form 
of a dissipative SIT soliton was demonstrated in Refs [69 – 71]. 
In this scheme, it was proposed to use a mixture of absorbing 
and amplifying centres embedded in the matrix and having 
approximately a twofold difference in the transition dipole 
moments of absorbing and amplifying particles. The dynam-
ics of the formation of extremely short self-induced transpar-
ency solitons in such a system is described in sufficient detail 
in monograph [72]. During propagation, a femtosecond pulse 
is a p-pulse for amplifying centres that removes the inversion 
from the medium and transfers the population to an unex-
cited state, which leads to a decrease in the pulse duration and 
an increase in amplitude. For absorbing centres, however, 
such a pulse transforms into a 2p SIT soliton. An example of 
numerical simulation of the described situation is presented in 
Fig. 8. 

In this example, the resulting extremely short SIT solitons 
are realised in a system where amplifying and absorbing cen-
tres are mixed. When such a system ‘amplifier + coherent 
absorber’ is placed into a cavity and the amplifier compen-
sates not only the losses in the absorber, but also the cavity 
losses, the generation of a single soliton can turn into the gen-
eration of a train of extremely short pulses. In this case, the 
so-called coherent mode locking (CML) is realised. Since in 
the CML regime the gain and absorption band widths do not 
limit the pulse duration [73], it was proposed in theoretical 
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papers [74, 75] to use this regime to generate extremely short 
pulses in ring-cavity lasers. Recently, Ref. [76] theoretically 
demonstrated the generation of extremely short pulses due to 
the CML regime in a laser with an ultra-short linear cavity. 
The existing results indicate the fundamental possibility of 
obtaining subcycle pulses in lasers using the CML regime. It 
was noted that the CML regime itself was obtained experi-
mentally quite recently and it was shown that the duration of 
generated pulses decreases with an increase in their intensity 
[77 – 79].

In this part of the review, we considered, in our opinion, 
the main theoretical works using the one-dimensional approx-
imation in the framework of the Maxwell – Bloch equations. 
Once again, we note that the results of some papers do not 
agree with the rule of conservation of electric area. These 
issues were also raised in an earlier brief review [12]. 

10. Obtaining attosecond and terahertz unipolar 
pulses 

Let us now proceed to pulses of attosecond duration and 
pulses in the terahertz region of the spectrum. Although they 
differ in duration by four to six orders of magnitude, they are 
related by the use of femtosecond IR lasers, which initiate 
processes leading to the appearance of radiation in these 
ranges, the physics of these processes being different. 

The duration of attosecond pulses (1 as = 10–18 s) is com-
parable to the characteristic periods of motion of electrons 
in the electron shells of atoms and molecules, and therefore 
they are successfully used to study and control the motion of 
electrons on atomic time scales [8, 80, 81]. To date, attosec-
ond pulses have been experimentally demonstrated in the 
extreme ultraviolet and X-ray frequency ranges [6, 7]. 
Attosecond pulses are obtained by generating high-order 
optical harmonics when atoms are exposed to an intense IR 
pulse from a femtosecond laser. According to a three-step 
model of the formation of high harmonics, during the action 
of a femtosecond pulse, an atom is ionised, then a free elec-
tron is accelerated by a laser field and, with a change in the 

sign of the field strength during a cycle of oscillations, 
recombination with the parent ion occurs [5]. In such a pro-
cess, the motion of an electron is confined in space, and so 
the radiation pulses contain a few oscillation cycles and are 
bipolar. 

Attosecond pulses can also be obtained from radiation 
with an ultra-wide (from IR to UV) spectrum (coherent 
supercontinuum) as a result of dividing the radiation into 
portions followed by summation of different portions of the 
spectrum [82]. Here, the summation of bipolar fields is also 
unable to produce unipolarity, although it will make it possi-
ble to obtain pulses of subcycle shape. This applies to any 
linear wave synthesis method. 

Half-cycle pulses with a duration of ~380 as and an 
amplitude of ~107 V cm–1 in the optical range were obtained 
in [83]. In this work, the authors successfully applied these 
pulses to study the dynamics of bound electrons in a krypton 
atom, demonstrating the inertia of bound electrons. It was 
also possible to show an increase in the efficiency of the action 
of a half-cycle quasi-unipolar pulse on atoms in comparison 
with a single-cycle bipolar pulse. In [84], a method was pro-
posed for obtaining a quasi-unipolar half-cycle attosecond 
pulse in the visible and ultraviolet spectral regions (duration 
~100 as) with a high peak amplitude (exceeding 1012 V m–1) 
in a gas, where high-power femtosecond laser pulses form a 
thin layer of relativistic electrons, which then pass through 
the slanted target. A similar method for the formation of a 
high-intensity single half-cycle attosecond pulse upon irradia-
tion of a thin foil with a powerful femtosecond pulse is 
described in [85]. In this paper, single half-cycle pulses with a 
duration of 10 as and an amplitude up to 1013 V  m–1 are 
reported. 

In the terahertz region, where the period of electromag-
netic waves and, accordingly, the duration of extremely 
short pulses lies in the picosecond range, from the point of 
view of obtaining unipolar pulses, methods using optical 
rectification in nonlinear crystals are of interest. The very 
phenomenon of optical rectification was demonstrated at 
the beginning of the laser era [86]. On metal plates applied to 
a crystal in which the second harmonic of a ruby laser was 
generated, the appearance of a unipolar voltage pulse was 
recorded, which coincided in duration with the laser pulse. 
Several years later, after the implementation of the reduc-
tion of the pulse duration due to mode locking, there were 
proposals to use the effect of optical rectification to obtain 
radiation pulses in the microwave range [87]. Naturally, 
these field pulses were unipolar. After the appearance of 
femtosecond laser pulses, the method of optical rectification 
was used in modern schemes for generating extremely short 
terahertz radiation pulses, described in a large number of 
publications, e.g., in [88, 89]. 

It should be noted that the question of whether short 
pulses are unipolar was not raised in studies on terahertz 
radiation. The fact is that when detecting them, focusing is 
used, and this should lead to the loss of unipolarity. 
Focusing is also often used to increase the intensity, and in 
this case, the observed pulses are already bipolar. 
Therefore, we can only give examples of studies where uni-
polar half-cycle pulses were obtained in the terahertz fre-
quency range. In addition to optical rectification, a com-
mon mechanism is nonlinear photoionisation of gases or 
liquids by the field of a femtosecond laser pulse. Subcycle 
terahertz pulses can be obtained by generating a unidirec-
tional current pulse in the process of photoionisation, as 
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Figure 8.  Formation of unipolar solitons from a multi-cycle femtosec-
ond pulse in a medium with resonance gain and absorption nonlineari-
ty. Instantaneous profiles of the field strength near the boundary of the 
medium (a) when a pulse enters the medium and (b) during its further 
propagation in the medium with the formation of a single-cycle pulse 
splitting into two unipolar pulses of different polarity [71].
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well as by the action of femtosecond pulses on semiconduc-
tor structures [90 – 95]. Highly efficient generation of half-
cycle terahertz pulses due to nonlinear photoionisation 
was recently achieved in water and other liquids [96]. 
Methods have been proposed for generating quasi-unipo-
lar terahertz pulses in the form of precursors propagating 
ahead of high-power laser pump pulses in electrooptical 
crystals [97 – 99]. The shape of such pulses is close to rect-
angular. Noteworthy is the recent theoretical work in 
which the possibility of obtaining a unipolar pulse due to 
the directed motion of electrons under the action of a fem-
tosecond pulse on a silicon plate is discussed [100]. 

Another approach to obtaining unipolar pulses of a con-
trolled shape suggests using low-frequency oscillations in 
Raman-active media. The idea is to use a pair of femtosecond 
pulses. The first pulse excites a low-frequency vibration, and 
the second, arriving after half a period, stops the movement. 
Because of polarisation, the time dependence has the form of 
half a cycle and can be a source of single-cycle pulses in one-
dimensional geometry. At the same time, it is proposed to use 
excitation travelling through a medium at a speed different 
from the speed of light, for example, an oblique incidence of a 
plane wavefront on a layer of matter. The simultaneous use of 
these two techniques makes it possible to affect the shape of 
the resulting radiation and ensure unipolarity [101 – 108]. A 
survey of these works is given in Ref. [12]. 

11. Effect of quasi-unipolar pulses on a classical 
charged particle 

The problem of particle acceleration by laser pulses is becom-
ing increasingly important in connection with the progress of 
laser physics and technology [109]. For example, an approach 
with intermediate conversion of targets into laser plasma and 
subsequent acceleration of charges by a wake wave is being 
intensively studied [110 – 112]. However, the inclusion of an 
intermediate conversion reduces the efficiency of laser accel-
eration of charges. In a vacuum, direct acceleration of charged 
particles by conventional laser pulses is ineffective, since the 
field strength changes direction many times during the pulse 
duration, thereby acting on the charge in opposite directions. 
An approach is known with the acceleration of particles by 
tightly focused extremely short laser pulses with radial polari-
sation [113]. In this approach, acceleration is achieved due to 
the longitudinal (along the beam axis) component of the field, 
which, as a rule, is much smaller than the transverse compo-
nents. 

At the same time, progress in obtaining strong laser 
fields using extremely short and even subcycle pulses makes 
a different approach to the problem of laser acceleration of 
charged particles possible in principle. We mean the use of 
quasi-unipolar laser pulses with a noticeable electric area for 
these purposes. It was shown [114, 115] that the acceleration 
of particles to high energies is completely determined by the 
electric area of the pulse. Analytical expressions are pre-
sented for the energy and momentum of a charged particle 
accelerated in vacuum by linearly polarised radiation pulses 
(plane-wave approximation). The results presented are valid 
for a classical particle in neglect of quantum effects and the 
Lorentz force causing radiative deceleration of a particle 
[28]. The latter is justified outside the narrow region of ultra-
relativistic motion; otherwise, acceleration of charged par-
ticles by a radiation pulse with zero electric area is possible 
[116]. While maintaining these limitations, the results 

obtained confirm the possibility of direct acceleration of a 
single charged particle by pulses of electromagnetic radia-
tion using pulses of unfocused (plane-wave) radiation. A 
necessary condition is a significant electric area of the radia-
tion pulse, which is the only quantity that determines the 
kinetic energy and mechanical momentum of the accelerated 
particle. 

12. Effect of unipolar light on the simplest 
quantum systems 

Let us consider the effect of an extremely short pulse on a 
quantum harmonic oscillator, the model of which is used, for 
example, to describe molecular vibrations. An exact solution 
of the Schrödinger equation is known for a quantum har-
monic oscillator with frequency w0, mass m, and charge q, 
driven by an electric field with an arbitrary time dependence 
[117]. If the pulse duration is less than the period of eigenos-
cillations of the oscillator, then in the approximation of sud-
den perturbations, the population of the nth energy level of 
the oscillator wn also depends on the electric area of the pulse 
SE [118]:
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The decisive role of the electric area of the pulse in the effi-
ciency of the effect of subcycle pulses on quantum objects is 
again visible. Similarly, for a hydrogen atom, the probability 
of remaining in the ground state is determined by the electric 
area of a short pulse [119]: 
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For a multilevel quantum system other than a harmonic 
oscillator, it is possible to analyse the effect of a short unipo-
lar pulse using an approximate solution of the Schrödinger 
equation based on perturbation theory, when the incident 
field can be considered weak. The probability of the system 
transition from the ground state of the discrete spectrum to 
the kth state can be calculated in the first order of the pertur-
bation theory [120]: 

1 ( )exp i dw V t tk k k0 2 0 0
'

w=
2y .	 (13)

Here V0k = – d0kE(t) is the matrix element of the perturbation 
operator; d0k is the transition dipole moment; and w0k is the 
frequency of the resonant transition. 

If the pulse duration is less than the period of the consid-
ered transition T0k = 2p /w0k, then the oscillating exponent in 
the integrand of Eqn (13) does not have time to change notice-
ably during the pulse action, and the pulse can be approxi-
mately considered delta-shaped. In this approximation, for 
the transition probability we have [121]

2

Ew d Sk
k

0 2
2

'
= 0 .	 (14)

It can be seen from Eqn (14) that the transition probability 
w0k depends exclusively on the electric area of the pulse, 
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increases in proportion to its square, and vanishes if the 
pulse has a zero area. This circumstance once again shows 
the specificity of the effect on a quantum system of unipolar 
pulses in comparison with bipolar single-cycle ones. In the 
case of a single pulse, the action is nonresonance and changes 
the populations of all levels. However, if the system is 
exposed to a pair of short unipolar pulses (for simplicity, we 
consider a pair of delta-shaped pulses) having electric areas 
SE1 and SE2, the time delay between which is D, then for the 
transition probability from formula (13) it is easy to obtain 
[121, 122]

2 )cosw d S Sk
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E E E E k0 2
0
2
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2

2
2

1 2 0
'

w D= + +(S S .	 (15)

It can be seen that in the case of a pair of subcycle pulses in 
the first order of perturbation theory, the result is deter-
mined by both the electric area of the pulses and the delay 
between them. The formula implies the possibility of con-
trolling the populations of the system energy levels by 
varying the delay between incident pulses [121, 122]. This 
allows selective control of the medium state, despite the 
nonresonant nature of the interaction of each of the pulses 
with it.

Note that in this case it becomes possible to record infor-
mation about an object holographically using pulses of sub-
cycle unipolar radiation [123], when a resonant medium 
with a long phase memory time T2 is used as the recording 
medium. An interference pattern of a subcycle or unipolar 
pulse reflected from an object with a medium polarisation 
wave created by the same short pulse is recorded in the 
medium. Coherence is provided by a polarisation wave, 
which, when interacting with radiation reflected from an 
object, induces a population lattice in the medium according 
to (15), repeating the interference pattern in a similar holo-
graphic process with a monochromatic source with a wave-
length equal to the wavelength of the resonant transition in 
the medium. 

The important role of the electric area in changing the 
direction of the spin of an electron interacting with a quasi-
unipolar radiation pulse was also revealed in Ref. [124]. 

13. Detecting the unipolar nature of radiation 
and measuring the pulse electric area

For operations with unipolar light, it is required to have 
detectors that allow not only to determine the fact of unipo-
larity, but also to measure the electric area of the pulses. 
Moreover, there is no doubt about the applicability of con-
ventional photodetector systems for recording the energy 
characteristics of such radiation. However, they most likely 
will not allow solving the indicated problem. Note that, until 
now, the task of developing systems for recording the electric 
area of a pulse and creating the corresponding devices has not 
been posed. 

The problem of recording the electric area of radiation 
arises in the optical and shorter wavelength ranges. For the 
RF range, it is not difficult to register a unipolar pulse using 
a broadband oscilloscope and an appropriate coaxial cable 
with a capacitive sensor at the input. In the shorter-wave-
length range of electromagnetic radiation (as, e.g., in the 
above experiment on recording the unipolar nature of dif-
fraction radiation of relativistic charged particles [47], where 

the pulse duration, according to the authors’ estimates, was 
several tens of picoseconds), the experimenters used a bal-
anced scheme that included two strip lines with two micro-
wave diodes. With a nonzero unipolarity of the microwave 
pulse, the signal in one channel will be larger. A similar 
scheme is used to control the position of a charged particle 
beam [125]. 

In the terahertz range, free-space electrooptical sampling 
schemes [126] are widely used, which, in principle, make it 
possible to register the unipolar nature of terahertz subcycle 
pulses. However, when terahertz radiation is focused into a 
nonlinear crystal, the unipolarity of the initial radiation can 
be lost. 

Such systems are not applicable in the optical range of 
pulse durations. An optical pulse cannot produce surface 
currents in the strip line; the abovementioned scheme for 
detecting terahertz radiation is also inoperative. At first 
glance, one can use the fact that unipolar pulses can induce 
a current of free carriers, such as electrons, in a vacuum. 
However, the motion of free electrons is subject to uncon-
trolled external electric fields, and the measurement system 
is unlikely to be immune to interference without proper 
shielding. 

Taking into account the results of works on evaluating the 
action of unipolar pulses on the simplest quantum systems 
(which were discussed in Section 12), quantum systems that 
do not experience changes under the action of bipolar pulses 
with a zero electric area, but change their state in the presence 
of a pulse of a nonzero electric area can be promising. For this 
aim, as shown in Section 12, the period of eigenoscillations 
for the transition between energy levels in a quantum system 
must exceed the pulse duration. A change in state can be 
detected by a change in the electrical or optical properties of a 
substance, its glow, which is the main sensitive element of the 
‘detector of unipolarity and electric area’. For a detector to be 
sensitive to the direction of the field, it must have anisotropy 
of optical properties. 

It is also worth noting that a unipolar subcycle pulse with 
a nonzero area, after its passage, changes the magnitude of 
the vector potential of the space. Hence, unipolar light could 
be used to observe the Aharonov – Bohm effect and thus reg-
ister the electric area of the pulse. In Ref. [127], the scheme of 
an electron-optical version of the experiment for observing 
this effect is considered. In this experiment, the source of the 
vector potential in one arm of the electronic interferometer, 
which exists in the region of a zero electric field strength, is a 
subcycle unipolar light pulse with a nonzero electric area. At 
first glance, using such a layout it would be possible to deter-
mine the electric area of the pulse. However, in view of Eqn 
(7), the vector field of the pulse electric area is potential; 
therefore, the Aharonov – Bohm effect does not manifest itself 
in the discussed scheme [127]. 

14. Conclusions 

The issue of unipolar light until recently arose in purely aca-
demic discussions. The direct task of producing sources of 
unipolar radiation, which may have practical sense, has not 
yet been posed. There was no mention of applications where 
unipolar light would be needed. Recently, in connection with 
the extensive development of methods for generating 
extremely short pulses, the problem of obtaining unipolar 
light in the optical and adjacent ranges begins to attract more 
and more attention. 
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In our opinion, the results presented above convincingly 
indicate that the existence of unipolar electromagnetic radia-
tion does not contradict the existing fundamental concepts, 
Maxwell’s equations and the electromagnetic theory of radia-
tion based on them. The opinion about the non-physicality 
and impossibility of the existence of such radiation is 
unfounded.

Electromagnetic radiation used in scientific and practical 
applications extends from radio to X-ray and gamma ranges 
and is of a common nature, so that the problem of obtaining 
unipolar radiation can be raised for all these ranges. Sources 
of unipolar radiation, of course, can be systems using the 
motion of free charges. In systems of bound charges, quasi-
unipolar subcycle radiation can be obtained, mainly in highly 
nonlinear media, under the action of short intense electro-
magnetic pulses. 

Analysis of the situation of using unipolar light revealed a 
number of problems. It is not completely clear how to most 
effectively transport such radiation, transmit it over a dis-
tance and focus without a significant decrease in the degree of 
unipolarity. The coaxial fibres mentioned in this review are 
theoretically capable of transporting and maintaining unipo-
larity; however, the ways of practical implementation of such 
devices are not clear. The situation is better with the under-
standing of the features of the effect of unipolar radiation on 
quantum systems. Unipolar radiation, which is no longer 
resonant to any of the transitions between energy levels in a 
quantum system, can nevertheless change the populations of 
its states selectively and extremely rapidly. 

There is also a problem of monitoring unipolarity. For 
these purposes, special detectors are needed that respond to 
the nonzero electric area of radiation pulses, which are not 
available today. The creation of unipolar radiation sources 
should be accompanied by the development of appropriate 
registration systems. The absence of ‘detectors of unipolarity’ 
was, in our opinion, one of the reasons for the lack of interest 
in experiments with unipolar radiation. 

Finally, we would like to draw attention to the rule of con-
servation of the pulse electric area. In fact, this rule is a 
recently discovered conservation law. When solving problems 
associated with unipolar radiation and analysing its propaga-
tion, it will play an important role. This rule is still little 
known to researchers. There are practically no publications 
providing examples of the implementation of this conserva-
tion law.

Acknowledgements.  The authors are grateful to I. Babushkin 
for the discussion of the issues considered in the review. 

References
  1.	 DeMaria A.J., Stetser D.A., Heynau H. Appl. Phys. Lett., 8, 174 

(1966).
  2.	 https://hightech.fm/2018/10/09/nobel-4.
  3.	 Diels J.C., Rudolph W. Ultrashort Laser Pulse Phenomena 

(Elsevier, 2006).
  4.	 Keller U. Appl. Phys. B, 100, 15 (2010).
  5.	 Corkum P.Á., Krausz F. Nature Phys., 3, 381 (2007).
  6.	 Krausz F., Ivanov M. Rev. Mod. Phys., 81, 163 (2009).
  7.	 Calegari F., Sansone G., Stagira S., Vozzi C., Nisoli M. J. Phys. B: 

At. Mol. Opt. Phys., 49, 062001 (2016).
  8.	 Ramasesha K., Leone S.R., Neumark D.M. Ann. Rev. Phys. 

Chem., 67, 41 (2016). 
  9.	 https://eli-laser.eu/.

10.	 Rosanov N.N. Opt. Spectrosc., 107, 721 (2009) [ Opt. Spektrosk., 
107, 761 (2009)]. 

11.	 Rosanov N.N., Arkhipov R.M., Arkhipov M.V. Phys. Usp., 61, 
1227 (2018) [ Usp. Fiz. Nauk, 188, 1347 (2018)]. 

12.	 Arkhipov R.M., Pakhomov A.V., Arkhipov M.V., Babushkin I., 
Tolmachev Yu.A., Rosanov N.N. JETP Lett., 105, 408 (2017) 
[ Pis’ma Zh. Eksp. Teor. Fiz., 105, 388 (2017)]. 

13.	 Arkhipov R.M., Pakhomov A.V., Arkhipov M.V., Babushkin I., 
Tolmachev Yu.A., Rosanov N.N. Laser Phys., 27, 053001 (2017).

14.	 Rosanov N.N., Arkhipov M.V., Arkhipov R.M., Veretenov N.A., 
Pakhomov A.V., Fedorov S.V. Opt. Spectrosc., 127, 77 (2019) 
[ Opt. Spektrosk., 127, 82 (2019)]. 

15.	 Arkhipov R.M., Arkhipov M.V., Shimko A.A., Pakhomov A.V., 
Rosanov N.N. JETP Lett., 110, 15 (2019) [ Pis’ma Zh. Eksp. Teor. 
Fiz., 110, 9 (2019)]. 

16.	 Akhmanov S.A., Nikitin S.Yu. Physical Optics (Oxford: Oxford 
University Press, 1997; Moscow: Nauka, 2003). 

17.	 Landau L.D., Lifshitz E.M. The Classical Theory of Fields 
(Oxford: Butterworth-Heinemann, 1975; Moscow: Fizmatlit, 
2001). 

18.	 Bolotovskii B.M., Voskresenskii G.V. Sov. Phys. Usp., 9, 73 
(1966) [ Usp. Fiz. Nauk, 88, 209 (1966)]. 

19.	 Bessonov E.G. Sov. Phys. J. Exp. Theor. Phys., 53, 433 (1981) 
[ Zh. Eksp. Teor. Fiz., 80, 852 (1981)]. 

20.	 Bessonov E.G. Nucl. Instr. Meth. A., 308, 135 (1991).
21.	 Bessonov E.G. Sov. J. Quantum Electron., 22, 27 (1992) 

[ Kvantovaya Elektron., 19, 35 (1992)]. 
22.	 Kim K.J. et al. arXiv preprint physics/0003064, 2000.
23.	 Born M., Wolf E. Principles of Optics (Oxford: Pergamon, 1980; 

Moscow: Nauka, 1973). 
24.	 Jackson J. Classical Electrodynamics (New York, London: John 

Wiley & Sons, 1962; Moscow: Mir, 1965). 
25.	 Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy 

fiziki (Equations of Mathematical Physics) (Moscow: Moscow 
State University Publishing House, 1999). 

26.	 Arkhipov M.V., Arkhipov R.M., Pakhomov A.V., Babushkin I.V., 
Demircan A., Morgner U., Rosanov N.N. Opt. Lett., 42, 2189 
(2017).

27.	 Pakhomov A.V., Arkhipov R.M., Arkhipov M.V., Babushkin I., 
Rosanov N.N. Opt. Spectrosc., 123, 913 (2017) [ Opt. Spektrosk., 
123, 901 (2017)]. 

28.	 Landau L.D., Lifshits E.M. Electrodynamics of Continuous Media 
(Oxford: Pergamon Press, 1960; Moscow: Nauka, 1982). 

29.	 Belenov E.M., Nazarkin A.V. JETP Lett., 51, 288 (1990) [ Pis’ma 
Zh. Eksp. Teor. Fiz., 51, 252 (1990)]. 

30.	 Belenov E.M., Nazarkin A.V., Ushchapovsky V.A. Sov. Phys. J. 
Exp. Theor. Phys., 73, 422 (1991) [ Zh. Eksp. Teor. Fiz., 100, 762 
(1991)]. 

31.	 Sazonov S.V. Phys. Usp., 44, 631 (2001) [ Usp. Fiz. Nauk, 171, 663 
(2001)]. 

32.	 Rosanov N.N. Opt. Spectrosc., 128, 92 (2020) [ Opt. Spektrosk., 
128, 95 (2020)]. 

33.	 Belenov E.M., Nazarkin A.V. JETP Lett., 53, 200 (1991) [ Pis’ma 
Zh. Eksp. Teor. Fiz., 53, 18 (1991)]. 

34.	 Lebedev M.K., Tolmachev Yu.A. Opt. Spectrosc., 90, 398 (2001) 
[ Opt. Spektrosk., 90, 457 (2001)]. 

35.	 Tolmachev Yu.A. J. Opt. Technol., 72, 1 (2005).
36.	 Rosanov N.N. Opt. Spectrosc., 95, 299 (2003) [ Opt. Spektrosk., 

95, 318 (2003)]. 
37.	 You D., Bucksbaum P.H. J. Opt. Soc. Am. B, 14, 1651 (1997).
38.	 Kaplan A.E. J. Opt. Soc. Am. B, 15, 951 (1998).
39.	 Feng S., Winful H.G., Hellwarth R.W. Opt. Lett., 23, 385 (1998). 
40.	 Ruffin A.B., Rudd J.V., Whitaker J.F., Feng S., Winful H.G. 

Phys. Rev. Lett., 83, 3410 (1999). 
41.	 Gürtler A., Winnewisser C., Helm H., Jepsen P.U. J. Opt. Soc. 

Am. A, 17, 74 (2000).
42.	 Rosanov N.N. Opt. Spectrosc., 127, 1050 (2019) [ Opt. Spektrosk., 

127, 960 (2019)]. 



	 R.M. Arkhipov, M.V. Arkhipov, N.N. Rosanov814

43.	 Kazantsev A.P., Surdutovich G.I. Dokl. Akad. Nauk SSSR, 147, 
74 (1962). 

44.	 Smith S.J., Purcell Z.M. Phys. Rev., 92, 1069 (1953).
45.	 Potylitsyn A.P., Ryazanov M.I., Strikhanov M.N.,  

Tishchenko A.A. Diffraction Radiation from Relativistic Particles 
(Heidelberg: Springer, 2010) Vol. 239.

46.	 Naumenko G.A. Doct. Diss. (Tomsk: Tomsk Polytechnic 
University, 2007). 

47.	 Naumenko G., Shevelev M. J. Instrument., 13, C05001 (2018).
48.	 Verigin D.A. Cand. Sci. Diss. (Tomsk: Tomsk Polytechnic 

University, 2017). 
49.	 Gaponov A.V., Petelin M.I., Yulpatov V.K. Izv. Vyssh. Uchebn. 

Zaved., Ser. Radiofiz., 10, 1414 (1967). 
50.	 Bullough R.K., Ahmad F. Phys. Rev. Lett., 27, 330 (1971).
51.	 McCall S.L., Нahn E.L. Phys. Rev., 183, 457 (1969).
52.	 Allen L., Eberly J.H. Optical Resonance and Two Level Atoms 

(New York: Wiley Interscience, 1975; Moscow: Mir, 1978). 
53.	 Kryukov P.G., Letokhov V.S. Sov. Phys. Usp., 12, 641 (1970) 

[ Usp. Fiz. Nauk, 99, 169 (1969)]. 
54.	 Poluektov I.A., Popov Yu.M., Roitberg V.S. Sov. Phys. Usp., 18, 

673 (1975) [ Usp. Fiz. Nauk, 114, 97 (1974)]. 
55.	 Maimistov A.I., Basharov A.M., Elyutin S.O., Sklyarov Y.M. 

Phys. Rep., 191, 1 (1990).
56.	 Belenov E.M., Nazarkin A.V., Prokopovich I.P. JETP Lett., 55, 

218 (1992) [ Pis’ma Zh. Eksp. Teor. Fiz., 55, 223 (1992)]. 
57.	 Belenov E.M., Grechko L.G., Kanavin A.P. JETP Lett., 58, 333 

(1993) [ Pis’ma Zh. Eksp. Teor. Fiz., 58, 331 (1993)]. 
58.	 Parkhomenko A.Yu., Sazonov S.V. J. Exp. Theor. Phys., 87, 864 

(1998) [ Zh. Eksp. Teor. Fiz., 114, 1595 (1998)]. 
59.	 Kazantseva E.V., Maimistov A.I., Malomed B.A. Opt. Commun., 

188, 195 (2001).
60.	 Kaplan A.E., Shkolnikov P.L. Phys. Rev. Lett., 75, 2316 (1995).
61.	 Kalosha V.P., Herrmann J. Phys. Rev. Lett., 83, 544 (1999).
62.	 Song X. et al. Phys. Rev. A, 82, 053821 (2010).
63.	 Song X., Hao Z., Yan M., Wu M., Yang W. Laser Phys. Lett., 12, 

105003 (2015).
64.	 Sazonov S.V., Ustinov N.V. Phys. Rev. A, 98, 063803 (2018).
65.	 Sazonov S.V., Ustinov N.V. JETP Lett., 83, 483 (2011) [ Pis’ma 

Zh. Eksp. Teor. Fiz., 83, 573 (2006)]. 
66.	 Sazonov S.V., Sobolevskiy A.F. J. Exp. Theor. Phys., 96, 1019 

(2003) [ Zh. Eksp. Teor. Fiz., 123, 1160 (2003)]. 
67.	 Sazonov S.V. Roman. Rep. Phys., 70, 401 (2018).
68.	 Leblond H., Triki H., Mihalache D. Phys. Rev. A, 85, 053826 

(2012).
69.	 Vysotina N.V., Rosanov N.N., Semenov V.E. JETP Lett., 83, 279 

(2006) [ Pis’ma Zh. Eksp. Teor. Fiz., 83, 337 (2006)]. 
70.	 Rosanov N.N., Semenov V.E., Vysotina N.V. Quantum Electron., 

38, 137 (2008) [ Kvantovaya Elektron., 38, 137 (2008)]. 
71.	 Vysotina N.V., Rosanov N.N., Semenov V.E. Opt. Spectrosc., 

106, 713 (2009) [ Opt. Spektrosk., 106, 793 (2009)]. 
72.	 Rosanov N.N. Dissipativnye opticheskiye solitony. Ot mikro k 

nano- i atto- (Dissipative Optical Solitons. From Micro to Nano- 
and Atto-) (Moscow: Fizmatlit, 2011). 

73.	 Kozlov V.V. Phys. Rev. A, 56, 1607 (1997).
74.	 Kozlov V.V., Rosanov N.N., Wabnitz S. Phys. Rev. A, 84, 053810 

(2011).
75.	 Kozlov V.V., Rosanov N.N. Phys. Rev. A, 87, 043836 (2013).
76.	 Arkhipov R.M., Arkhipov M.V., Babushkin I., Rosanov N.N. 

Bull. Russ. Acad. Sci. Phys., 84, 23 (2020) [ Izv. RAN, Ser. Fiz., 84, 
23 (2020)]. 

77.	 Arkhipov M.V., Arkhipov R.M., Shimko A.A., Babushkin I., 
Rosanov N.N. JETP Lett., 109, 634 (2019) [ Pis’ma Zh. Eksp.
Teor. Fiz., 109, 657 (2019)]. 

78.	 Arkhipov M.V., Arkhipov R.M., Shimko A.A., Babushkin I., 
Rosanov N.N. J. Phys.: Conf. Ser., 1410, 012102 (2019).

79.	 Arkhipov M.V., Shimko A.A., Rosanov N.N., Babushkin I., 
Arkhipov R.M. Phys. Rev. A, 101, 013803 (2020). 

80.	 Nisoli M., Sansone G. Prog. Quantum Electron., 33, 17 (2009). 

81.	 Nisoli M., Decleva P., Calegari F., Palacios A., Martin F. Chem.
Rev., 117, 10760 (2017).

82.	 Manzoni C., Mücke O.D., Cirmi G., et al. Laser Photon. Rev., 9, 
129 (2015).

83.	 Hassan M.T., Luu T.T., Moulet A., Raskazovskaya O., et al. 
Nature, 530, 66 (2016). 

84.	 Xu J., Shen B., Zhang X., et al. Sci. Rep., 8, 2669 (2018).
85.	 Wu H.-C., Meyer-ter-Vehn J. Nat. Photon., 6, 304 (2012).
86.	 Bass M. et al. Phys. Rev. Lett., 9, 446 (1962).
87.	 Brienza M.J., DeMaria A.J., Glenn W.H. Phys. Lett. A, 26, 390 

(1968).
88.	 Nahata A., Weling A.S., Heinz T.F. Appl. Phys. Lett., 69, 2321 

(1996).
89.	 Hirori H. et al. Appl. Phys. Lett., 98, 091106 (2011).
90.	 Reiman K. Rep. Progr. Phys., 70, 1597 (2007). 
91.	 Roskos H.G., Thomson M.D., Kress M., Loeffler T. Laser 

Photon. Rev., 1, 349 (2007). 
92.	 Obraztsov P.A., Kaplas T., Garnov S.V., Kuwata-Gonokami M., 

Obraztsov A.N., Svirko Y.P. Sci. Rep., 4, 4007 (2014). 
93.	 Gao Y., Drake T., Chen Z., DeCamp M.F. Opt. Lett., 33, 2776 

(2008). 
94.	 Lepeshov S., Gorodetsky A., Krasnok A., Rafailov E., Belov P. 

Laser Photonics Rev., 11, 1770001 (2016).
95.	 Fülöp J.A., Tzortzakis S., Kampfrath T. Adv. Opt. Mater., 8, 

1900681 (2020).
96.	 Ponomareva E.A., Stumpf S.A., Tsypkin A.N., Kozlov S.A. Opt.

Lett., 44, 5485 (2019).
97.	 Bakunov M.I., Maslov A.V., Tsarev M.V. Phys. Rev. A, 95, 

063817 (2017).
98.	 Efimenko E.S., Sychugin S.A., Tsarev M.V., Bakunov M.I. Phys. 

Rev. A, 98, 01384 (2018).
99.	 Tsarev M.V., Bakunov M.I. Opt. Express, 27, 5154 (2019).
100.	Polyakov D., Yakovlev E. J. Phys. D: Appl. Phys., 53, 055305 

(2019). 
101.	Arkhipov R.M. Opt. Spectrosc., 120, 756 (2015) [ Opt. Spektrosk., 

120, 802 (2015)]. 
102.	Arkhipov R.M., Arkhipov M.V., Belov P.A., Tolmachev Yu.A., 

Babushkin I. Laser Phys. Lett., 13, 046001 (2016).
103.	Arkhipov R.M., Pakhomov A.V., Babushkin I.V., Arkhipov M.V., 

Tolmachev Yu.A., Rosanov N.N. J. Opt. Soc. Am. B, 33, 2518 
(2016).

104.	Pakhomov A.V., Arkhipov R.M., Babushkin I.V., Arkhipov M.V., 
Rosanov N.N. Laser Phys. Lett., 13, 126001 (2016).

105.	Pakhomov A.V., Arkhipov R.M., Babushkin I.V., Arkhipov M.V., 
Tolmachev Yu.A., Rosanov N.N. Phys. Rev. A, 95, 013804 (2017).

106.	Arkhipov R.M., Zhiguleva D.O., Pakhomov A.V., Arkhipov M.V., 
Babushkin I., Rosanov N.N. Opt. Spectrosc., 124, 536 (2018) 
[ Opt. Spektrosk., 124, 505 (2018)]. 

107.	Ziguleva D.O., Arkhipov R.M., Arkhipov M.V., Pakhomov A.V., 
Babushkin I., Rosanov N.N. Opt. Commun., 424, 170 (2018).

108.	Pakhomov A.V., Arkhipov R.M., Arkhipov M.V., Demircan A., 
Morgner U., Rosanov N.N., Babushkin I. Sci. Rep., 9, 1 (2019).

109.	Bychenkov V.Yu., Brantov A.V., Govras E.A., Kovalev V.F. 
Phys. Usp., 58, 71 (2015) [ Usp. Fiz. Nauk, 185, 77 (2015)]. 

110.	Tajima T., Dawson J.M. Phys. Rev. Lett., 43, 267 (1979). 
111.	Esarey E., Sprangle P., Krall J. Phys. Rev. E, 52, 5443 (1995). 
112.	Malka V., Faure J., Gauduel Y.A., Lefebvre E., Rousse A., 

Ta Phuoc K. Nat. Phys., 4, 447 (2008).
113.	Carbajo S., Nanni E.A., JieWong L., Moriena G., Keathley Ph.D., 

Laurent G., Miller R.J.D., Kärtner F.X. Phys. Rev. Accel. Beams, 
19, 021303 (2016).

114.	Rosanov N.N. Opt. Spectrosc., 126, 140 (2019) [ Opt. Spektrosk., 
126, 211 (2019)]. 

115.	Rosanov N.N., Vysotina N.V. J. Exp. Theor. Phys., 130, 52 (2020) 
[ Zh. Eksp. Teor. Fiz., 157, 63 (2019)]. 

116.	Fradkin D.M. Phys. Rev. Lett., 42, 1209 (1979).
117.	Baz A.I., Zel’dovich Ya.B., Perelomov A.M. Scattering, Reactions 

and Decays in Nonrelativistic Quantum Mechanics (Jerusalem: 
Israel Program of Sci. Transl., 1969; Moscow: Nauka, 1971). 



815Unipolar light: existence, generation, propagation, and impact on microobjects

118.	Arkhipov R.M., Arkhipov M.V., Babushkin I.V., Demircan A., 
Morgner U., Rosanov N.N. Opt. Lett., 44, 1202 (2019).

119.	Rosanov N.N. Opt. Spectrosc., 124, 72 (2018) [ Opt. Spektrosk., 
124, 75 (2018)]. 

120.	Landau L.D., Lifshitz E.M. Quantum Mechanics: Nonrelativistic 
Theory (Oxford: Pergamon Press, 1977; Moscow: Nauka, 1989). 

121.	Arkhipov R.M., Arkhipov M.V., Pakhomov A.V., Rosanov N.N. 
Opt. Spectrosc., 128, 102 (2020) [ Opt. Spektrosk., 128, 106 (2020)]. 

122.	Arkhipov R.M., Arkhipov M.V., Pakhomov A.V., Rosanov N.N. 
Quantum Electron., 49, 958 (2019) [ Kvantovaya Elektron., 49, 958 
(2019)]. 

123.	Arkhipov R.M., Arkhipov M.V., Rosanov N.N. JETP Lett., 111 
(9), 484 (2020) [ Pis’ma Zh. Eksp. Teor. Fiz., 111 (9), 586 (2020)]. 

124.	Aleksandrov I.A., Tumakov D.A., Kudlis A., Shabaev V.M., 
Rosanov N.N. Phys. Rev. A, 102, 023102 (2020).

125.	Sargsyan V. Comparison of Stripline and Cavity Beam Position 
Monitors. No. TESLA-2004-03. CM-P00047837, 2004.

126.	Wu Q., Zhang X.C. Appl. Phys. Lett., 67, 3523 (1995).
127.	Arkhipov R.M., Arkhipov M.V., Rosanov N.N. JETP Lett., 111 

(12), 668 (2020) [ Pis’ma Zh. Eksp. Teor. Fiz., 111 (12), 794 (2020)].


