ГЕНЕРАЦИЯ ТЕРАГЕРЦЕВОГО ИЗЛУЧЕНИЯ

Терагерцевая лазерная генерация на гибридном поверхностном плазмоне в структуре на основе HgCdTe

А.А.Дубинов, В.Я.Алешкин, В.И.Гавриленко, В.В.Румянцев, Н.Н.Михайлов, С.А.Дворецкий, В.В.Уточкин, С.В.Морозов

Исследована возможность усиления терагерцевого гибридного поверхностного плазмона в структуре с эпитаксиальной пленкой $Hg_{0.82}Cd_{0.18}Te$, выращенной на подложке GaAs и покрытой слоем металла. Показано, что при толщине пленки 100 нм и температуре 80 К модовое усиление гибридного поверхностного плазмона может быть больше внешних потерь при интенсивности излучения накачки с длиной волны 2.3 мкм, превышающей 850 кВт/см². Дополнительное легирование слоя $Hg_{0.82}Cd_{0.18}Te$ донорной примесью с концентрацией 4×10^{17} см⁻³ приведет к уменьшению пороговой интенсивности накачки в 1.5 раза.

Ключевые слова: гибридный плазмон, терагерцевое излучение, лазер.

1. Введение

В настоящее время лидирующее место среди полупроводниковых источников излучения в терагерцевой области частот занимают монополярные квантовые каскадные лазеры (ККЛ) на основе соединений АзВ5. Однако существует диапазон частот (6-15 ТГц), в котором работа данных ККЛ затруднена, а зачастую и невозможна из-за сильного поглощения в них лазерного излучения полярно-оптическими фононами [1]. Альтернативой материалам А₃В₅ могут служить материалы, для которых частоты полярно-оптических фононов располагаются далеко от рассматриваемой области частот. Таким материалом, в частности, является твердый раствор HgCdTe (mercury cadmium telluride, MCT), оптические фононы которого имеют частоты в области 4 ТГц. Этот материал широко применяется для создания приемников и приемных матриц среднего ИК диапазона (см., напр., работу [2] и приведенные в ней ссылки). С другой стороны, недавно было предложено использовать квантовые ямы на основе HgCdTe для создания ККЛ, генерирующего излучение на частотах ~8.3 ТГц [3].

Однако ККЛ, в том числе на основе HgCdTe, достаточно сложны в изготовлении из-за необходимости выращивания огромного числа квантово-размерных слоев требуемого качества. Поэтому альтернативой усилению на межподзонных оптических переходах (как в ККЛ) может стать усиление на межзонных оптических переходах в терагерцевой области частот. Для этого целесообразно использовать структуры на основе HgCdTe, в которых ши-

e-mail: sanya@ipm.sci-nnov.ru

Поступила в редакцию 7 октября 2020 г.

рину запрещенной зоны можно менять в широких пределах (от нуля до 1.6 эВ) за счет изменения доли Cd [2].

Межзонные лазеры среднего ИК диапазона на основе HgCdTe с оптической накачкой известны достаточно давно [4]. До недавнего времени такие лазеры генерировали излучение лишь на частотах, превышающих 56 ТГц [5]. Значительный прогресс в технологии молекулярно-пучковой эпитаксии таких структур, достигнутый в последние годы в ряде технологических групп, открывает широкие перспективы для создания источников излучения терагерцевого диапазона, что демонстрируют последние опубликованные экспериментальные результаты. В частности, в лазерных структурах на межзонных переходах с 10 квантовыми ямами HgTe/HgCdTe впервые обнаружено стимулированное излучение при оптической накачке на частотах в области 15 ТГц [6, 7].

Использование в качестве активной среды квантовых ям HgTe/HgCdTe вместо объемных слоев HgCdTe значительно снижает темп оже-рекомбинации [6,8,9], что, как показывают теоретические оценки [10], позволит получить генерацию излучения на частотах, немного превышающих 5 ТГц, при температуре ниже температуры жидкого азота. Однако сделанные в работе [10] оценки порога генерации (интенсивность излучения накачки с длиной волны 2.15 мкм составила 10-100 кВт/см²) для диапазона частот 5-15 ТГц не совсем корректны, т.к. не были проведены расчеты характеристик волноводных мод в лазере (поглощение в пассивных слоях $\alpha_{\rm p}$, потери на зеркалах $\alpha_{\rm m}$ и фактор оптического ограничения Γ). На самом деле в [10] были вычислены не пороги лазерной генерации $((G - \alpha_a)\Gamma = \alpha_p + \alpha_m)$, а пороги прозрачности, при которых коэффициент усиления активной среды G становится равным коэффициенту ее поглощения α_a . Если друдепоглощением на частоте излучения лазера в его пассивных нелегированных слоях можно пренебречь при выборе энергии кванта оптической накачки, меньшей ширины запрещенной зоны этих слоев (поглощение излучения накачки только в активной среде), то фононным поглощением в растворах HgCdTe пренебрегать нельзя. Также становится важным учет поглощения излучения фононами в указанном выше диапазоне частот в подложке GaAs, которая используется для выращивания лазерных структур

А.А.Дубинов. Институт физики микроструктур РАН, Россия, 603950 Н.Новгород, ГСП-105; Национальный исследовательский Нижегородский государственный университет им. Н.И.Лобачевского, Россия, 603950 Н.Новгород, просп. Гагарина, 23;

В.Я.Алешкин, В.И.Гавриленко, В.В.Румянцев, В.В.Уточкин, С.В.Морозов. Институт физики микроструктур РАН, Россия, 603950 Н.Новгород, ГСП-105

Н.Н.Михайлов, С.А.Дворецкий. Институт физики полупроводников им. А.В.Ржанова СО РАН, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 13

на основе HgCdTe [6–8]. Проведенные ранее расчеты показали [11], что коэффициент этого поглощения может составлять ~20 см⁻¹, а фактор оптического ограничения для основной ТЕ моды диэлектрического волновода в структуре с пятью квантовыми ямами HgTe/Hg_{0.3}Cd_{0.7}Te равен ~0.004. Следовательно, для возникновения лазерной генерации разность $G - \alpha_a$ должна превышать 5000 см⁻¹.

Фактор оптического ограничения и, соответственно, модовый коэффициент усиления ($g = G\Gamma$) могут быть существенно больше при возбуждении не ТЕ моды, а двумерного плазмона, который является одной из двух ТМ мод, локализованной вблизи квантовой ямы с достаточной концентрацией свободных носителей [12]. В двумерном плазмоне, распространяющемся в направлении оси x, имеются две компоненты электрического поля. Компонента электрического поля $E_x(z)$ симметрична относительно оси z, перпендикулярной плоскости квантовой ямы, если в качестве точки z = 0 выбрать середину ямы, т.е. $E_x(z) =$ $E_{x}(-z)$. Вторая компонента $E_{z}(z)$ антисимметрична, т.е. $E_z(z) = -E_z(-z)$. Эффективный показатель преломления указанной моды n_{eff} превышает 100, поэтому ее достаточно сложно согласовать с модами открытого пространства. Для эффективного вывода излучения такой моды из структуры необходимо, например, наносить на структуру металлическую решетку с периодом порядка $\lambda/n_{\rm eff}$, где λ – длина волны излучения в вакууме.

Другая ТМ мода, компонента электрического поля $E_{z}(z)$ которой симметрична в квантовой яме, а компонента электрического поля $E_x(z)$ антисимметрична, слабо локализована вблизи квантовой ямы. Однако компоненту $E_{z}(z)$ можно сильно локализовать в слое, модуль диэлектрической проницаемости | є | которого много меньше (или даже близок к нулю) модуля диэлектрической проницаемости окружающей этот слой среды, т.к. для ТМ моды справедливо следующее граничное условие: непрерывность $E_z(z)/\varepsilon(z)$ на всех границах. Материалы с $|\varepsilon|$, близким к нулю (epsilon near zero materials, ENZ-материалы), обладают необычными свойствами, которые можно реализовать в полупроводниках на частотах, близких к плазменной частоте [13, 14]. Поверхностные плазмоны, распространяющиеся вдоль границ металл-ENZ-материал-обычный материал, называются гибридными [15, 16].

Известно, что в квантовых ямах HgTe/HgCdTe основной уровень дырок представлен главным образом состояниями тяжелых дырок. Поэтому, согласно правилам отбора для переходов электронов между валентной зоной и зоной проводимости [17], возможно усиление только тех мод, для которых компонента электрического поля лежит в плоскости квантовой ямы и симметрична относительно нее. Такая компонента электрического поля есть только у ТЕ мод и у двумерного плазмона. В объемном полупроводнике потолок валентной зоны вырожден: энергии тяжелых и легких дырок совпадают, и возможно усиление мод, компонента электрического поля которых имеет произвольное направление. В настоящей работе исследована возможность усиления гибридного поверхностного плазмона в структуре на основе тонкого объемного слоя Hg_{0.82}Cd_{0.18}Te, покрытой слоем металла. Такой выбор доли кадмия в твердом растворе связан с тем, что ширина запрещенной зоны материала $Hg_{0.82}Cd_{0.18}Te(E_g)$ составляет 44 мэВ (10.64 ТГц) при температуре 80 К [2], т.е. частота излучения попадает в интересующий нас диапазон.

Были вычислены показатели преломления *n*_{eff}, друдевские и фононные потери, а также усиление второй рассматриваемой ТМ моды. Показано, что при реалистичных параметрах структуры $Hg_{0.82}Cd_{0.18}$ Te/CdTe/GaAs и при температуре, близкой к температуре жидкого азота, модовое усиление гибридного поверхностного плазмона может превысить внешние потери при концентрации фотовозбужденных носителей свыше 4.9×10^{17} см⁻³. А за счет легирования слоя $Hg_{0.82}Cd_{0.18}$ Te донорами с концентрацией 4×10^{17} см⁻³ возможно уменьшение пороговой концентрации фотовозбужденных носителей до 2.2×10^{17} см⁻³.

2. Расчет диэлектрической проницаемости

Для вычисления характеристик гибридного поверхностного плазмона в интересующем нас диапазоне частот необходимо знать частотные зависимости комплексных диэлектрических проницаемостей слоев структуры (подложка GaAs, буферный слой CdTe, активный слой $Hg_{0.82}Cd_{0.18}$ Te, слой Au), которая может быть экспериментально реализована (см., напр., [6-8]). Кроме того, необходимо знать и зависимость от концентрации носителей заряда диэлектрической проницаемости слоя Нg_{0.82}Cd_{0.18}Te. Однако в литературе отсутствуют данные измерений реальной части диэлектрической проницаемости (либо показателя преломления) этого соединения. Можно лишь найти экспериментальные данные по коэффициенту поглощения α (и мнимой части показателя преломления *n*, т. к. $\alpha = 2\omega \text{Im} n/c$, где ω – циклическая частота, а с – скорость света в вакууме), связанного с межзонными переходами, которые достаточно хорошо аппроксимируются следующей формулой [18]:

$$\alpha(\omega) = K \frac{\left(\hbar\omega - E_{\rm g}\right)^P}{\hbar\omega},\tag{1}$$

где \hbar – постоянная Планка; α измеряется в см⁻¹, а $\hbar \omega$ и $E_{\rm g}$ взяты в эВ; $K = -20060 + 115750x + 32.43T - 64170x^2 + 0.43231T^2 - 101.92xT$; P = 0.74487 - 0.44513x + (0.000799 - 0.000757x)T; x – доля кадмия в растворе; T – температура в кельвинах.

Согласно [19] диэлектрическую проницаемость узкозонного раствора $Hg_{1-x}Cd_xTe$ можно педставить в виде суммы:

$$\varepsilon = \varepsilon_{\infty} + \Delta \varepsilon_{\text{inter}} + \Delta \varepsilon_{\text{ph}}, \qquad (2)$$

где $\varepsilon_{\infty} = 15.2 - 15.6x + 8.2x^2$ [2]; $\Delta \varepsilon_{inter}$ и $\Delta \varepsilon_{intra}$ – части диэлектрической проницаемости, связанные с межзонными и внутризонными переходами соответственно; $\Delta \varepsilon_{ph}$ – часть диэлектрической проницаемости, связанная с оптическими фононами. Слагаемым $\Delta \varepsilon_{ph}$ в нашем частотном диапазоне (частоты свыше 10 ТГц) можно пренебречь, т. к. частоты оптических фононов материала HgCdTe лежат в области 4 ТГц [2].

Часть диэлектрической проницаемости, связанной с внутризонными переходами, можно представить в виде [19]

$$\Delta \varepsilon_{\rm intra} = -\frac{\omega_{\rm e}^2 \varepsilon_{\infty}}{\omega^2 + {\rm i}\gamma_{\rm e}\omega} - \frac{\omega_{\rm h}^2 \varepsilon_{\infty}}{\omega^2 + {\rm i}\gamma_{\rm h}\omega},\tag{3}$$

где $\gamma_{e,h} = q/(m_{e,h}^* \mu_{e,h}); q$ – заряд электрона; $\omega_{e,h}^2 = 4\pi N \times q^2/(m_{e,h}^* \varepsilon_{\infty}), \mu_{e,h}$ и $m_{e,h}^*$ – квадрат плазменной частоты, подвижности и эффективные массы проводимости электронов (е) и дырок (h) соответственно; N – концентрация

носителей (одинаковая для электронов и дырок при оптической накачке). Подвижность электронов при температуре менее 100 К и для концентраций электронов, меньших 10^{18} см⁻³, можно считать равной 10^5 см² · B⁻¹ · c⁻¹ [20], а подвижность дырок при тех же условиях составляет ~350 см² · B⁻¹ · c⁻¹ [2].

Спектры электронов и легких дырок в объемных узкозонных растворах HgCdTe являются непараболическими [19]:

$$E_{\rm e,lh}(k) = \frac{1}{2} \left(\pm \sqrt{E_{\rm g}^2 + \frac{2\hbar^2 k^2 E_{\rm g}}{m_{\rm e}}} + E_{\rm g} \right),\tag{4}$$

где $E_{\rm e}(k)$ и $E_{\rm lh}(k)$ – энергии электронов (знак плюс в (4)) и легких дырок (знак минус) соответственно; k – модуль волнового вектора; $m_{\rm e}$ – эффективная масса электрона; $m_{\rm e}/m_0 \approx 0.071 E_{\rm g} (E_{\rm g}$ измеряется в эВ); m_0 – масса свободного электрона [2]. Поэтому $m_{\rm e}^*$ будет зависеть от концентрации электронов и температуры [21]:

$$m_{\rm e}^* = m_{\rm e} \frac{\int_0^\infty f_{\rm e}(E)(1+2E/E_{\rm g})\sqrt{E+E^2/E_{\rm g}}\,\mathrm{d}E}{\int_0^\infty f_{\rm e}(E)\sqrt{E+E^2/E_{\rm g}}\frac{1+[8E/(3E_{\rm g})](1+E/E_{\rm g})}{(1+2E/E_{\rm g})^2}\mathrm{d}E},$$
(5)

где

$$f_{\rm e}(E) = \left[1 + \exp\left(\frac{E - F_{\rm e}}{k_{\rm B}T}\right)\right]^{-1};$$

 $k_{\rm B}$ – постоянная Больцмана. Энергию неравновесного квазиуровня Ферми электронов $F_{\rm e}$ можно получить из следующего выражения, связывающего N и $f_{\rm e}$:

$$N = \frac{1}{\pi^2} \int_0^\infty f_{\rm e}(E_{\rm e}(k)) k^2 {\rm d}k.$$
 (6)

Используя соотношение (5), можно найти, что в слое $Hg_{0.82}Cd_{0.18}$ Те при T = 80 К масса m_e^* будет увеличиваться от $0.0082m_0$ до $0.032m_0$ при изменении N от 10^{16} до 10^{18} см⁻³.

Поскольку плотность состояний в зоне тяжелых дырок много больше плотности состояний в зоне легких дырок, а значит больше и их концентрация, то m_h^* будет определяться только массой тяжелых дырок (закон дисперсии для которых является параболическим): $m_h^* \approx m_{hh} = 0.55m_0$ [2]. Отсюда следует, что при равной концентрации электронов и дырок $\omega_e \gg \omega_h$, и основной вклад в $\Delta \varepsilon_{intra}$ будут давать только электроны.

Определив из выражения (1) мнимую часть диэлектрической проницаемости, связанной с межзонными переходами, из соотношений Крамерса – Кронига можно получить реальную часть соответствующей диэлектрической проницаемости [19]:

$$\operatorname{Re}\Delta\varepsilon_{\operatorname{inter}} = \frac{c^2}{\pi^2} \left[\int_0^\infty \frac{\mathrm{d}A(\omega')}{\mathrm{d}\omega'} \operatorname{lg}\left(\frac{\omega'+\omega}{\omega'-\omega}\right) \mathrm{d}\omega' \right]^2, \tag{7}$$

где

$$A(\omega) = \alpha(\omega) \left[f\left(\frac{(E_{\rm g} - \hbar\omega)/2 - F_{\rm h}}{k_{\rm B}T}\right) - f\left(\frac{(\hbar\omega + E_{\rm g})/2 - F_{\rm e}}{k_{\rm B}T}\right) \right];$$

 $f(x) = (1 + \exp x)^{-1}$.

Рис.1. Частотные зависимости модуля показателя преломления раствора $Hg_{0.82}Cd_{0.18}$ Те при T = 80 К для концентраций неравновесных носителей $N = 4 \times 10^{17}$ (1), 5×10^{17} (2), 6×10^{17} (3), 7×10^{17} (4) и 8×10^{17} см⁻³ (5).

Энергию квазиуровня Ферми дырок $F_{\rm h}$ можно найти из следующих выражений, зависящих от концентрации дырок N:

$$N = \frac{1}{\pi^2} \left[\int_0^\infty f_{\rm h}(E_{\rm hh}(k)) k^2 \mathrm{d}k + \int_0^\infty f_{\rm h}(E_{\rm lh}(k)) k^2 \mathrm{d}k \right],$$

$$f_{\rm h}(E) = \left[1 + \exp\left(\frac{F_{\rm h} - E}{k_{\rm B} T}\right) \right]^{-1}, \ E_{\rm hh}(k) = -\frac{\hbar^2 k^2}{2m_{\rm hh}}.$$
 (8)

Используя указанные выше формулы для определения диэлектрической проницаемости слоя $Hg_{0.82}Cd_{0.18}Te$, можно построить частотную зависимость модуля показателя преломления рассматриваемого материала ($n_{MCT} = \sqrt{\epsilon}$) при различных концентрациях фотовозбужденных носителей в интересующем нас частотном диапазоне (см. рис.1).

Из рис.1 видно, что для каждой концентрации существует резонансная частота, при которой $|n_{\rm MCT}|$ принимает минимальное значение. Для выбранных нами параметров это значение близко к 0.5, что много меньше $\sqrt{\varepsilon_{\infty}}$. Поэтому на таких резонансных частотах Hg_{0.82}Cd_{0.18}Te можно считать ENZ-материалом. Также из рис.1 видно, что с увеличением N растет и резонансная частота.

Диэлектрическая проницаемость нелегированных широкозонных полупроводников CdTe и GaAs в терагерцевом диапазоне вычислялась по формуле из работы [22] с привлечением экспериментальных данных для GaAs [22] и CdTe [23]:

$$\varepsilon_j(v) = \varepsilon_{\infty j} + \frac{S_j^2}{v_{\text{TO}j}^2 - v^2 + \mathrm{i}\delta_j v},\tag{9}$$

где j = 1 соответствует CdTe, а j = 2 – GaAs; $v = \omega/2\pi$; $\varepsilon_{\infty 1} = 8.52$; $\varepsilon_{\infty 2} = 11.1$; $S_1 = 8.171$ ТГц; $S_2 = 11.392$ ТГц; $v_{\text{TO}1} = 4.248$ ТГц; $v_{\text{TO}2} = 8.055$ ТГц; $\delta_1 = 259$ ГГц; $\delta_2 = 72$ ГГц. Для расчета диэлектрической проницаемости Au использовалась интерполяция данных из справочника [24].

3. Усиление гибридного поверхностного плазмона

Рассмотрим следующую структуру: на подложке GaAs (для упрощения считающейся полубесконечной) выращен буферный слой CdTe толщиной 5 мкм (минимальная тол-

щина, необходимая для роста качественного слоя HgCdTe на нем [25]), затем выращен активный слой Hg_{0.82}Cd_{0.18}Te с толщиной d = 100 нм (при такой толщине размерным квантованием можно пренебречь, а распределение фотовозбужденных носителей будет однородным, т. к. $\alpha \approx 10^4$ см⁻¹ для частот накачки, соответствующих среднему и ближнему ИК диапазонам длин волн [26]), следом расположен ограничивающий слой CdTe (предохраняющий структуру от поверхностной безызлучательной рекомбинации носителей) толщиной 50 нм, отделяющий активную область от металла (Au).

Компоненты магнитного поля H_y и электрического поля E_x , E_z в TM моде, распространяющейся вдоль описанной выше структуры, а также реальную часть эффективного показателя преломления Ren_{eff} и эффективный коэффициент поглощения α_{eff} можно найти, решая уравнения Максвелла [27]. Отметим, что α_{eff} учитывает поглощение во всех слоях структуры. На рис.2 для примера приведены частотные зависимости Ren_{eff} и α_{eff} при $N = 5 \times 10^{17}$ см⁻³. Видно, что эти величины имеют максимумы на близких частотах, причем максимум α_{eff} (~4000 см⁻¹) достаточно резкий. При стремлении частоты к частоте, соответствующей минимуму $|n_{MCT}|$, мода исчезает, т.е. перестает быть локализованной. Это подтверждает рис.3, где приведены зависимости квадрата модуля $E_z(z)$ Расчет показывает, что на частоте 10 ТГц скачок $|E_z(z)|^2$ на

Рис.2. Частотные зависимости модуля показателя преломления $n_{\rm MCT}$ и коэффициента усиления *G* слоя Hg_{0.82}Cd_{0.18}Te, а также реальной части эффективного показателя преломления Ren_{eff}, эффективного коэффициента поглощения $\alpha_{\rm eff}$ и фактора оптического ограничения Γ для гибридного поверхностного плазмона при T = 80 K, $N = 5 \times 10^{17}$ см⁻³.

Рис.3. Зависимости квадрата модуля E_z от z для гибридного поверхностного плазмона при частотах 10 (I), 11.435 (2) и 11.439 ТГц (3), T = 80 K, $N = 5 \times 10^{17}$ см⁻³. Цветные варианты рис.3 и 4 помещены на сайте нашего журнала http://www.quantum-electron.ru.

границе CdTe-Hg_{0.82}Cd_{0.18}Te невелик (в 3.9 раза), т.к. $|n_{CdTe}|/|n_{MCT}| = 2.776/1.974$, но мода достаточно сильно локализована (область локализации ~10 мкм), и поэтому такой важный параметр, как фактор оптического ограничения Γ [28], равен 0.088. При этом $\alpha_{eff} = 77 \text{ сm}^{-1}$, а коэффициент усиления $G = -A(\omega)$ в слое Hg_{0.82}Cd_{0.18}Te при указанной частоте еще отрицателен, поскольку частота, соответствующая ширине запрещенной зоны материала Hg_{0.82}Cd_{0.18}Te, составляет 10.64 ТГц.

На частоте 11.435 ТГц скачок $|E_z(z)|$ на границе CdTe-Hg_{0.82}Cd_{0.18}Te (рис.4) становится огромным (примерно в 33 раза!), т. к. $|n_{CdTe}|/|n_{MCT}| = 2.816/0.493$, поэтому значительная часть моды локализуется в активном слое Hg_{0.82}Cd_{0.18}Te толщиной всего 100 нм ($\Gamma = 0.393$), хотя оставшаяся ее часть начинает глубоко проникать в подложку GaAs (на глубину ~0.5 мм, что соответствует характерным толщинам подложек). Небольшое увеличение частоты (до 11.439 ТГц) приводит к тому, что, несмотря на почти незаметное изменение распределения |n(z)|, мода практически делокализуется и фактор Γ уменьшается до 0.03 (рис.5).

Рассмотрим более подробно диапазон частот, близких к частоте, отвечающей минимуму $|n_{\rm MCT}|$ (рис.5), в котором происходит резкое уменьшение как $\alpha_{\rm eff}$, так и Γ . При $N = 5 \times 10^{17}$ см⁻³ и T = 80 К коэффициент усиления G (~300 см⁻¹) превышает $\alpha_{\rm eff}$ на частотах свыше 11.428 ГГц. Однако в диапазоне частот 11.433–11.437 ГГц величина Γ уменьшается не так быстро, как поглощение, поэтому в этом диапазоне разность модового коэффици-

Рис.4. Зависимости модуля показателя преломления *n*, модулей E_z , E_x и H_y от *z* для гибридного поверхностного плазмона в меньшем по сравнению с рис.3 масштабе на частоте 11.435 ТГц при T = 80 K, $N = 5 \times 10^{17}$ см⁻³. Цифры указывают слои в структуре: GaAs (1), CdTe (2,4), Hg_{0.82}Cd_{0.18}Te (3) и Au (5).

Рис.5. Частотные зависимости коэффициента усиления G, фактора оптического ограничения Γ , коэффициента поглощения $\alpha_{\rm eff}$ и разности модового коэффициента усиления g и $\alpha_{\rm eff}$ для гибридного поверхностного плазмона при T = 80 K, $N = 5 \times 10^{17}$ см⁻³.

Рис.6. Зависимости $(g - \alpha_{\text{eff}})_{\text{max}}, \omega_{\text{max}}/2\pi$ и Γ_{max} от N для гибридного поверхностного плазмона при T = 80 К.

ента усиления g и $\alpha_{\rm eff}$ становится положительной и ее максимальное значение $(g - \alpha_{\rm eff})_{\rm max}$ достигает 18 см⁻¹ на соответствующей частоте $\omega_{\rm max}/2\pi = 11.326$ ТГц.

На рис.6 приведены зависимости $(g - \alpha_{eff})_{max}, \omega_{max}/2\pi$ и Γ_{\max} (Γ при $\omega = \omega_{\max}$) от концентрации фотовозбужденных носителей в гибридном поверхностном плазмоне. Видно, что разность ($g - \alpha_{\text{eff}}$)_{max} становится положительной при $N = 4.8 \times 10^{17}$ см⁻³. При увеличении N происходит сдвиг $(g - \alpha_{\text{eff}})_{\text{max}}$ в более коротковолновую область и $\omega_{\rm max}/2\pi$ увеличивается почти линейно от 11.25 ТГц при $N = 4.8 \times 10^{17}$ см⁻³ до 13 ТГц при $N = 7.25 \times 10^{17}$ см⁻³. При этом наблюдается рост как $\Gamma_{\rm max}$ (от 0.35 до 0.584), так и коэффициента усиления G, что приводит к увеличению $(g - \alpha_{\rm eff})_{\rm max}$ до 195 см⁻¹. Отметим, что для начала генерации необходимо лишь преодолеть полезные потери на зеркалах $\alpha_{\rm m} = (1/L) \ln(1/r)$ [28], где L – длина лазерного резонатора, а *r* – коэффициент отражения по мощности. Приближенное выражение для r имеет вид $r = |(n_{\text{eff}} - n_{\text{eff}})|$ 1) $|/|(n_{\text{eff}} + 1)|^2$, что при Re $n_{\text{eff}} \approx 1.7$ (см. рис.2) и L = 3 мм дает $\alpha_{\rm m} \approx 9~{\rm cm}^{-1}$. Эти потери могут быть преодолены уже при пороговой концентрации $N_{\rm th} = 4.9 \times 10^{17} \ {\rm cm^{-3}}$ (рис.6).

Оценим пороговую интенсивность излучения накачки $I_{\rm th} = \hbar \Omega dR_{\rm th}/\eta$ ($\hbar \Omega$ и η – энергия кванта и доля поглощенного в активном слое излучения накачки соответственно, а $R_{\rm th}$ – темп рекомбинации неравновесных носителей), необходимую для начала генерации стимулированного излучения гибридного поверхностного плазмона.

Для рассматриваемых концентраций носителей и твердого раствора Hg_{0.82}Cd_{0.18}Te наиболее эффективным механизмом рекомбинации является оже-рекомбинация, в которой участвуют два электрона и одна дырка [19]. В этом случае можно считать, что $R_{\rm th} \approx C_n N_{\rm th}^3$, где C_n – коэффициент оже-рекомбинации, значение которого для $Hg_{0.82}Cd_{0.18}$ Te при T = 80 K равно 1.5×10^{-24} см⁶/с [19]. При накачке излучением с длиной волны 2.3 мкм ($\hbar \Omega \approx$ 0.54 эВ) [6] только активного слоя Hg_{0.82}Cd_{0.18}Te (чтобы избежать возникновения неравновесных носителей в слоях CdTe и GaAs, приводящего к дополнительному поглощению генерируемого излучения) через подложку GaAs излучение накачки дважды проходит через активный слой из-за практически полного отражения от слоя Au, и поэтому $\eta = 1 - \exp(-2\alpha_{\Omega}d)$, где $\alpha_{\Omega} -$ коэффициент поглощения излучения накачки в слое Hg_{0.82}Cd_{0.18}Te. Для нашего случая ($\alpha_{\Omega} \approx 10^4 \, \mathrm{cm^{-1}}$ [26] и d = 100 нм) $\eta = 0.18$, поэтому $I_{\rm th} \approx 850 \ {\rm kBt/cm^2}$, что вполне достижимо при импульсной накачке.

4. Влияние легирования активной области на порог генерации

Для снижения пороговой интенсивности излучения накачки можно воспользоваться таким приемом, как легирование активной области. Как было показано ранее [29], легирование донорами активной области может привести к снижению темпа оже-рекомбинации из-за разных концентраций электронов и дырок. Действительно, при легировании донорами активной области возникает дополнительная концентрация свободных электронов N_d , и тогда в выражениях (3) и (6) надо заменить N на $N + N_d$, а выражение для порогового темпа оже-рекомбинации поменяется на следующее:

$$R_{\rm th} \approx C_n (N_{\rm d} + N_{\rm th})^2 N_{\rm th}.$$
 (10)

В этом случае $N_{\rm th}$ будет существенно уменьшаться от 4.9×10^{17} до 1.55×10^{17} см⁻³ при увеличении $N_{\rm d}$ до 7×10^{17} см⁻³ (рис.7). Поэтому, согласно формуле (10), будут наблюдаться минимальный темп оже-рекомбинации и, следовательно, минимальная пороговая интенсивность излучения накачки $I_{\rm th}$. Из рис.7 видно, что минимальное $I_{\rm th}$ составляет ~570 кВт/см² при $N_{\rm d} = 4 \times 10^{17}$ см⁻³ и $N_{\rm th} = 2.2 \times 10^{17}$ см⁻³. Это означает, что выбором концентрации донорной примеси можно добиться снижения порога генерации в 1.5 раза. Отметим также, что легирование приводит к увеличению частоты $\omega_{\rm max}/2\pi \approx 12$ ТГц при минимальном $I_{\rm th}$.

5. Заключение

Таким образом, было проведено теоретическое исследование возможности усиления гибридного поверхностного плазмона в структуре на основе тонкого объемного слоя $Hg_{0.82}Cd_{0.18}Te$, покрытой слоем металла. Благодаря кардинальному уменьшению модуля диэлектрической проницаемости слоя $Hg_{0.82}Cd_{0.18}Te$ до значения 0.243 при частотах, больших частоты, соответствующей ширине запрещенной зоны раствора $Hg_{0.82}Cd_{0.18}Te$, фактор оптического ограничения гибридного поверхностного плазмона составил ~0.5, несмотря на малую величину (0.0065) отношения толщины активной области к длине волны гибридного поверхностного плазмона. Это может позволить наблюдать лазерную генерацию на частоте 11.435 ТГц при T = 80 К и пороговой концентрации фотовозбужденных носителей 4.9×10^{17} см⁻³. Легиро-

Рис.7. Зависимости $I_{\rm th}, N_{\rm th}$ и $\omega_{\rm max}/2\pi$ от $N_{\rm d}$ для гибридного поверхностного плазмона при $T=80~{\rm K}.$

вание слоя Hg_{0.82}Cd_{0.18}Te донорной примесью с концентрацией 4 × 10¹⁷ см⁻³ приведет к уменьшению пороговой концентрации фотовозбужденных носителей до 2.2 × 10¹⁷ см⁻³, что снизит порогововую интенсивность излучения накачки с 850 до 570 кВт/см² при увеличении частоты генерации до 12 ТГц.

Работа поддержана грантом Министерства науки и высшего образования №075-15-2020-797 (13.1902.21.0024).

- 1. Vitiello M.S., Scalari G., Williams B., De Natale P. Opt. Express, 23, 5167 (2015).
- 2. Rogalski A. Rep. Prog. Phys., 68, 2267 (2005).
- Ushakov D., Afonenko A., Khabibullin R., Ponomarev D., Aleshkin V., Morozov S., Dubinov A. *Opt. Express*, 28, 25371 (2020).
 Melngailis I., Strauss A. *Appl. Phys. Lett.*, 8, 179 (1966).
- Arias J.M., Zandian M., Zucca R., Singh J. Semicond. Sci. Technol., 8, S255 (1993).
- Morozov S.V., Rumyantsev V.V., Fadeev M.A., Zholudev M.S., Kudryavtsev K.E., Antonov A.V., Kadykov A.M., Dubinov A.A., Mikhailov N.N., Dvoretsky S.A., Gavrilenko V.I. *Appl. Phys. Lett.*, 111, 192101 (2017).
- Morozov S.V., Rumyantsev V.V., Kadykov A.M., Dubinov A.A., Kudryavtsev K.E., Antonov A.V., Mikhailov N.N., Dvoretskii S.A., Gavrilenko V.I. *Appl. Phys. Lett.*, **108**, 092104 (2016).
- Kudryavtsev K.E., Rumyantsev V.V., Aleshkin V.Ya., Dubinov A.A., Utochkin V.V., Fadeev M.A., Mikhailov N.N., Alymov G., Svintsov D., Gavrilenko V.I., Morozov S.V. *Appl. Phys. Lett.*, **117**, 083103 (2020).
- Фадеев М.А., Дубинов А.А., Алешкин В.Я., Румянцев В.В., Уточкин В.В., Теп Ф., Хюберс Х.-В., Михайлов Н.Н., Дворецкий С.А., Морозов С.В. *Квантовая электропика*, **49**, 556 (2019) [*Quantum Electron.*, **49**, 556 (2019)].
- Alymov G., Rumyantsev V., Morozov S., Gavrilenko V., Aleshkin V., Svintsov D. ACS Photonics, 7, 98 (2020).

- Dubinov A.A., Aleshkin V.Ya. Int. J. High Speed Electron. Syst., 25, 1640018 (2016).
- Kapralov K., Alymov G., Svintsov D., Dubinov A. J. Phys. Condens. Matter, 32, 065301 (2020).
- Lobet M., Liberal I., Knall E.N., et al. ACS Photonics, 7, 1965 (2020).
 Zhong Y., Malagari S.D., Hamilton T., Wasserman D. J. Nano-
- photonics, 9, 093791 (2015).
 15. Oulton R.F., Sorger V.J., Genov D.A., Pile D.F.P., Zhang X. Nat.
- Outon K.F., Sorger V.J., Genov D.A., Phe D.F.P., Zhang X. Nat. Photonics, 2, 496 (2008).
- 16. Berini P., De Leon I. Nat. Photonics, 6, 16 (2012).
- Bachmann F., Loosen P., Poprawe R. *High Power Diode Lasers. Technology and Applications* (New York: Springer Science–Business Media, 2007).
- Moazzami K., Phillips J., Lee D., Krishnamurthy S., Benoit G., Fink Y., Tiwald T. J. Electron. Mater., 34, 773 (2005).
- Chu J., Sher A. *Physics and Properties of Narrow Gap Semiconductors* (New York: Springer Science–Business Media, 2008).
- 20. Krishnamurthy S., Sher A. J. Appl. Phys., 75, 7904 (1994).
- 21. Shkerdin G., Stiens J., Vounckx R. J. Appl. Phys., 85, 3792 (1999).
- 22. Ferrini R., Guizzetti G., Patrini M., Parisini A., Tarricone L., Valenti B. *Eur. Phys. J. B*, **27**, 449 (2002).
- 23. Talwar D.N., Yang T.-R., Feng Z.C., Becla P. Phys. Rev. B, 84, 174203 (2011).
- 24. Palik E.D. *Handbook of Optical Constants of Solids* (Orlando: Academic Press, 1985).
- Dvoretsky S., Mikhailov N., Remesnik V., Sidorov Y., Shvets V., Ikusov D., Varavin V., Yakushev M., Gumenjuk-Sichevska J., Golenkov A., Lysiuk I., Tsybrii Z., Shevchik-Shekera A., Sizov F., Latyshev A., Aseev A. *Opto-Electron. Rev.*, **27**, 282 (2019).
- Daraselia M., Carmody M., Edwall D.D., Tiwald T.E. J. Electron. Mater., 34, 762 (2005).
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред (М.: Наука, 1989).
- Casey H.C., Panich M.B. *Heterostructure Lasers* (New York: Academic Press, 1978).
- Дубинов А.А., Алешкин В.Я., Морозов С.В. ФТП, 52, 1100 (2018) [Semiconductors, 52, 1221 (2018)].