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Abstract.  A new method is proposed to increase the spectral resolv-
ing power of collinear acousto-optical filters by using optical feed-
back when the light leaving the region of its interaction with a peri-
odic structure formed in the crystal by an acoustic wave returns to 
the input of the crystal, in which the diffraction process repeats 
itself many times. The light beam returned to the interaction region 
changes the boundary conditions of the parametric diffraction 
problem, because of which the amplitudes of the diffracted and 
passed light beams turn out to be strongly dependent on the feed-
back properties (similar to the processes occurring in a Fabry – Perot 
optical resonator). It is shown that such a combined acousto-optical 
Fabry – Perot filter with feedback is able to electronically tune the 
optical transmission wavelength and simultaneously has a higher 
spectral resolution than a conventional acousto-optical filter with-
out feedback. It is also shown that the multiple radiation diffraction 
due to the feedback increases the diffraction efficiency with a com-
paratively small spatial change in the refractive index of the 
medium. Explicit analytical expressions for the instrumental func-
tions of a combined acousto-optical Fabry – Perot filter are found 
and their properties are analysed. It is noted that a change in the 
feedback by any mechanism, i.e., by changing the returned wave 
phase or amplitude, leads to modulation of the measured signal, 
which makes it possible to create more precise methods of spectral 
measurements.

Keywords: acousto-optical filter, Fabry – Perot resonator, feed-
back.

The search for new physical methods for increasing the spec-
tral resolution [1, 2] and diffraction efficiency in modern 
acousto-optical (AO) spectrometers [3] based on collinear 
light diffraction on acoustic waves (or photonic crystals) is a 
topical problem. In the present work, we propose and analyse 
new approaches to this problem using optical feedback, when 
optical radiation passed through the region of its interaction 
with a periodic structure (formed, for example, by an acoustic 
wave) returns into the crystal, in which the diffraction process 
occurs over and over again. The light beam returned into the 
interaction region changes the boundary conditions of the 

parametric diffraction problem, which leads to a change in 
the amplitudes of the diffracted and transmitted optical radi-
ation. It is physically clear that this change, like in the 
Fabry – Perot resonator [4], will depend on the amplitude and 
phase of the returned optical signal, which, in turn, strongly 
depend on the phase-matching conditions. As a result, it 
becomes possible to increase the efficiency and resolving 
power of such a combined AO Fabry – Perot (FP) filter.

Optical feedback can be achieved by different methods: 
first, when nondiffracted radiation returns (which leads to 
changes in the incident radiation spatial distribution satisfy-
ing the phase-matching conditions); second, when diffracted 
radiation returns (which, in contrast to the previous case, will 
cause changes in the incident radiation amplitude, phase, and 
frequency at the entrance to the interaction region, i.e., to the 
crystal); and, third, when both diffracted and nondiffracted 
radiation parts return. Of course, the aforementioned change 
in the diffracted wave frequency is insignificant and can be 
neglected in some cases, but, in the case of diffraction of nar-
rowband laser radiation, when the absolute change in fre-
quency is important, this effect must be taken into account, 
especially when considering noncollinear diffraction [5]. In 
the present work, in contrast to [6], we consider the cases of 
feedback for collinear diffraction, but it is clear that the use of 
light feedback extends the functionality of tuneable AO filters 
and spectrometers.

Examples of optical schemes of collinear tuneable AO fil-
ters with feedback are presented in Fig. 1. Polariser P1 sepa-
rates from the initial radiation a light beam with ordinary 
polarisation, which falls into the AO crystal where collinear 
diffraction on an acoustic wave occurs and a new light wave 
with extraordinary polarisation appears. Mirrors M and a 
beam splitter BS form a feedback loop, and the diffracted 
radiation intensity is recorded by a photomultiplier PM. 
Polariser P2 separates the light beams with different polarisa-
tions so that the ordinarily polarised beam returns to the 
beginning of the interaction region (Fig. 1a) (this corresponds 
to the first feedback case). Figure 1b shows the scheme with 
feedback via the diffracted, i.e., extraordinary light wave. 
This feedback case, in contrast to the case shown in Fig. 1a, is 
interesting due to the occurrence of multiple shifts of the dif-
fracted radiation frequency. It will be shown below that, 
under specific resonance conditions, the efficiency of such dif-
fraction of, for example, laser radiation, can be rather high.

Let us derive analytical expressions for wave amplitudes 
and intensities under the conditions of collinear diffraction of 
optical radiation on an acoustic wave in the presence of feed-
back. From the Maxwell equations for an anisotropic medium 
whose permittivity varies according to a periodic low, it is 
possible to obtain truncated equations describing the collin-
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ear diffraction process under conditions close to phase-
matching [7]. In the approximation of the theory of coupled 
modes, these equations have the form [7]
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Here, Eo(x) and Ee(x) are the amplitudes of the ordinary (inci-
dent) and extraordinary (diffracted) waves, respectively;
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are the coupling coefficients expressed via the crystal charac-
teristics and the sound wave amplitude; p is the photoelastic 
constant corresponding to the considered interaction geome-
try; c is the speed of light in vacuum; no and ne are the refrac-
tive indices of the ordinary and extraordinary light waves;
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is the acoustic wave amplitude; Ws, qs are the frequency and 
wavenumber of the acoustic wave; Dk º (w/c)no – (w*/c)ne + 
Ws/us is the detuning from the phase-matching conditions. 
The relation between the frequencies of light waves followed 
from conservation laws has the form w º w* + Ws, where w* is 
the diffracted wave frequency; us is the speed of sound, and 
the crystal is assumed to be negative, i.e., no > ne. The Ge and 
Go coefficients slightly differ from each other due to a differ-
ence between the no and ne refractive indices, but, as will be 

seen below, the final formulae always include the combina-
tion GeGo, the root of which will be denoted as G, e o/G G G . 
(Below, we will not distinguish G, Ge, and Go, except for the 
cases in which this is necessary.) The considered medium 
(crystal) has no absorption and dispersion and, therefore, as 
is seen from system of equations (1), the law of conservation 
of energy of interacting light waves is fulfilled independently 
of the boundary conditions:
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Condition (4) is valid for waves inside the region of their 
interaction in the crystal, i.e., without taking feedback into 
account and, in addition, without taking into account negli-
gible energy transfer from the light wave to the sound wave. 
This relation also indicates that the knowledge of the intensity 
of the wave with one polarisation makes it possible to deter-
mine the intensity of the wave with the other polarisation at 
any point in the interaction region. The phases of these waves 
obey the relations that can be found directly from system of 
equations (1) by dividing it into equations for the real and 
imaginary parts of the amplitudes of interacting light waves 
[8]. We will write the boundary conditions at the entrance to 
the interaction region in the most general form:
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Then, the solution of the general problem (1), (5) has the 
form [7]
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Here, ( / )k1 2 2/x D G+ , and as the wave amplitudes at the 
boundary x = 0 in expressions (5) we shall understand a com-
plex value with allowance for phase. The general solution in 
the form of (6) does not take optical feedback into account. 
Similar to the case with a Fabry – Perot interferometer [4], 
solution (6) allows one to find scattering matrix Sab(x), which 
relates the wave amplitudes at the entrance (i.e., at x = 0) to 
the amplitudes at any point x inside the interaction region. 
Solution (6) at the boundary x = L can be written via scatter-
ing matrix Sab(x) as [4]
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Figure 1.  Optical schemes of AO filters with feedback based on (a) non-
diffracted and (b) diffracted beams: (P1, P2) polarisers; (PM) photo-
multiplier; (M) mirrors; and (BS) beam splitter. 
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For anisotropic media without absorption, the elements of 
scattering matrix Sab(L) satisfy the relations
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which ensure the fulfilment of conservation law (4). The 
amplitudes Eo and Ee belong to the electric fields inside an 
anisotropic medium in which the refractive indices and wave 
group velocities are different for different polarisations, 
because of which the ratios of refractive indices appear in for-
mulae (4) and (9) in contrast to the case of an isotropic 
medium [4].

Next, we consider the light wave diffraction on an 
acoustic wave propagating in the same direction as the 
light wave. Let the feedback to occur via the nondiffracted 
light wave, as is shown in Fig. 1a. Polariser P1 separates 
from the incident optical radiation a light beam with the 
polarisation corresponding to the ordinary wave in the 
chosen orientation of the AO crystal. A beam splitter BS 
splits the incident polarised radiation into two beams 
propagating in different directions, namely, parallel and 
perpendicular to the incident radiation direction. For the 
ideal beam splitter (without absorption), the condition 
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1 2= +  is satisfied, because of which the 
amplitudes of waves at the exit from the beam splitter satisfy 
the obvious relations
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Here, gbs is the beam splitter transmission efficiency and jbs,
jbs'  are the phase jumps due to transmission through and 
reflection from the optical surfaces of the beam splitter. We 
will assume that, for the first feedback case, the direction 
denoted by subscript 1 corresponds to the initial incident 
radiation and the direction denoted by subscript 2 determines 
the feedback direction. Then, using the obvious recurrence 
relation for wave amplitudes at the entrance to the interaction 
region
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where integer number m determines the diffraction order, 
like in the case of a Fabry – Perot resonator [4], we obtain 
the total amplitude of the diffracted extraordinary wave in 
the form
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Here j is the total phase taking into account all possible 
jumps upon reflection from optical surfaces; it is also 
assumed that absorption in the feedback loop is absent, or, 
if absorption exists, phase j will contain an imaginary part. 
The obtained expression (11) makes it possible to find the 
instrumental function (IF) of such an AO FP filter by the 
formula
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is the IF of a conventional AO filter without feedback and is 
the additional phase incursion due to the parametric cou-
pling between the interacting light waves propagating in the 
crystal. When deriving (12), we assumed that phase jump at 
the beam splitter BS is absent. One can see from (12) that the 
IF of this AO FP filter is the product of the IF of a conven-
tional AO filter [7] and the IF of a Fabry – Perot resonator 
[4] (with slight differences from the IF for a conventional 
Fabry – Perot resonator related to the fact that the optical 
feedback occurs as a result of unidirectional reflection of 
radiation to the entrance of the region of parametric interac-
tion of light with an acoustic wave). At gbs = 1, i.e., without 
feedback, formula (12) transforms to the IF of a conven-
tional collinear AO filter. One can easily see that the maxi-
mum diffracted radiation intensity at the exit from the filter 
does not exceed unity at all T0 values ranged from zero to 
unity. The phase incursion in the feedback loop j in the sim-
plest case can be expressed via the optical feedback path 
length l in the form j = kl º (k0 + Dk)l, where k is the wave-
number of the optical radiation and k0 = qs /(no – ne)–1 is the 
wavenumber corresponding to the fulfilment of the phase-
matching conditions.

Let us now consider the second case, when feedback 
occurs in the diffracted beam (see Fig. 1b). The recurrence 
relations between the wave amplitudes in this case will be 
obviously as follows:
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where all values are related to the BS shown in Fig. 1b and the 
frequency dependence of phase j(w) emphasises the fact that 
the diffracted wave frequency changes due to the interaction 
with an acoustic wave. This slight change in frequency must 
be taken into account when considering laser radiation 
(below, we will not take this effect into account).

Using relation (14) and summing the terms of the geo-
metrical progression, we can find the intensity of light fields 
inside the AO FP resonator as
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The IF of this combined AO filter with feedback is deter-
mined by the light field intensity at the entrance to the photo-
detector and, as follows from (5), for the second case is
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Instrumental functions (16) and (12) differ by the phase 
incursion sign for different feedback mechanisms and, in 
addition, in the latter case, the diffracted radiation fre-
quency shifts by the acoustic wave frequency for each radia-
tion trip over the feedback loop. One can clearly see that the 
maximum diffraction intensities of both IFs are identical, 
but the positions of the extrema are different. At a high AO 
filter efficiency, i.e., at T0 = 1, the feedback ceases to affect 
the diffraction process due to the absence of radiation 
returned to the entrance. A similar situation is observed in 
the case of fulfilment of the condition gbs = 1. At an optical 
path length satisfying the resonance conditions (multibeam 
interference)

/2 ( ) n( ) , , , , ...kL k n2 0 1 2! ! !pj wD DY+ = = .	 (17)

IFs (16) and (12) reach a maximum, which at T0(Dk) = gbs
2 

becomes equal to unity, i.e., to the maximum possible value. 
This means that, in the case of continuous optical radiation 
incident on this combined AO FP filter, the energy of the 
polarised ordinary wave is completely transferred to the 
energy of the orthogonally polarised extraordinary wave. The 
line profile near the nth root of Eqn (17) can be represented in 
the form
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the value determining the spectral width of the transmission 
window (or line) of the combined AO FP filter with feedback; 
and dk is the deviation from the transmission peak position, 
i.e., from the wavenumber satisfying Eqn (17). From formula 
(18), one can also see that the transmission window has a 
Lorentzian shape. At a 100 % transfer of the incident radia-
tion energy to the diffracted radiation, the spectral width of 
the transmission window at half maximum near each wave 
vector kn determined by the root of Eqn (17) can be written in 
the form
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From Eqn (19), one can see that the spectral band with a 
100 % efficiency exists under the condition that gbs > 0.671 
and, hence, the required efficiency of the AO filter at k = kn 
should be T0 = 0.45. If the last condition is not satisfied, then 
the minimum diffracted wave intensity exceeds 0.5, and the 
equation for determining the spectral width T(kn + Dk) = 0.5 
has no real roots. If the optical path length of the feedback 
loop at kn

* close to kn satisfies the condition
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then the diffracted radiation intensity takes the minimum 
value
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The Tmax /Tmin ratio followed from formulae (18) and (21) 
determines the transmission window contrast, and, for T0(Dk) 
= gbs

2 is /2 bs bs
2 2 4g g-^ h , i.e., considerably exceeds unity.

The above formulae relate to the case when the radiation 
incident on the combined AO FP filter has a rather large 
spectral width considerably exceeding the spectral width of 
a conventional AO filter, and, therefore, there always exists 
such an incident wave that will satisfy the phase-matching 
conditions at any sound wave frequency. Mathematically, 
this means that boundary conditions (5) are satisfied for 
each spectral component of the incident radiation. If, in 
contrast, the incident laser radiation has a narrow band-
width, then one can find the IF of a conventional AO by 
successively changing the acoustic wave frequency and mea-
suring the diffraction efficiency. This is a frequently used 
approach. The natural question arises about the possibility of 
using the same method for measuring the IF of the combined 
AO FP filter. The answer is negative due to the existence of 
additional resonance conditions (17) and (20), due to which 
the diffracted radiation amplitude depends on one more reso-
nance number p.

The problem of finding the amplitude of the diffracted 
wave of narrowband laser radiation in the case of multiple 
interference with allowance for the frequency shift at each 
diffraction circle turns out to be more complex than the 
above-considered case without taking the frequency shift 
into account. The problem is that, under the boundary con-
ditions at x = 0, there exist waves with different frequencies 
and different amplitudes, and it is necessary for each of 
them to introduce its own scattering matrix Sab with its own 
phase detuning Dk m = Dk + mWs. As a result, the recurrence 
relation of type (14) becomes more complex and does not 
reduce to a simple geometrical progression. Nevertheless, 
analysis shows that closed analytical formulae can be 
obtained in this case as well, but, due to the appearance of 
the new ‘quantum’ number p, which determines the reso-
nance conditions and extends the range of possible diffrac-
tion conditions for each frequency, such analysis will be per-
formed in a separate work.

The dependences of light field intensities on phase detun-
ing Dk are shown in Figs 2 and 3 at different parameters of the 
combined AO FP filter. Figure 2 presents the dependence of 
IF (16) on phase detuning Dk at such a choice of the beam 
splitter parameters gbs and the conventional AO filter effi-
ciency T0(Dk) that the condition for the highest diffracted 
beam intensity, i.e., T0(Dk) » gbs

2, is achieved near the point 
Dk = 0, because of which the most intense diffraction lines lie 
near the main maximum of the conventional AO filter. 
Figure 3 also shows the dependences of IF (16) on detuning 
Dk, but at such parameters that the condition T0(Dk) » gbs

2 is 
achieved at Dk corresponding to T0 = 0.04. The latter shows 
that the existence of feedback considerably increases the dif-
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fraction efficiency. This makes it possible to use such com-
bined AO FP filters for spectral measurements of radiation of 
weak sources or media with low absorption cross sections in 
separate spectral regions. Figure 4 shows the change in the 
position of the transmission window of the AO FP filter due 
to a change in the acoustic wave intensity. This feature of the 
AO FP filter opens additional possibilities not only for chang-
ing the frequency of the acoustic wave coupled into the crystal 
but also for controlling the transmission band of AO FP fil-
ters.

The above consideration and obtained formulae (12) 
and (16) related to the case when the coherence length of 
the incident radiation exceeds the optical feedback length, 
and the diffraction patterns shown in Figs 2 – 4 can be 
observed mainly for laser radiation. If the incident radia-
tion has low coherence, i.e., the characteristic coherence 
length is smaller than the optical feedback loop length, 
then it is necessary to note the following. For a conven-
tional AO spectrometer without feedback (gbs = 1), require-
ments for the incident radiation coherence are absent 
because the jump of the incident radiation phase drops 
from the final expression for the IF of the AO filter. The 
latter is directly seen from solution (6) provided that the 

optical train length exceeds the interaction length. If the 
latter is not fulfilled, it is necessary to use, instead of solu-
tion (6), the sum of solutions for several optical trains, 
and the interaction length for each train will be deter-
mined by the train length rather than by the crystal size. 
Mathematically this is similar to the problem of light dif-
fraction on trains of acoustic waves [9, 10].

In contrast, the situation for diffraction of low-coherent 
radiation with feedback turns out to be much more compli-
cated. In this case, the phase factor eij in expressions (10) 
and (14) contains the random additive sm – 1 depending on 
number m, i.e., exp(ij + ism –1), and the summation over all m 
with the use of the geometrical progression formula for 
deriving an expression for the IF becomes impossible. Then, 
it is necessary to restrict ourselves to a finite but rather large 
number of terms in the sum followed from recurrence rela-
tions (10) and (14) and then perform averaging over the val-
ues of the random additive, simultaneously introducing an 
assumption about the form of the random value distribution 
function.

Thus, the combined AO filter with feedback is able to 
electronically tune its optical transmission wavelength and 
simultaneously retain the possibility of high spectral resolu-
tion typical for FP resonators. It is also important that the 
feedback and multiple diffraction provide the possibility of 
achieving a higher diffraction efficiency with a relatively small 
spatial variation in the refractive index of the medium. Note 
also that any mechanism of changing the feedback efficiency, 
i.e., by changing the returned wave phase or amplitude, leads 
to modulation [9, 10] of the signal received by a photodetec-
tor, which opens the possibility of developing new, more pre-
cise methods of spectral measurements.
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