ПРИМЕНЕНИЯ ЛАЗЕРОВ И ДРУГИЕ ВОПРОСЫ КВАНТОВОЙ ЭЛЕКТРОНИКИ

Оптическое детектирование ансамбля С-центров в алмазе и когерентное управление им с помощью ансамбля NV-центров

О.Р.Рубинас, В.В.Сошенко, С.В.Большедворский, И.С.Кожокару, А.И.Зеленеев, В.В.Воробьев, В.Н.Сорокин, В.Г.Винс, А.Н.Смолянинов, А.В.Акимов

Детально исследована природа декогерентности в наиболее оптимальной с точки зрения магнитометрии алмазной пластине, а именно в пластине с компромиссными значениями концентрации и времени когерентности NV-центров. В этой пластине измерена концентрация С-центров, являющихся донорами для формирования NV-центров и в то же время ограничивающих их время когерентности. Ансамбль NV-центров в алмазе был использован в качестве чувствительного элемента, позволяющего регистрировать динамику когерентности и концентрацию С-центров. Для регистрации применялся метод оптического двойного электрон-электронного резонанса. Его существенным преимуществом перед методом ИК спектроскопии, которым измеряется некоторая средняя концентрация дефектов в алмазеной пластине, является возможность локального измерения концентрации С-центров. Предложенным нами методом ик определена концентрация С-центров, составившая 50.1 ± 1.4 ppm, что уточняет результат измерений методом ИК спектроскопии, равный 57.5 ± 4.8 ppm.

Ключевые слова: NV-центр, С-центр, алмаз, оптически детектируемый магнитный резонанс, спин-эхо, осцилляции Раби, двойной электрон-электронный резонанс.

1. Введение

NV-центр в алмазе [1] – один из важнейших дефектов кристаллической решетки, нашедших свое применение в разных областях науки. На рис.1,*а* показана структура этого центра в кристаллической решетке алмаза. NV-

А.Н.Смолянинов. ООО «Сенсор Спин Техноложис», Россия, 121205 Москва, Сколково, ул. Нобеля, 7

А.В.Акимов. Texas A&M University, 4242 TAMU, College Station, USA; ООО «Сенсор Спин Техноложис», Россия, 121205 Москва, Сколково, ул. Нобеля, 7; Российский квантовый центр, Россия, 143025 Москва, Сколково, ул. Новая, 100А

Поступила в редакцию 3 июня 2021 г.

центры в алмазе часто используются для детектирования магнитного и электрического полей. При этом впечатляющие результаты достигнуты в различных специфических направлениях магнитометрии, таких как магнитометрия высокого пространственного разрешения [2], обнаружение малых магнитных полей [3], магнитное сканирование в биологических объектах [4], магнитно-резонансная томография (МРТ) [5], а также детектирование внешних спинов [6].

С точки зрения использования в высокоточной магнитометрии одними из лучших известных на сегодняшний день пластин являются выращенные при высоких температуре и давлении алмазные пластины с концентрацией азотосодержащих дефектов ~80 ppm, из которых ~14 ppm составляет концентрация NV-центров [7]. Более глубокое понимание ограничений магнитной чувствительности этих пластин требует развития методов измерений парамагнитных примесей, ограничивающих время когерентности NV-центров. Ранее парамагнитные дефекты изучались методом ИК спектроскопии [7 – 9], позволяющим детектировать широкий класс дефектов, но обладающим заметными ограничениями по точности и абсолютной калибровке измерений.

Для задачи детектирования внешних спинов также может быть использован сам ансамбль NV-центров. К методам такого детектирования относится метод двойного электрон-электронного резонанса (ДЭЭР) [10], в котором используется влияние поля внешних спинов на ансамбль NV-центров. Техника метода ДЭЭР обычно базируется на методе классического электронного парамагнитного резонанса (ЭПР). В настоящей работе применялся оптический вариант метода ДЭЭР, основанный на свойствах оптически регистрируемого состояния NV-центров, взаимодействующего с С-центрами, состояние которых оптически не регистрируется. С-центр (также часто именуемый р1-центром) представляет собой донорный атом азота, замещающий атом углерода в алмазе. На рис.1,6

О.Р.Рубинас. Московский физико-технический институт (национальный исследовательский университет), Россия, Московская обл., 141701 Долгопрудный, Институтский пер., 9; Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Российский квантовый центр, Россия, 143025 Москва, Сколково, ул. Новая, 100А; ООО «Сенсор Спин Техноложис», Россия, 121205 Москва, Сколково, ул. Нобеля, 7;

e-mail: rubinas@phystech.edu

В.В.Сошенко, С.В.Большедворский. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; ООО «Сенсор Спин Техноложис», Россия, 121205 Москва, Сколково, ул. Нобеля, 7

И.С.Кожокару. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Российский квантовый центр, Россия, 143025 Москва, Сколково, ул. Новая, 100А

А.И.Зеленеев. Московский физико-технический институт (национальный исследовательский университет), Россия, Московская обл., 141701 Долгопрудный, Институтский пер., 9

V.V.Vorobyov. The University of Stuttgart, Keplerstraße 7, Stuttgart 70049, Germany

В.Н.Сорокин. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; Московский физикотехнический институт (национальный исследовательский университет), Россия, Московская обл., 141701 Долгопрудный, Институтский пер., 9

В.Г.Винс. ООО «Велман», Россия, 630060 Новосибирск, ул. Зеленая Горка, 1/3

Рис.1. Положение NV-центра в кристаллической решетке алмаза: один атом углерода замещен атомом азота (N), соседний с ним – отсутствует (V) (*a*); положение С-центра в кристаллической решетке алмаза: один атом углерода замещен атомом азота (N), (*b*); система энергетических уровней NV-центра во внешнем постоянном магнитном поле: круглые стрелки – переход, управляемый СВЧ полем, сплошная стрелка (2.87 ГГц) – расщепление подуровней NV-центра в нулевом магнитном поле, зеленая стрелка – накачка лазерным излучением верхних энергетических уровней, красные стрелки – радиационные переходы из возбужденного состояния в основное, штриховые стрелки – нерадиационные переходы в основное состояние с нулевой проекцией электронного спина (*в*); система энергетических уровней С-центра во внешнем постоянном магнитном поле: штриховая стрелка – расщепление Зеемана, *m_S* и *m_I* – проекции электронного и ядерного спинов С-центра, сплошные стрелки – разрешенные переходы с частотами ω_1, ω_2 и ω_3 (*г*).

показана структура С-центра в кристаллической решетке алмаза.

Возможность применения NV-центров в качестве сенсоров поля спиновых дефектов в алмазе тесно связана со свойствами самого NV-центра. NV-центры в алмазе являются люминесцирующими дефектами, при этом они позволяют оптически считывать состояние их электронного спина. Более того, имеется возможность управлять состоянием NV-центра с помощью комбинации электромагнитных полей в оптическом и СВЧ диапазонах [11]. Реализация ДЭЭР на базе NV-центров в алмазе основана на использовании так называемой последовательности спинового эха [12]. Сигнал спинового эха чувствителен к переменным магнитным полям при совпадении их полупериода с периодом эхо-последовательности. Поскольку прецессирующие во внешнем постоянном магнитном поле спины С-центров в алмазе создают переменное во времени поле, эти центры можно обнаружить по их влиянию на сигнал спинового эха NV-центра [13].

Использование NV-центра в качестве сенсора магнитного поля напрямую связано с его спиновыми свойствами, такими как время когерентности и ширина так называемого оптически детектируемого магнитного резонанса (ОДМР) [14]. Когерентные свойства NV-центра в существенной мере определяются его окружением: электронными и ядерными спинами, присутствующими в алмазе. Многие из дефектов, имеющих спины, не люминесцируют при нормальных условиях и потому считаются «темными» или «неизлучающими». К основным таким примесям в алмазе относится С-центр – один из самых распространенных дефектов в алмазе, наличие которых неизбежно при формировании NV-центров.

С-центры обладают электронным спином S = 1/2 и образуют «электронную спиновую ванну» [15], в которой находятся NV-центры, влияющую на их когерентность. К настоящему времени продемонстрировано непосредственное влияние концентрации С-центров на время когерентности NV-центров [14], обуславливающее существенное снижение достижимой чувствительности сенсора магнитного поля на базе NV-центра. Возможным решением данной проблемы является снижение общей концентрации азота в алмазе, однако это приводит к уменьшению концентрации полезных NV-центров [16]. Таким образом, необходимо уменьшить концентрацию С-центров по отношению к NV-центрам. При этом возникает задача параллельного измерения концентраций С-центров.

Измерение концентрации С-центров в алмазе принято осуществлять двумя методами – ЭПР-спектроскопии [17] и ИК спектроскопии [9]. Однако оба метода применимы только при большом общем числе дефектов в образце, тогда как для многих приложений важна возможность проведения измерений в относительно небольших образцах алмазов с малой концентрацией дефектов и соответственно их малым общим числом. Интересна также возможность оперативного измерения концентрации, не требующего применения большого числа различных устройств. В настоящей работе мы экспериментально продемонстрируем возможность измерения концентрации С-центров с использованием самого ансамбля NV-центров.

2. Результаты

2.1. Основы оптического считывания состояния NV-центра

Как уже упоминалось, сигнал спинового эха на ансамбле NV-центров чувствителен к наведенным на него переменным магнитным полям. Основное состояние NVцентра (рис. 1, β) имеет полный электронный спин S = 1 и расщепляется в постоянном магнитном поле, образуя триплет. Естественной осью квантования состояний NVцентра является ось, соединяющая атом азота и вакансию. Проекции электронного спина на эту ось оказываются «хорошими» квантовыми числами. NV-центр под действием лазерного излучения с длиной волны 532 нм частично поляризуется в состояние с проекцией спина $m_{S} = 0$ [1] благодаря наличию метастабильных синглетных уровней, через которые происходит нерадиационный распад возбужденного состояния NV-центра в основное состояние с проекцией электронного спина $m_{\rm S} = 0$. При небольшом внешнем магнитном поле (~10 Гс) создается достаточное (2.8 МГц/Гс) расщепление состояний с проекциями электронного спина $m_S = +1$ и -1 на ось NVцентра, позволяющее манипулировать парами с проекциями 0, -1 и +1, как двухуровневыми системами. В настоящей работе использовался переход $|m_S = 0\rangle \Leftrightarrow |m_S = -1\rangle$. Эхо-последовательность [12] для NV-центров представляет собой последовательность СВЧ импульсов с периодом $\pi/2 - \tau - \pi - \tau - \pi/2$ на резонансной частоте перехода $|m_S = 0\rangle \Leftrightarrow |m_S = -1\rangle$ основного состояния NV-центра, прикладываемых после поляризации электронного состояния $|m_S = 0\rangle$. Первый $\pi/2$ -импульс в составе эхопоследовательности переводит NV-центр в суперпозиционное состояние $(1/\sqrt{2})|m_S = 0\rangle + (1/\sqrt{2})|m_S = -1\rangle$, фаза которого чувствительна к магнитному полю и накапливается за время τ. После приложения π-импульса направление прецессии электронных спинов NV-центров в суперпозиционном состоянии меняется на противоположное, что позволяет устранить влияние постоянных полей на фазу этого состояния. Однако фаза переменного магнитного поля, полупериод которого совпадает с периодом эхо-последовательности, сдвинется на половину периода, и его влияние не будет устранено. Таким образом, эхо-последовательность может рассматриваться как своеобразный синхронный детектор для переменного магнитного поля. Свободная прецессия спинов С-центров не синхронна и создает случайное поле на NV-центре. Если же контролируемо управлять спинами С-центров, что можно сделать, приложив резонансное радиочастотное поле (рис.1,г) на частоте перехода $|m_S = -1/2\rangle \Leftrightarrow |m_S = +1/2\rangle$, то поле этих спинов на NV-центре будет когерентным, и его влияние может быть измерено.

2.2. Экспериментальная установка

Схема экспериментальной установки представлена на рис.2,*а*. В качестве источника излучения использовался лазер, генерирующий на длине волны 532 нм (Compass, Coherent Inc.). Акустооптический модулятор (AOM) позволяет управлять излучением лазера, отключая его на время манипуляций с состоянием электронного спина. Лазерный пучок фокусируется собирающей линзой с фо-

Рис.2. Схема установки: ось [111] параллельна направлению постоянного магнитного поля (*a*), спектр сигнала ОДМР NV-центра в алмазе (*б*), осцилляции Раби NV-центра (*в*) и сигнал спинового эха NV-центра (*г*). На рис.2, *б* – *г* по оси ординат отложено отношение измеренных фотодетектором сигнала 1 к сигналу 2 (контраст) и представлены также схемы импульсов, управляющих состояниями ансамбля NV-центров и регистрирующих их. Точки– эксперимент, кривые – аппроксимация.

кусным расстоянием 3.5 см на исследуемый алмазный образец в фокальное пятно радиусом ~7.5 мкм. Мощность лазерного излучения перед образцом составляет 43 мВт. Сигнал флуоресценции NV-центров собирается системой из двух параболических концентраторов и через фильтр, пропускающий длины волн более 650 нм, попадает на фотодетектор.

Схема управления состояниями электронного спина рассматриваемых дефектов состоит из двух частей – СВЧ части (рис.2,*a*) для манипулирования состоянием NVцентров и радиочастотной части (РЧ на рис.2,*a*) для манипулирования состояниями С-центров. Каждая часть содержит генератор, управляемый ключ, соединенный с платой формирования импульсов, и усилитель импульсов в соответствующем диапазоне частот. Выходы обоих усилителей соединены с частотным смесителем, передающим сигнал на антенну, внутри которой находится образец. Антенна состоит из одного витка диаметром ~5 мм. Образец алмаза расположен внутри антенны так, что кристаллографическая ось алмаза [111] перпендикулярна оси витка.

В настоящей работе использовался алмаз с высокой начальной концентрацией донорного азота (~80 ppm), выращенный методом НРНТ [9] и обработанный электронным пучком с плотностью числа электронов 15 × 10^{17} см⁻² с последующим отжигом при температуре 800 °C для формирования NV-центров [9]. Расщепление магнитных подуровней $|m_S = -1\rangle u |m_S = +1\rangle$ обеспечивается постоянным магнитом, расположенным так, чтобы направление магнитного поля, являющееся осью квантования для центров окраски, совпадало с направлением кристаллографической оси алмазной пластины [111].

2.3. Метод регистрации примесей

Для определения резонансной частоты перехода $|m_S = 0\rangle$ $\rightarrow |m_S = -1\rangle$, необходимой для реализации эхо-последовательности на NV-центре, измерялся спектр сигнала ОДМР (рис.2, б) [18]. Оси NV-центров могут быть ориентированы в кристаллической решетке алмаза по четырем возможным направлениям, одно из которых совпадает с осью [111] и, следовательно, с направлением магнитного поля. Проекция магнитного поля на соосное с ним направление кристаллической решетки максимальна, а на оставшиеся три направления – одинакова ввиду симметрии кристалла. Соосному с направлением магнитного поля ансамблю NV-центров соответствуют максимальные расщепления вырожденных магнитных подуровней $|m_S = -1\rangle$ и $|m_S = +1\rangle$, а именно частоты 2.63 и 3.11 ГГц. Ансамблю NV-центров, расположенных вдоль трех несоосных направлений, соответствуют меньшие расщепления подуровней из-за меньшей проекции магнитного поля, а именно частоты 2.82 и 2.97 ГГц. В настоящей работе за несущую частоту для π-импульсов принималась центральная частота резонанса 2.63 ГГц. Кроме того, на основе измеренной частоты определялась величина магнитного поля В, приложенного к алмазу:

$$B = \frac{f_{m_s=\pm 1} - f_{m_s=-1}}{2\gamma} = 85 \pm 3 \ \Gamma c, \tag{1}$$

где $\gamma = 2.8 \text{ МГц/Гс} - гиромагнитное отношение; <math>f_{m_s=\pm 1} -$ частоты, отвечающие двум проекциям электронного спина NV-центров, соосных с магнитным полем. Длительность π -импульса для перехода $|m_S = 0\rangle \rightarrow |m_S = -1\rangle$ рассчитывалась, исходя из частоты осцилляций Раби (рис.2, e), измеренных на определенной ранее частоте. Для этого ансамбль NV-центров инициализировался в состояние $|m_S = 0\rangle$ с помощью импульса лазерного излучения, затем прикладывался СВЧ импульс, а после него еще один импульс лазерного излучения, во время которого сигнал люминесценции NV-центра считывался (сигнал 1 на рис.2). Результирующий сигнал приведен на рис.2, e. Здесь за 100% принят сигнал люминесценции центра в отсутствие СВЧ импульса (сигнал 2 на рис.2). Определенная по измеренному периоду осцилляций длительность π -импульса составила 300 нс при мощности СВЧ поля на выходе смесителя 15.8 Вт.

Полученный аналогичным образом сигнал люминесценции NV-центра после приложения эхо-последовательности $\pi/2 - \tau - \pi - \tau - \pi/2$ в зависимости от времени свободной прецессии электронного спина τ показан на рис.2,*г*. Видно, что сигнал спинового эха представляет собой спадающую кривую. Согласно работе [12], форма такого сигнала описывается следующим выражением:

$$F_{\rm echo} = \alpha e^{-(2\tau/T_2)^Z},\tag{2}$$

где *α*, *Z*, *T*₂ (время когерентности ансамбля NV-центров) – параметры моделирующей функции.

Для измерения спектра С-центров использовалась последовательность импульсов, представленная на рис.3,*в*. Поле в радиочастотном диапазоне 100 – 500 МГц прикладывалось в середине эхо-последовательности NV-центра. Этот диапазон перекрывает все ожидаемые частоты расщепления С-центра. Таким образом были получены спектры оптического ДЭЭР для С-центра, приведенные на рис.3,*а* и *б*.

Уровни энергии основного состояния С-центра расщепляются в приложенном магнитном поле *В*. При этом необходимо учитывать их сверхтонкую структуру. Спиновый гамильтониан С-центра может быть записан как

$$H_{\rm C} = \mu_{\rm B} B g S + \mu_I B I + \hbar S A I + \hbar I Q I, \qquad (3)$$

где $\mu_{\rm B}$ – магнетон Бора; μ_I – магнитный момент ядра азота; g, A, Q – тензоры g-фактора, сверхтонкого и квадрупольного взаимодействий соответственно; I – ядерный спин азота.

Ядерный спин азота I = 1 имеет три возможные проекции, $\mu_I = -1, 0, +1$, а электронный спин $S = 1/2 - две, m_S = -1/2, +1/2$. Таким образом, у С-центра есть два электронных уровня, расщепленные на три сверхтонкие компоненты (рис.1,*г*). Между этими уровнями в дипольном приближении разрешены три перехода, сохраняющие ядерный спин азота:

$$|m_S = -1/2, m_I = 0\rangle \Leftrightarrow |m_S = +1/2, m_I = 0\rangle,$$

$$|m_S = -1/2, m_I = -1\rangle \Leftrightarrow |m_S = +1/2, m_I = -1\rangle,$$
 (4)

 $|m_S = -1/2, m_I = +1\rangle \Leftrightarrow |m_S = +1/2, m_I = +1\rangle.$

С-центр в алмазе имеет такую же симметрию, как и NV-центр, и, благодаря эффекту Яна-Теллера [19], в алмазе присутствуют четыре выделенных направления

Рис.3. Спектры оптического ДЭЭР ансамбля С-центров в алмазе при радиочастотной мощности 100 (*a*) и 1000 мВт (δ), полученные путем приложения последовательностей импульсов (*в*). Время $\tau = 2$ мкс в эхо-последовательности NV-центра зафиксировано, частота радиочастотного импульса, действующего на С-центр, варьируется, длительность π -импульса равна 300 нс; 1 – 6 – номера резонансов.

ориентаций осей С-центров. Таким образом, в спектре С-центра в общем случае должно наблюдаться 12 переходов, т.е. четыре набора переходов, представленные в (4). В магнитном поле, соосном с одной из осей алмаза (в данном эксперименте это ось [111]), существуют два выделенных направления ориентаций С-центров: с осями вдоль магнитного поля и с осями, ориентированными по остальным трем возможным направлениям, симметричным относительно оси [111]. Каждой из этих двух ориентаций соответствуют свои частоты переходов (4), и, следовательно, в резонансном спектре С-центра наблюдаются шесть разрешенных переходов - по три для соосной и остальных симметричных несоосных ориентаций. При магнитном поле порядка 80 Гс переходы, отвечающие уровню с $m_I = 0$, для обеих групп имеют близко расположенные резонансы в спектре ДЭЭР для С-центра (рис.3,а). Стоит отметить, что помимо приведенных в (4) переходов в спектре присутствуют переходы, соответствующие изменению ядерного спина азота на единицу, а именно:

$$|m_{S} = -1/2, m_{I} = 0\rangle \Leftrightarrow |m_{S} = +1/2, m_{I} = -1\rangle,$$

 $|m_{S} = -1/2, m_{I} = -1\rangle \Leftrightarrow |m_{S} = +1/2, m_{I} = 0\rangle,$
 $|m_{S} = -1/2, m_{I} = +1\rangle \Leftrightarrow |m_{S} = +1/2, m_{I} = 0\rangle,$ (5)

$$|m_S = -1/2, m_I = 0\rangle \Leftrightarrow |m_S = +1/2, m_I = +1\rangle.$$

Интенсивности соответствующих спектральных линий запрещенных переходов (5) существенно увеличиваются с ростом мощности радиочастотного поля (рис.3, δ). При этом наблюдается также изменение относительных амплитуд линий разрешенных переходов (4), свидетельствующее о разной интенсивности насыщения различных переходов.

Для определения положений линий ДЭЭР спектр, представленный на рис.3,*a*, был аппроксимирован функцией

$$f(\omega) = 1 - \sum_{i=1}^{N} C_i \frac{\Gamma^2}{(\omega - \omega_i)^2 + \Gamma^2},$$
 (6)

где Γ – полуширина контура; N – число резонансов; C_i – амплитуда *i*-го резонанса; ω_i – центральная частота *i*-го перехода, полученная на основе решения стационарного уравнения Шредингера с гамильтонианом (3) для переходов (4) и (5). Амплитуды пиков считались свободными параметрами ввиду упомянутого выше эффекта насыщения амплитуд линий при различных мощностях радиочастотного поля. Следует отметить, что амплитуды линий также могут быть восстановлены, если подобрать амплитуды и длительности радиочастотных импульсов для каждого из наблюдаемых переходов такими, чтобы они отвечали π -импульсам соответствующего перехода внутри основного состояния С-центра. В данных условиях контраст сигнала является максимальным и определяется только ориентацией С-центров (см. Приложение 1).

По аналогии с полученными осцилляциями Раби для NV-центров были получены осцилляции населенностей состояний, ответственных за каждый из продемонстрированных разрешенных переходов, отвечающих частотам ДЭЭР. Для этого частота радиочастотного поля совмещалась с частотой соответствующего перехода (1 – 6 на рис.3,а), мощность радиочастотного поля фиксировалась, а длительность импульса варьировалась (рис.4,*a*). Детектируемой величиной являлся сигнал флуоресценции NV-центров после приложения приведенной последовательности СВЧ импульсов с фиксированным временем $\tau = 2$ мкс в эхо-последовательности для NV-центра (рис.4,б). Величина этого сигнала зависит от наведенного С-центром магнитного поля, а значит и от населенностей уровней С-центров. Таким образом, осуществляется оптическая регистрация осцилляций Раби между уровнями С-центров.

Рис.4. Последовательность импульсов на резонансных частотах переходов 1-6 на рис.3,*a* для управления состояниями С-центра (время $\tau = 2$ мкс в эхо-последовательности для NV-центра зафиксировано, длительность радиочастотного импульса *t* варьируется в диапазоне 110 - 1000 нс, длительность π -импульса равна 300 нс) (*a*); осцилляции населенностей (контраста спинового эха) уровней резонансного перехода 1 на рис.3,*a*, полученные с помощью последовательности импульсов на рис.4,*a* (δ); зависимость осцилляций населенностей уровней перехода 1 (рис.3,*a*) С-центра от мощности подаваемых радиочастотных импульсов (*в*).

Осцилляции, представленные на рис.4, б, аппроксимировались функцией

$$f(t) = a + C\cos(2\Omega t + \varphi)e^{(-t/T_2)},$$
(7)

где *a*, *C*, Ω , T_2 , φ – параметры функции. Период $(2\Omega)^{-1}$ осцилляций функции f(t) равен удвоенной длительности π -импульса.

Частота осцилляций Раби для С-центров, а следовательно и длительность π -импульса для С-центра, зависит от мощности прикладываемого радиочастотного поля, как показано на рис.4,*в*. Для дальнейших измерений выбиралась мощность радиочастотного поля, при которой длительность π -импульса для С-центра была равна длительности π -импульса для NV-центра. Данная операция повторялась для каждого разрешенного перехода, и таким образом были получены мощности, приведенные в табл.1.

Для определения концентрации С-центров применялась импульсная последовательность ДЭЭР с изменяющимся временем t перед приложением радиочастотного π -импульса (рис.5,a). Импульс накачки в момент времени t инвертирует спины С-центров, изменяя таким образом локальное поле на NV-центрах, вызванное электронэлектронным взаимодействием с энергией, соответствующей частоте [20]

$$\omega_{\rm ee} = \frac{\mu_0 \gamma^2 \hbar^2}{4\pi} \frac{1}{r_{\rm AB}^3} (3\cos^2\theta_{\rm AB} - 1) + J, \qquad (8)$$

Табл.1. Мощности радиочастотного поля на выходе смесителя $P_{\rm RF}$, при которых радиочастотный импульс длительностью 300 нс является π -импульсом для каждого перехода.

Переход	$P_{\rm RF}({\rm Bt})$	Переход	$P_{\rm RF}({\rm Bt})$		
1	1.6	4	0.8		
2	2.5	5	2.5		
3	0.8	6	0.6		

где r_{AB} – расстояние между двумя взаимодействующими центрами; θ_{AB} – угол между направлением постоянного магнитного поля и направлением радиуса-вектора, соединяющего пару NV- и C-центров; $\mu_0 = 4\pi \times 10^{-7}$ Гн/м – магнитная постоянная; J – частота, соответствующая энергии обменного взаимодействия.

В результате электрон-электронного взаимодействия NV-центров с С-центрами в момент формирования спинового эха, ансамбль NV-центров набирает дополнительную фазу $\Delta \varphi = \omega_{ee} t$ [20]. Таким образом, частоту ω_{ee} можно определить, наблюдая за амплитудой спинового эха как функцией времени t. Поскольку длительность последовательности фиксирована, на изменение амплитуды эхо-сигнала не влияет поперечная релаксация. Амплитуда спинового эха для каждой изолированной пары центров изменяется по закону [20] $V \propto \cos(\omega_{ee} t)$. Для ансамбля С- и NV-центров необходимо провести усреднение по этому ансамблю, которое было выполнено в работе [20] для случая равномерного распределения С-центров в алмазе в пренебрежении обменным взаимодействием и дало

$$V(t) \propto e^{-knF_{\rm B}t} = e^{-t/T_{\rm D}},$$

$$k = \frac{2\pi\mu_0\mu_{\rm B}^2 g_{\rm C}g_{\rm NV}}{9\sqrt{3}\hbar},$$
(9)

где *n* – концентрация С-центров в образце; $F_{\rm B}$ – доля возбужденных радиочастотным π -импульсом С-центров; *t* – время приложения радиочастотного π -импульса для С-центра в последовательности на рис.5,*a*; $g_{\rm C}$ – g-фактор С-центра; $g_{\rm NV}$ – g-фактор NV-центра; $T_{\rm D}$ = 1/(*knF*_B) – параметр, полученный из экспериментальных данных, приведенных на рис.5,*6*.

Определение концентрации *n* требует также знания коэффициента $F_{\rm B}$. Доля возбужденных радиочастотным π -импульсом C-центров находится следующим образом [20]:

Рис.5. Последовательность импульсов для управления переворотом спинов С-центров с помощью приложения к ним π -импульса в заданный момент времени *t* на промежутке от 0 до τ : время $\tau = 2$ мкс в эхо-последовательности для NV-центров зафиксировано, последовательность прикладывается для каждого резонансного перехода отдельно (*a*); затухание сигнала в результате применения последовательности на рис.5, *a* в зависимости от времени ее приложения (*b*); плотность вероятности частоты магнитного перехода в С-центре: голубой цвет – однородно уширенная (лоренцевская) линия рассматриваемых переходов, штриховая кривая – вероятность того, что переход на заданной частоте будет совершен в С-центре после приложения радиочастотного π -импульса; приведен пример для первого резонансного перехода, доля возбужденных С-центров в котором составила 23% (*в*).

$$F_{\rm B} = \int_{-\infty}^{\infty} \frac{\Omega^2}{\Omega^2 + (x - \omega_{\rm RF})^2} \sin^2 \left(\sqrt{\Omega^2 + (x - \omega_{\rm RF})^2} \frac{t_{\rm p}}{2} \right) L(x) \, \mathrm{d}x,$$
(10)
$$L(x) = \frac{1}{\pi} \frac{\Delta \omega}{\Delta \omega^2 + (\omega - \omega_{\rm RF})^2},$$

где Ω – частота осцилляций населенностей уровней С-центра; $\omega_{\rm RF}$ – резонансная частота для каждого из шести переходов, относящихся к С-центру, на которой подается π -импульс; $t_{\rm p}$ – длительность π -импульса; L(x) – контур линии перехода; $\Delta \omega$ – полуширина контура линии на полувысоте ДЭЭР (рис.3,*a*).

Значения функции $F_{\rm B}$ были получены нами численным интегрированием (10) для каждой отдельной резонансной частоты переходов 1–6 в спектре на рис.3,*а*. В качестве Ω , $t_{\rm p}$ и $\omega_{\rm RF}$ использовались определенные выше значения частот Раби, длительности π -импульса и каждой резонансной частоты. Значение $\Delta \omega$ также находилось индивидуально для каждого резонанса по спектру ДЭЭР, полученному при приложении π -импульса (см. Приложение 1).

Концентрация С-центров была рассчитана для каждого из разрешенных резонансов по формуле

$$n_i = \frac{1}{kT_{\rm D}F_{\rm B}}, \, i = 1, ..., 6.$$
(11)

Как обсуждалось выше, каждый разрешенный резонанс соответствует определенной ориентации С-центров по отношению к оси [111] и определенной проекции ядерного спина азота на ось центра. Поэтому общая концентрация *n*_{tot} была найдена как сумма концентраций, отвечающих каждому резонансу:

$$n_{\rm tot} = \sum_{i=1}^{6} n_i,$$
 (12)

и составила 50.1 ± 1.4 ppm, что близко к результату измерения концентрации С-центров в этой алмазной пластине методом ИК спектроскопии, равному 57.5 ± 4.8 ppm (см. Приложение 2) в пределах погрешности эксперимента (см. Приложение 3).

3. Заключение

В настоящей работе была уточнена концентрация С-центров в алмазной пластине, представляющей интерес с точки зрения магнитометрии из-за оптимального соотношения контраста и ширины линии ОДМР. В качестве чувствительного сенсора, позволяющего регистрировать когерентную динамику и концентрацию С-центров в этой пластине, использовался ансамбль NV-центров. Регистрация осуществлялась методом оптического ДЭЭР, с помощью которого была определена концентрация С-центров, составившая 50.1 ± 1.4 ppm и уточняющая результат измерения методом ИК спектроскопии, равный 57.5 ± 4.8 ppm. Следует отметить, что применяемый метод позволяет измерять концентрацию локально, в то время как метод ИК спектроскопии дает возможность измерить лишь усредненное по всему алмазу значение. С-центры являются одним из основных источников декогерентности NV-центров, и прямое измерение их концентрации, а также возможность управления состоянием ансамбля С-центров - важные шаги в исследованиях, направленных на разработку сенсоров на базе NV-центров в алмазе.

Метод измерения концентрации С-центров в алмазе разработан при поддержке РФФИ (грант №20-32-90025 Аспиранты). Спектроскопия спиновой ванны в алмазе и когерентное управление ею выполнены при поддержке РНФ (грант № 21-42-04407).

Приложение 1. Спектр ДЭЭР, полученный с помощью индивидуальных π-импульсов

Для нахождения «истинных» соотношений амплитуд разрешенных линий ДЭЭР были зарегистрированы спектры в окрестности каждого резонанса с использованием π-импульсов, соответствующих каждому из них. Полученный таким образом спектр представлен на рис.1П.1. Для сравнения там же приведен спектр, построенный по формуле (6). В нее были подставлены положения резонансов, рассчитанные на основе формулы (3) с помощью пакета QuTiP для языка Python. При расчете магнитное поле было принято соосным с ориентацией [111] и равным 85 Гс. Как и в работе [14], коэффициенты С_i в формуле (6) считались равными 1/12 для всех переходов. Полуширина Г резонанса в (6) выбиралась как средняя полуширина резонансов, равная 3.65 МГц. Видно, что соотношения амплитуд экспериментальных спектров не совпадают с теоретической оценкой, но имеют схожее поведение. Возможной причиной расхождения является предположение о равенстве амплитуд всех резонансов, которое, однако, не исследовалось детально в настоящей работе.

Приложение 2. Контрольное измерение концентрации С-центров в образце

Инфракрасный спектр поглощения исследуемой алмазной пластины приведен на рис.1П.2.

Концентрация С-центров связана с коэффициентом поглощения μ_{1130} в максимуме полосы поглощения С-центра соотношением [9]

$$n = (25 \pm 2)\mu_{1130},\tag{\Pi2.1}$$

где коэффициент 25 ± 2 ppm-см получен экспериментально в работе [9]. Помимо указанной погрешности учиты-

Рис.1П.1. Спектр ДЭЭР всех разрешенных переходов С-центра, полученный в результате приложения к нему *π*-импульсов, соответствующих каждому из шести резонансов. Голубой цвет – резонансный триплет соосного с ориентацией [111] ансамбля, желтый цвет – триплет трех остальных ансамблей, штриховая зеленая кривая – огибающая всех смоделированных резонансов на двенадцати разрешенных переходах.

Рис.1П.2. ИК спектр поглощения исследуемой алмазной пластины. Штриховая линия соответствует коэффициенту поглощения этой пластины в отсутствие примесей.

валась зашумленность спектра, вклад которой в общую погрешность составил 0.16 ppm. Таким образом, в исследуемом образце рассчитанная концентрация С-центров $n = 57.5 \pm 4.8$ ppm.

Приложение 3. Оценка погрешностей расчета концентрации

Концентрация С-центров *n* вычисляется из аппроксимации затухания по формуле (11) и зависит от параметра затухания сигнала ДЭЭР T_D и рассчитанной доли возбужденных радиочастотным полем С-центров F_B . Исходя из этого, погрешность определения концентрации С-центров n_{tot} можно оценить как погрешность сложной функции:

$$\delta n_{\text{tot}} = \sqrt{\sum_{i=1}^{6} \delta n_i^2},$$

$$(\Pi 3.1)$$

$$\delta n_i = \sqrt{\left(\frac{\partial n_i}{\partial T_{\text{D}}} \delta T_{\text{D}i}\right)^2 + \left(\frac{\partial n_i}{\partial F_{\text{B}i}} \delta F_{\text{B}i}\right)^2}.$$

Здесь индекс *i* нумерует величины, относящиеся к *i*-му разрешенному резонансу. При этом величина $\delta T_{\rm D}$ была оценена как точность аппроксимации методом наименьших квадратов затухания сигнала ДЭЭР и указана в табл.1П.3 для каждого из шести резонансов, а доля возбужденных радиочастотным полем С-центров $F_{\rm B}$ также является сложной функцией параметров ω_i , $\Delta \omega_i$, Ω_i (см. формулу (10)). Однако нетрудно показать, что

$$\frac{\partial F_{\mathrm{B}i}}{\partial \omega_i} = 0, \quad \frac{\partial F_{\mathrm{B}i}}{\partial \Omega_i} = 0.$$
 (II3.2)

Поэтому основной вклад в погрешность определения $F_{\text{B}i}$ дает погрешность, связанная с определением $\Delta \omega_i$, и, следовательно, важными оказываются погрешности второго порядка, которые были рассчитаны по общей формуле стандартного отклонения:

$$\delta F_{B\Omega i} = \sqrt{\langle F_{Bi}^2 \rangle_{\Omega} - \langle F_{Bi} \rangle_{\Omega}^2},$$

$$\delta F_{B\omega i} = \sqrt{\langle F_{Bi}^2 \rangle_{\omega} - \langle F_{Bi} \rangle_{\omega}^2},$$

$$\delta F_{B\Lambda \omega i} = \sqrt{\langle F_{Bi}^2 \rangle_{\Lambda \omega} - \langle F_{Bi} \rangle_{\Lambda \omega}^2},$$

(II3.3)

Табл.1П.3. Погрешности измеренных параметров.

Погрешность	Номер резонанса						
	1	2	3	4	5	6	
$\left \partial F_{\mathrm{B}i} / \partial \Delta \omega_i \right (\mathrm{M} \Gamma \mathrm{u}^{-1})$	0.005	0.012	0	0	0.003	0.002	
$\delta \omega_i \left(\mathrm{M} \Gamma \mathrm{H} \right)$	0.33	0.21	0.27	0.12	0.26	0.20	
$δΩ_i$ (ΜΓц)	0.02	0.02	0.04	0.01	0.06	0.03	
δ $\Delta \omega_i$ (ΜΓц)	0.54	0.27	0.75	0.36	0.79	0.39	
$\delta F_{\mathrm{B}\Omega i}$	0	0.001	0.002	0	0.003	0.001	
$\delta F_{\mathbf{B}\omega i}$	10 ⁻⁶	8×10^{-7}	4×10^{-7}	2×10^{-7}	4×10^{-7}	3×10^{-7}	
$\delta F_{\mathbf{B}\Delta\omega i}$	0.027	0.008	0.011	0.009	0.014	0.007	
$\delta F_{\mathrm{B}i}$	0.027	0.008	0.011	0.009	0.014	0.007	
$\delta T_{\mathrm{D}i}$ (мкс)	0.21	0.03	0.34	0.05	0.07	0.08	
$\left \partial n_i / \partial T_{\mathrm{D}i} \right (\mathrm{ppm} \cdot \mathrm{M} \mathrm{K} \mathrm{c}^{-1})$	393216.1	1932815.9	1558195.7	11522535.9	2683562.3	1532906.2	
$\left \partial n_i / \partial F_{\mathrm{B}i} \right $ (ppm)	1.72	3.18	8.82	120.16	4.50	13.30	
$\frac{\delta n_i (\text{ppm})}{2}$	0.083	0.061	0.53	0.576	0.190	0.124	

где $\langle F_{Bi} \rangle_{\Omega}$, $\langle F_{Bi} \rangle_{\omega}$ и $\langle F_{Bi} \rangle_{\Delta \omega}$ означают усреднения по Ω_i , ω_i и $\Delta \omega_i$ соответственно. Предполагая величины Ω_i , ω_i и $\Delta \omega_i$ нормально распределенными по закону

$$N_0(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - x_{av}}{\sigma}\right)^2\right],$$
 (II3.4)

где x_{av} и σ – среднее значение и стандартное отклонение соответствующей величины, получаем стандартные формулы для вычисления среднего:

$$\langle F_{\mathrm{B}i} \rangle_{h} = \int F_{\mathrm{B}i} N_{0}(x) \mathrm{d}h ,$$

$$\langle F_{\mathrm{B}i}^{2} \rangle_{h} = \int F_{\mathrm{B}i}^{2} N_{0}(x) \mathrm{d}h ,$$

$$h = \Omega_{i}, \omega_{i}, \Delta\omega_{i}.$$

$$(\Pi 3.5)$$

В качестве среднего значения параметров Ω_i , ω_i , $\Delta\omega_i$ и их стандартного отклонения были взяты значения соответствующих параметров в аппроксимирующей экспериментальные данные функции и погрешность их аппроксимации. В случае $\Delta\omega_i$ использовался резонанс, полученный с помощью приложения радиочастотного π -импульса. Таким образом, суммарная погрешность определения $F_{\text{B}i}$ для каждого из разрешенных резонансов

$$\delta F_{\mathrm{B}i} = \sqrt{\delta F_{\mathrm{B}\Omega i}^{2} + \delta F_{\mathrm{B}\omega i}^{2} + \delta F_{\mathrm{B}\Delta\omega i}^{2}},\qquad(\Pi 3.6)$$

и результирующая погрешность определения концентрации составила 1.4 ppm.

- Doherty M.W., Dolde F., Fedder H., Jelezko F., Wrachtrup J., Manson N.B., Hollenberg L.C.L. *Phys. Rev. B: Condens. Matter Mater. Phys.*, 85, 1 (2012).
- Simpson D.A., Ryan R.G., Hall L.T., Panchenko E., Drew S.C., Petrou S., Donnelly P.S., Mulvaney P., Hollenberg L.C.L. *Nat. Commun.*, 8, 458 (2017).

- Fang K., Acosta V.M., Santori C., Huang Z., Itoh K.M., Watanabe H., Shikata S., Beausoleil R.G. *Phys. Rev. Lett.*, 110, 130802 (2013).
- Kucsko G., Maurer P.C., Yao N.Y., Kubo M., Noh H.J., Lo P.K., Park H., Lukin M.D. *Nature*, 500, 54 (2013)
- Acosta V.M., Budker D., Hemmer P.R., Maze J.R., Walsworth R.L. Opt. Magnetometry, 8, 142 (2011).
- Steinert S., Ziem F., Hall L.T., Zappe A., Schweikert M., Götz N., Aird A., Balasubramanian G., Hollenberg L., Wrachtrup J. *Nat. Commun.*, 4, 1607 (2013).
- Rubinas O.R., Vorobyov V.V., Soshenko V.V., Bolshedvorskii S.V., Sorokin V.N., Smolyaninov A.N., Vins V.G., Yelisseyev A.P., Akimov A.V. J. Phys. Commun., 2, 115003 (2018).
- Yelisseyev A., Babich Y., Nadolinny V., Fisher D., Feigelson B. Diamond Relat. Mater., 11, 22 (2002).
- Dobrinets I.A., Vins V.G., Zaitsev A.M. *HPHT-Treated Diamonds* (Berlin-Heidelberg: Springer-Verlag, 2013).
- Ajoy A., Bissbort U., Lukin M.D., Walsworth R.L., Cappellaro P. *Phys. Rev. X*, 5, 011001 (2015).
- 11. Childress L.I. PhD Thesis (Cambridge: Harvard Uiversity, 2007).
- 12. Hahn E.L. Phys. Rev., 80, 580 (1950).
- 13. De Lange G., van der Sar T., Blok M., Wang Z.-H., Dobrovitski V., Hanson R. Sci. Rep., **2**, 382 (2012).
- Bauch E., Hart C.A., Schloss J.M., Turner M.J., Barry J.F., Kehayias P., Singh S., Walsworth R.L. *Phys. Rev. X*, 8, 031025 (2018).
- Xing J., Chang Y.C., Wang N., Liu G.Q., Pan X.Y. Chin. Phys. Lett., 33 (10), 107601 (2016).
- 16. Wolf T., Neumann P., Isoya J., Wrachtrup J. Phys. Rev. X, 5, 041001 (2014).
- Rubinas O.R., Soshenko V.V., Bolshedvorskii S.V., Zeleneev A.I., Galkin A.S., Tarelkin S.A., Troschiev S.Y., Vorobyov V.V., Sorokin V.N., Sukhanov A.A., Vins V.G., Smolyaninov A.N., Akimov A.V. *Results Phys.*, 21, 103845 (2021).
- Acosta V.M., Bauch E., Ledbetter M.P., Santori C., Fu K.M.C., Barclay P.E., Beausoleil R.G., Linget H., Roch J.F., Treussart F., Chemerisov S., Gawlik W., Budker D. *Phys. Rev. B: Condens. Matter Mater. Phys.*, **80**, 1 (2009).
- 19. Stoneham A.M. Mater. Sci. Eng. B, 11, 211 (1992).
- 20. Schweiger A., Jeschke G. *Principles of Pulse Electron Paramagnetic Resonance* (Oxford University Press, 2001).