In vivo неинвазивное определение концентрации и связывающих свойств воды в роговом слое кожи человека с помощью конфокальной микроспектроскопии комбинационного рассеяния (мини-обзор)^{*}

М.Е.Дарвин, Ч.З.Чо, И.Шлойзенер, Ю.Ладеманн

Вода играет важную роль в нормальном функционировании кожи. Роговой слой (PC) – самый внешний слой эпидермиса, который поддерживает барьерную функцию кожи и регулирует водный баланс в организме. Вода в PC распределена неравномерно, и ее правильное определение важно в дерматологии и косметологии. Конфокальная микроспектроскопия комбинационного рассеяния (KMKP) является наиболее подходящим неинвазивным методом для определения профилей концентрации воды, воды с разной подвижностью и силой водородных связей молекул воды в коже человека in vivo, m. e. для изучения гидратации и увлажнения PC. В данной статье рассматривается применение КМКР для исследования in vivo нормальной кожи человека с целью изучения профиля концентрации воды и свойств связывания воды в PC. Исследования, проведенные среди добровольцев двух возрастных групп, показали, что PC «возрастной» кожи связывает воду эффективнее, чем PC более молодой кожи.

Ключевые слова: барьерная функция кожи, гидратация кожи, увлажнение кожи, подвижность воды, межклеточные липиды, эпидермис, старение.

1. Введение

Роговой слой (РС), самый верхний слой эпидермиса, состоит из корнеоцитов, содержащих межклеточные липиды, которые поддерживают барьерную функцию кожи, т.е. обеспечивают защиту от внешних физических и химических воздействий, препятствуют проникновению патогенов в организм и играют важную роль в регуляции водного баланса в организме. Основными компонентами РС являются кератин, липиды, молекулы естественного фактора увлажнения (ЕФУ) и вода. Кроме того, РС содержит каротиноиды и меланин. Все компоненты РС неоднородно распределены по глубине слоя [1,2]. Концентрация воды минимальна у поверхности РС и максимальна в самой глубокой его области [3]; общая концентрация воды в PC колеблется в пределах 0.20-0.78 г/см³ [4]. Вода необходима для РС, т.к. она служит средой для многих ферментов и других веществ, которые делают РС метаболически активным. Основными центрами связывания воды в РС являются молекулы ЕФУ [5] и кератин [6] внутри корнеоцитов, а также, в меньшей степени, ламеллярная структура внеклеточных липидов [7] между корнеоцитами. Эффективность связывания воды неоднородна и зависит от глубины РС [8,9].

C.S.Choe. Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, DPR Korea

Поступила в редакцию 3 ноября 2020 г.

Концентрация воды в коже является важным физиологическим параметром для контроля степени гидратации сухой и обезвоженной кожи, а также для диагностики ряда кожных заболеваний и контроля лечения. Для ее определения необходимо использование неинвазивных методов *in vivo*. Для неинвазивного измерения содержания воды в коже человека *in vivo* используются электрические (корнеометрия) [10,11], оптические (ИК спектроскопия [12,13], спектроскопия отражения в ближнем ИК диапазоне [14–16], конфокальная микроспектроскопия комбинационного рассеяния (КМКР) [3, 17, 18]) и другие методы [19–24].

Электрические методы включают измерения электрической проводимости и емкости кожи. Значения проводимости хорошо коррелируют с содержанием воды на глубине до 15 мкм, т.е. в РС, а значения емкости – с содержанием воды на глубине до 45 мкм, т.е. в сосочковой дерме [25, 26]. Таким образом, эти методы можно использовать для определения сухости РС и обезвоживания кожи соответственно. Преимущества электрических методов низкая стоимость приборов и простота процедуры измерения. К недостаткам можно отнести низкую стабильность измерений, которая может дополнительно зависеть от внешних факторов, таких как температура и влажность, а также от смачивания поверхности кожи, на которую влияет потоотделение, трансэпидермальная потеря воды (ТЭПВ), наличие косметики и качество контакта датчика с поверхностью кожи при измерениях. Кроме того, измерения электрической проводимости и емкости выполняются интегрально и не дают информации о градиенте распределения воды.

В красной и ближней ИК областях спектра ($\lambda < 1$ мкм) кожа характеризуется низкими коэффициентами поглощения и рассеяния (так называемое окно спектральной прозрачности кожи) [27] и низкой интенсивностью флуоресценции [28], что определяет частый выбор этих длин волн для измерений на коже. Поглощение излучения во-

^{*}Перевод с англ. В.Л.Дербова.

M.E.Darvin, J.Schleusener, J.Lademann. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany; e-mail: maxim.darvin@charite.de

дой сильно увеличивается в ИК диапазоне, начиная с длин волн ~1 мкм [29, 30]. По этой причине спектроскопия отражения для воды в основном проводится в этом спектральном диапазоне [14, 16]. Оптические лазерные микроскопические методы, работающие в красном и ближнем ИК диапазонах, весьма перспективны для неинвазивных измерений воды и, благодаря использованию лазеров со стабильным уровнем интенсивности, характеризуются высокой точностью измерений и возможностью определения профиля распределения воды с микронным разрешением. Преимуществом КМКР является возможность выполнять неинвазивные in vivo измерения концентрации воды [13, 31, 32] и силы водородных связей молекул воды [18, 33], профилей ее распределения вплоть до слоя сосочковой дермы. При исследовании РС предполагалось, что кератин – основной белок РС – может быть использован для нормированного ослабления сигнала, зависящего от глубины [34].

В настоящей работе представлены профили концентрации воды по глубине в зависимости от ее состояния подвижности и свойств связывания воды в PC, полученные *in vivo* среди здоровых добровольцев двух возрастных групп с использованием КМКР. Специфицирован метод КМКР и обсуждены полученные результаты.

2. Материалы и методы

Неинвазивные измерения проводились *in vivo* на коже ладонной части предплечья среди 11 здоровых добровольцев в возрасте от 23 до 62 лет с использованием конфокального рамановского микроскопа (модель 3510, RiverD International B.V., Роттердам, Нидерланды). Спектральную область «отпечатка пальца» (fingerprint, FP), 400 – 2000 см⁻¹, возбуждали излучением лазера на длине волны 785 нм (время экспозиции 5 с, мощность 20 мВт), область с высокими волновыми числами (high wave number, HWN), 2000 – 4000 см⁻¹, – лазерным излучением на 671 нм (время экспозиции 1 с, мощность 17 мВт). Пространственное разрешение – менее 2 см⁻¹. Спектры комбинационного рассеяния (КР) в областях FP и HWN записывались в одном и том же месте на коже с шагом 2 мкм между поло-

жениями мест записи на расстояниях примерно 10 мкм над поверхностью и 30 мкм ниже поверхности. Точное положение поверхности кожи определялось на уровне половины максимума профиля кератина, измеренного на частоте около 1650 см⁻¹ [3], а толщина PC определялась в том месте, где градиент концентрации воды достигал 0.5, что соответствует границе между PC и зернистым слоем [35]. Перед обработкой спектров КР в области HWN фон флуоресценции был удален с помощью описанного в [18] алгоритма кусочно-взвешенной аппроксимации методом наименьших квадратов.

Декомпозиция полосы КР в области HWN выполнялась методом множественной нелинейной регрессии с использованием 10 функций Гаусса. Начальные положения центров для функций Гаусса указывались при частотах 2850 см⁻¹ (симметричные валентные колебания СН-групп липидов), 2880 см⁻¹ (асимметричные валентные колебания СН-групп липидов), 2930 см⁻¹ (симметричные валентные колебания CH₃-групп кератина), 2980 см⁻¹ (асимметричные валентные колебания СН₃-групп кератина), 3005 см⁻¹ (жесткосвязанная вода, DAA), 3060 см⁻¹ (валентное колебание групп СН олефинов кератина), 2280 см⁻¹ (сильносвязанная вода, DDAA), 3460 см⁻¹ (слабосвязанная вода, DA), 3604 см⁻¹ («свободная» вода) и 3330 см⁻¹ (NH-колебание кератина). Полученные данные анализировались в среде Matlab R2015a (The Mathworks Inc., Натик, США).

Все процедуры соответствовали Хельсинкской декларации и были одобрены Комитетом по этике Медицинского университета «Шарите», Берлин.

3. Результаты и их обсуждение

Вода характеризуется интенсивным спектром КР в широком диапазоне волновых чисел, примерно 3000 – 3700 см⁻¹ (валентные колебания группы ОН). Обычно концентрация воды в РС рассчитывается на основе соотношения между полосой КР, относящейся к воде (3350 – 3550 см⁻¹), и полосой КР, связанной с белком (2910 – 2965 см⁻¹) [3, 34]. Эти области схематически показаны на рис.1,*а*. В случае кожи, обработанной косметическими составами, обычно рекомендуется нормировка по полосе

Рис.1. Спектр комбинационного рассеяния PC ладонной части предплечья человека *in vivo* на глубине 20 мкм (толщина PC составляет 20 мкм) в области 2780 – 3750 см^{-1} , разложенный с использованием функций Гаусса (*a*), и профиль распределения концентрации воды по глубине, полученный из отношения интенсивностей $I_{3350-3550}/I_{2910-2965}$ с учетом неоднородности распределения кератина в PC (*b*). Рисунки заимствованы из работ [1, 18].

КР амида I на частоте 1650 см⁻¹ из-за отсутствия или контролируемого перекрытия области 2910-2965 см⁻¹ [36, 37]. Нормировка по полосе КР, связанной с кератином, необходима для учета зависящего от глубины ослабления сигналов лазерного возбуждения и комбинационного рассеяния, вызванного поглощением и диффузным рассеянием кожи. Как недавно было показано, концентрация кератина уменьшается вглубь из-за увеличения концентрации воды, что может быть учтено при моделировании ослабления сигнала в РС [38]. Результаты показывают, что учет неоднородности концентрации кератина в РС приводит к незначительному занижению значений концентрации воды на глубине, составляющей 50% – 100% от толщины PC (параметр отклонения p < 0.05) [1]. Профиль концентрации воды в РС, рассчитанный с учетом неоднородности распределения в нем кератина, представлен на рис.1,б. Концентрация воды в РС неоднородна: минимальная концентрация (около 33%) достигается вблизи поверхности (0-20% толщины РС). Далее концентрация воды равномерно увеличивается и достигает максимума $(\sim 62\%)$ на границе между РС и зернистым слоем (100%) толщины РС).

Спектр КР воды в области $3000-3750 \text{ см}^{-1}$ содержит следующую информацию о подвижности воды: более низкие или более высокие частоты соответствуют большей или меньшей силе водородных связей воды с окружающими молекулами, т. е. меньшей или большей подвижности воды [39, 40]. Представление спектра комбинационного рассеяния РС кожи человека в виде суперпозиций функций Гаусса иллюстрирует рис.1,*a*, где показано наложение связанных с кератином полос КР вблизи 3063 и 3330 см⁻¹ на спектр воды. Разложенный спектр КР описывает молекулы воды с разной подвижностью, т.е. с разными состояниями водородных связей: примерно на 3005 см⁻¹ – жесткосвязанная вода, на 3277 см⁻¹ – сильносвязанная вода, на 3458 см⁻¹ – слабосвязанная вода и на 3604 см⁻¹ – несвязанная вода [18].

Отслеживание интенсивности КР по соответствующим гауссовым кривым дает информацию о распределении различных типов воды в зависимости от силы водородных связей в РС (рис.2,*a*). Как видно из рисунка, доля сильносвязанной и слабосвязанной воды составляет свыше 90% от всей воды в РС. Оставшаяся часть (менее 10%) приходится на жесткосвязанные и несвязанные типы воды. Отношение концентраций слабосвязанной и сильносвязанной воды дает представление о силе водородных связей молекул воды в PC (рис.2, δ). Это важный физиологический параметр, который показывает эффективность связывания молекул воды на разной глубине в PC. Более низкое значение параметра отвечает лучшей эффективности связывания воды с окружающими молекулами PC, что наблюдается на глубине порядка 20%–40% толщины PC.

Кожа человека с возрастом претерпевает изменения [41,42], что влияет на связывание воды в PC [43]. Для участия в пилотном исследовании с использованием КМКР были набраны добровольцы, составившие младшую группу (23–34 года, средний возраст 29 лет) и старшую группу (45–62 года, средний возраст 50 лет). Толщина PC на ладонной части предплечья в старшей группе, равная 21 ± 2 мкм, была немного больше, чем в младшей группе, где она составляла 19 ± 1 мкм (умеренное различие, p < 0.1) [44]. На рис.3 приведены результаты для распределений концентрации воды в PC в зависимости от состояния ее подвижности и силы водородных связей для обеих групп.

Распределения слабосвязанной и сильносвязанной воды в PC демонстрируют значительные различия (p < p0.05) между младшей и старшей группами на глубинах, составляющих 10%-30% от толщины РС. Роговой слой у младшей группы содержит больше слабосвязанной и меньше сильносвязанной воды по сравнению со старшей группой (рис.3, а и б). Не было обнаружено различий для групп в распределениях жесткосвязанной и несвязанной воды (рис.3, в и г). Сила водородных связей воды на глубине 10%-30% от толщины РС значительно больше у старшей группы (рис.3,д), что означает более эффективное связывание воды на этих глубинах по сравнению с младшей группой. Таким образом, увеличение возраста приводит к увеличению связывания воды на определенной глубине РС, что может быть связано с увеличением концентрации ЕФУ и орторомбической организации межклеточных липидов на глубине 10%-30% РС [44]. Эти результаты согласуются с данными о несколько более низком показателе ТЭПВ в стареющей коже, что указывает на усиление барьерной функции [45, 46]. Однако

Рис.2. Профили распределения по глубине PC кожи человека для концентрации молекул воды с различной подвижностью, зависящей от силы водородных связей (a), и отношение концентраций слабо- и сильносвязанной воды (δ), измеренные *in vivo* с использованием КМКР. Рисунки заимствованы из работы [18].

Рис.3. Профили распределения по глубине для слабосвязанных (*a*), сильносвязанных (*b*), жесткосвязанных (*b*) и несвязанных (*c*) молекул воды, а также сила водородных связей молекул воды в PC (*d*). В обеих возрастных группах измерения проводились *in vivo* с использованием КМКР; знаком «*» отмечена область, где различия значительные (p < 0.05). Рисунки заимствованы из работы [44].

ТЭПВ не содержит информации о гидратации кожи. Следует учитывать, что связывание воды в РС может отличаться от представленного на рис.3 для добровольцев в возрасте свыше 70 лет, т.к. в этом возрасте собственное старение более выражено и проявляется клинически [47].

В заключение можно резюмировать, что профили распределения по глубине концентрации воды, воды с разной подвижностью, а также сила водородных связей молекул воды могут быть успешно определены *in vivo* в PC кожи человека в полностью неинвазивном режиме. Работа М.Е.Д., И.Ш. и Ю.Л. выполнена при поддержке Фонда физиологии кожи Ассоциации доноров немецкой науки и гуманитарных наук. Ч.З.Ч. получил поддержку от Немецкой службы академических обменов (DAAD) за исследования в отделении дерматологии Медицинского университета «Шарите» (Берлин).

- Darvin M.E., Choe C.S., Schleusener J., Lademann J. Biomed. Opt. Express, 10 (6), 3092 (2019).
- Yakimov B.P., Shirshin E.A., Schleusener J., Allenova A.S., Fadeev V.V., Darvin M.E. Sci. Rep., 20, 14374 (2020).

- Caspers P.J., Lucassen G.W., Bruining H.A., Puppels G.J. J. Raman Spectrosc., 31 (8 – 9), 813 (2000).
- 4. Li X., Johnson R., Kasting G.B. J. Pharm. Sci., 105 (3), 1141 (2016).
- 5. Rawlings A.V., Harding C.R. Dermatol. Ther., 17 (1), 43 (2004).
- 6. Scheuplein R.J., Morgan L.J. Nature, 214 (5087), 456 (1967).
- Imokawa G., Kuno H., Kawai M. J. Investig. Dermatol., 96 (6), 845 (1991).
- Choe C., Schleusener J., Lademann J., Darvin M.E. Sci. Rep., 7 (1), 15900 (2017).
- Caussin J., Groenink H.W., de Graaff A.M., Gooris G.S., Wiechers J.W., van Aelst A.C., Bouwstra J.A. *Exp. Dermatol.*, 16 (11), 891 (2007).
- 10. Tagami H.Br. J. Dermatol., 171 (3), 29 (2014).
- Утц С.Р., Каракаева А.В., Галкина Е.М. Саратовский научномедицинский журнал, 10 (3), 512 (2014).
- Potts R.O., Guzek D.B., Harris R.R., Mckie J.E. Arch. Dermatol. Res., 277 (6), 489 (1985).
- Lucassen G.W., van Veen G.N., Jansen J.A. J. Biomed. Opt., 3 (3), 267 (1998).
- Якимов Б.П., Давыдов Д.А., Фадеев В.В., Будылин Г.С., Ширшин Е.А. Квантовая электропика, 50 (1), 41 (2020) [Quantum Electron., 50 (1), 41 (2020)].
- Behm P., Hashemi M., Hoppe S., Wessel S., Hagens R., Jaspers S., Wenck H., Rubhausen M. *AIP Advances*, 7 (11), 115004 (2017).
- Attas M., Posthumus T., Schattka B., Sowa M., Mantsch H., Zhang S.L. Vibr. Spectrosc., 28 (1), 37 (2002).
- van Logtestijn M.D., Dominguez-Huttinger E., Stamatas G.N., Tanaka R.J. *PLOS One*, **10** (2), e0117292 (2015).
- 18. Choe C., Lademann J., Darvin M.E. Analyst, 141 (22), 6329 (2016).
- 19. Verdier-Sevrain S., Bonte F. J. Cosmet. Dermatol., 6 (2), 75 (2007).
- 20. Asogwa C.O., Lai D.T.H. Electronics, 6 (4), 82 (2017).
- Xiao P., Wong W., Cottenden A.M., Imhof R.E. Int. J. Cosmet. Sci., 34 (4), 328 (2012).
- Wang J., Stantchev R.I., Sun Q., Chiu T.W., Ahuja A.T., MacPherson E.P. *Biomed. Opt. Express*, 9 (12), 6467 (2018).
- Yang X., Zhao X., Yang K., Liu Y.P., Liu Y., Fu W.L., Luo Y. Trends Biotechnol., 34 (10), 810 (2016).
- Кекконен Э.А., Коновко А.А., Ли Ю.С., Ли И.-М., Ожередов И.А., Парк К.Х., Сафонова Т.Н., Сикач Е.И., Шкуринов А.П. Квантовая электропика, 50 (1), 61 (2020) [Quantum Electron., 50 (1), 61 (2020)].
- Alanen E., Nuutinen J., Nicklen K., Lahtinen T., Monkkonen J. Skin Res. Technol., 10 (1), 32 (2004).

- Clarys P., Clijsen R., Taeymans J., Barel A.O. Skin Res. Technol., 18 (3), 316 (2012).
- Bashkatov A.N., Genina E.A., Kochubey V.I., Tuchin V.V. J. Phys. D: Appl. Phys., 38 (15), 2543 (2005).
- Schleusener J., Lademann J., Darvin M.E. J. Biomed. Opt., 22 (9), 91503 (2017).
- 29. Bertie J.E., Lan Z.D. Appl. Spectrosc., 50 (8), 1047 (1996).
- Бернацкий А.В., Лагунов В.В., Очкин В.Н. Квантовая электроника, 49 (2), 157 (2019) [Quantum Electron., 49 (2), 157 (2019)].
- Nakagawa N., Matsumoto M., Sakai S. Skin Res. Technol., 16 (2), 137 (2010).
- Sdobnov A.Y., Tuchin V.V., Lademann J., Darvin M.E. J. Phys. D: Appl. Phys., 50, 285401 (2017).
- Sdobnov A.Y., Darvin M.E., Schleusener J., Lademann J., Tuchin V.V. J. Biophoton., 12 (5), e201800283 (2019).
- Caspers P.J., Lucassen G.W., Carter E.A., Bruining H.A., Puppels G.J. J. Investig. Dermatol., 116 (3), 434 (2001).
- Crowther J.M., Sieg A., Blenkiron P., Marcott C., Matts P.J., Kaczvinsky J.R., Rawlings A.V. Br. J. Dermatol., 159 (3), 567 (2008).
- Choe C., Schleusener J., Choe S., Lademann J., Darvin M.E. J. Biophoton., 13 (1), e201960106 (2020).
- Choe C., Schleusener J., Choe S., Ri J., Lademann J., Darvin M.E. *Int. J. Cosmet. Sci.*, **42**, 482 (2020).
- Choe C., Choe S., Schleusener J., Lademann J., Darvin M.E. J. Raman Spectrosc., 50 (7), 945 (2019).
- 39. Sun Q. Vibr. Spectrosc., 51 (2), 213 (2009).
- 40. Sun Q. Chem. Phys. Lett., 568, 90 (2013).
- Gniadecka M., Nielsen O.F., Christensen D.H., Wulf H.C. J. Investig. Dermatol., 110 (4), 393 (1998).
- 42. Kammeyer A., Luiten R.M. Ageing Res. Rev., 21, 16 (2015).
- 43. Gniadecka M., Nielsen O.F., Wessel S., Heidenheim M., Christensen
- D.H., Wulf H.C. J. Investig. Dermatol., **111** (6), 1129 (1998). 44. Choe C., Schleusener J., Lademann J., Darvin M.E. Mech. Ageing
- Dev., 172, 6 (2018).
 45. Boireau-Adamezyk E., Baillet-Guffroy A., Stamatas G.N. Skin Res. Technol., 20 (4), 409 (2014).
- Kottner J., Lichterfeld A., Blume-Peytavi U. Arch. Dermatol. Res., 305 (4), 315 (2013).
- Blume-Peytavi U., Kottner J., Sterry W., Hodin M.W., Griffiths T.W., Watson R.E., Hay R.J., Griffiths C.E. *Gerontologist*, 56 (2), S230 (2016).