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Abstract.  We report a fast and computationally stable method for 
computer simulation of optical properties of layered scattering sys-
tems containing luminescent layers. The method is based on the solu-
tion of one-dimensional scalar radiative transfer equations and 
makes it possible to calculate spectral and angular characteristics of 
luminescent radiation emerging from the system under various condi-
tions of luminescence excitation. The method is used to estimate the 
parameters necessary for determining temperature in subcutaneous 
layers from luminescence spectra of up-conversion nanoparticles 
embedded in these layers during transcutaneous optical probing.

Keywords: photoluminescence, up-conversion nanoparticles, lay-
ered scattering medium, biological tissue, computer simulation, 
thermometry.

1. Introduction

In many studies, photoluminescence of endogenous compo-
nents of biological tissues or luminescent agents introduced 
into the tissue makes it possible to obtain valuable informa-
tion about the properties and state of the biological object 
under study, as well as about the processes taking place in it. In 
in vivo macroscopic measurements on biological tissues, a 
luminescence source (luminescent substance) is usually 
located in the depth of the sample, and both the exciting radi-
ation and the luminescent radiation on the way from the 
source to the detector pass through layers of scattering and 
absorbing tissues. If the scattering and absorption properties 
of these tissues change significantly depending on the wave-
length within the spectral region of the luminescence, then the 
spectrum of the luminescent radiation emerging from the tis-
sue significantly differs in shape from the luminescence spec-
trum of the source. In this case, if the luminescence spectrum 
of the source is informative in the experiment under consider-
ation, then it is necessary to take into account the spectrum 
transformation of the luminescent radiation when it passes 
through the biological tissue. In particular, this problem is 
relevant when using fluorescent nanoparticles for local tem-
perature measurement in biological tissues.

The possibility of using luminescent nanoparticles for 
local temperature measurement is of great interest in many 
practical problems of laser medicine and biology [1, 2]. 
When use is made of nanothermometers, the temperature is 
determined on the basis of data on the change in intensity 
[3 – 5], position, and width of luminescence bands [6], as well 
as on the intensity ratios of several measured bands. One of 
the promising types of nanothermometers is up-conversion 
nanoparticles, which are used to determine the temperature 
from the ratios of the intensities of the luminescence bands 
[7]. An example of such nanothermometers is 
NaYF4 : Er3+, Yb3+ nanoparticles [8]. Figure 1 shows how 
the luminescence spectrum of these particles changes (upon 
excitation at a wavelength of 980 nm) with a change in tem-
perature. If nanoparticles are located deep in biological tis-
sue, for example, under the skin in the subcutaneous fat 
layer or in muscle tissue, then the temperature measurement 
in the region of location of nanoparticles from the recorded 
fluorescence spectra during laser transcutaneous optical 
probing should take into account the spectrum transforma-
tion of the luminescent radiation as it propagates inside the 
tissue.

To determine the temperature from the luminescence spec-
trum of up-conversion nanoparticles, we should estimate rela-
tions of the form [8]

fp (lr, li) = Ifp (li)/Ifp (lr),
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Figure 1.  Luminescence spectra of up-conversion NaYF4 : Er3+,Yb3+ 
nanoparticles at different temperatures; excitation is performed at a 
wavelength of 980 nm.
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where Ifp (l) is the luminescence intensity of nanoparticles at a 
wavelength l; lr is the wavelength corresponding to one of 
the spectral maxima of luminescence of nanoparticles; and li 
(i = 1, 2, …) are the wavelengths corresponding to other max-
ima of the luminescence spectrum of nanoparticles. The 
parameters fp (lr, li) are estimated from the measured intensity 
spectra Ift (l) of the luminescent radiation emerging from the 
sample by using the expression

ft (lr, li) = Ift (li)/Ift (lr).

In the general case, when the scattering and absorption 
parameters of the tissues through which the luminescent radi-
ation passes on its way to the detector depend on the wavelength, 
the relationship between the spectra fp (lr, l) and ft (lr, l) can 
be expressed as

ft ( lr, l) = atp ( lr, l) fp( lr, l),

and a reliable assessment of fp ( lr, li ) requires a sufficiently 
accurate estimate of atp ( lr, li ). According to the data given in 
[8], in the case of determining the temperature from the ratio 
of the peak intensities of G1 ( lr = 519 nm, Fig. 1) and G4 
bands (l3 = 546 nm) with a relative error of 1 % in estimating 
atp ( lr, l3), the resulting error in determining the temperature 
is about 1 °С.

In this paper, we propose a fast and stable calculation 
method that allows the values of atp ( lr, li ) to be calculated for 
multilayer systems at given scattering and absorption param-
eters of the layers taking into account multiple scattering 
(Sections 2 – 6). Calculations can be performed for both nor-
mal and oblique incidence of the exciting radiation on the 
sample. This method calculates the angular distribution of 
luminescence radiation emerging from the multilayer system, 
which makes it possible to quickly compute the values of 
atp ( lr, li ) for different detection angles. Section 7 presents the 
theoretical estimates of the coefficients atp ( lr, li ), obtained 
using this method, when NaYF4 : Er3+, Yb3+ nanoparticles are 
embedded under the skin in the fat layer and in muscle tissue 
for different detection angles.

The proposed method is based on the scalar radiative trans-
fer theory. A system of plane-parallel scattering layers is consid-
ered as an optical model of the biological tissue. This approach 
has shown its reliability in solving many optical problems for 
biological tissues [9 – 13]. In the numerical solution of problems 
of the transfer theory for layered systems, algorithms of sto-
chastic tracing of wave packets, based on the Monte Carlo 
method (MC algorithms) [10, 11, 14 – 20], the method of dis-
crete ordinates [20 – 24], and the adding – doubling method 
(ADM) [10, 11, 25 – 27] are most widely used. The above 
approaches are also used to calculate luminescence character-
istics of multilayer scattering media [15 – 20, 22 – 24, 26, 27]. 
Stochastic tracing is the most versatile tool, but it requires 
very large computational resources, which increase with 
increasing thickness of the system in question. Of these meth-
ods, the adding – doubling method is the most computation-
ally efficient, but it is not as versatile as stochastic tracing. 
One of the disadvantages of the known ADM variants is that 
they are applicable exclusively for axisymmetric geometry, 
when the angular radiation spectrum is invariant under any 
rotation about the normal to the surface of the layered sys-
tem, which, in particular, does not make it possible to con-
sider a practically interesting case of oblique illumination of 
the sample by a directed beam. In addition, the use of the 

doubling procedure for calculating the transmission and 
reflection operators does not always guarantee the achieve-
ment of a high calculation accuracy [25, 28].

The calculation method developed by us is based on the 
solution of one-dimensional transfer equations in discrete 
form for radiation with an arbitrary angular distribution 
(Section 2). To calculate the matrix operators characterising 
the action of layers with constant (independent of coordi-
nates) scattering and luminescence parameters, we use the 
mode representation of the radiation characteristics (Section 
3). This representation is widely employed in solving radiative 
transfer problems within the framework of the method of sin-
gular eigenfunction expansion [12, 13, 21, 28 – 32] for the homo-
geneous linearised Boltzmann equation. The most common 
approach is based on the representation of phase functions 
and singular eigenfunctions in the form of expansions in 
Legendre polynomials (PN method) [12 – 14, 21,  28, 31]. In our 
case, the mode representation is used to solve the radiative 
transfer equation in a form that is discrete with respect to 
angular variables. The mode representation allows one to 
apply a very stable calculation procedure and quickly esti-
mate the characteristics of layers of any thickness, including 
semi-infinite ones (the computational costs do not depend 
on the layer thickness) (Section 3), which is one of the main 
advantages of this representation [28].

The method of discretisation of the transfer equations 
used by us allows one, in contrast to the PN method, to con-
sider the case of oblique incidence of a directed light beam on 
the layered system. When calculating operators for systems of 
layers from operators for individual layers, an adding tech-
nique, similar to that described in [27], is used (Section 4). 
Operators characterising the transmission of light through 
interfaces with a sharp jump in the refractive index are calcu-
lated using the Fresnel formulae (Section 5), similarly to the 
ADM algorithm-based procedure proposed by Prahl [11]. A 
semi-infinite scattering medium (possibly luminescent) can be 
considered as the last layer of the system.

2. Discrete form of the radiative transfer  
equation for multilayer luminescent media

2.1. Radiative transfer equation

The proposed calculation method is based on a system of two 
coupled stationary transfer equations describing the propaga-
tion of radiation within a plane-parallel scattering layer with 
spatially independent parameters of absorption, scattering, 
and luminescence (homogeneous scattering layer). One of 
these equations describes the spatial evolution of the radiance 
Iex of monochromatic exciting radiation with a wavelength lex 
or quasi-monochromatic exciting radiation with a centre 
wavelength lex and an effective spectral range D lex (D lex << 
lex) and has the form

sÑIex(r, s) = – mex-t Iex(r, s) + mex-s
4p
y  pex(s, s' )Iex(r, s' )dW'.	 (1)

Another equation describes the spatial evolution of the radi-
ance Ifl of a quasi-monochromatic component of the lumines-
cent radiation, the spectral components of which fill a narrow 
wavelength range ( lfl – D lfl /2, lfl + Dlfl /2) with the centre 
wavelength lfl:

sÑIfl (r, s) = – mfl-t Ifl (r, s) + mfl-s
4p
y  pfl (s, s' )Ifl (r, s' )dW'+
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	 + mex-a0 Q
4p
y  f (s, s' )Iex(r, s' )dW'.	 (2)

In these equations,  mex-s and mfl-s are the scattering coefficients 
at wavelengths lex and lfl, respectively; mex-t = mex-a0 + mex-a1 + 
mex-s and mfl-t = mfl-a + mfl-s are the extinction coefficients at 
wavelengths lex and lfl; mfl-a is the absorption coefficient at the 
wavelength lfl; mex-a0 and mex-a1 are the absorption coefficients, 
respectively related and unrelated to the excitation of lumi-
nescence, at the wavelength lex; pex(s, s' ) and pfl(s, s' ) are the 
single scattering phase functions at the wavelengths lex and 
lfl; s and s' are unit vectors indicating the directions of propa-
gation of the scattered and incident radiation, respectively; 
f (s, s' ) is the phase function of photoluminescence; Q is the 
energy yield of luminescence for the spectral interval D lfl; and 
dW’ is the solid angle element in the direction of the vector s'. 
The functions pex(s, s' ), pfl(s, s' ), and f (s, s' ) are normalised so 
that

4p
y  pex (s, s' )dW = 1,

4p
y  pfl (s, s' )dW = 1,

4p
y   f (s, s' )dW = 1,

where dW is the solid angle element in the direction of the vec-
tor s.

We will assume that the planes of the layer boundaries of 
the layered system are parallel to the xy plane of the Cartesian 
coordinate system xyz. It is also assumed that the layered sys-
tem is uniformly illuminated. In this case, Iex and Ifl in (1) and 
(2) depend only on z [11, 21], which makes it possible to 
rewrite these equations in the form

cos a
( , )

d

d

z

I z sex  = – mex-t Iex(z, s) 

	 + mex-s
4p
y  pex (s, s' )Iex (z, s' )dW',	 (3)

cos a
( , )

d

d

z

I z sfl  = – mfl-t Ifl(z, s) +

	 + mfl-s
4p
y  pfl (s, s' )Ifl (z, s')dW'

	 + mex-a0Q
4p
y   f (s, s' )Iex (z, s' )dW',	 (4)

where a is the polar angle of the vector s.

2.2. Discretisation of transfer equations

To discretise the transfer equations, a unit sphere of direc-
tions is divided into 2M elementary cells. The area of the ith 
cell is denoted by Wi. The average irradiances produced by the 
radiation of this cell are related to the corresponding radi-
ances at the excitation and luminescence wavelengths by the 
equations:

Eexi (z) = 
iW

y Iex(z, s)|sz|dW » |á sz ñi|á Iex(z, s)ñi Wi,	 (5)

Efli (z) = 
iW

y Ifl(z, s)|sz|dW » |á sz ñi|á Ifl(z, s)ñi Wi,	 (6)

where angle brackets á...ñi denote averaging over the ith cell 
and sz is the z-component of the vector s. We replace in (3) 
and (4) the integration over the solid angle by the summation 
over cells and, using (5) and (6), write (3) and (4) in the matrix 
form:

d
d

z
Efl  = Dfl Efl + Dex-fl Eex,	 (7)

d
d

z
Eex  = Dex Eex,	 (8)

where

[Efl ]i = Efli;   [Eex ]i = Eexi;

[Dfl ]ij = –
s

fl t

z i

ijdm -
 + mfl-s 

( , )'sgn

s

s p s sfl

z j

z i i j iW^ h
;

[Dex ]ij = –
s
ex t

z i

ijdm -
 + 

( , )'sgn

s

s p s sex s ex

z j

z i i j im W-^ h
;

[Dex-fl ]ij = mex-a 0Q
( , )'sgn

s

s f s s

z j

z i i j iW^ h
.

2.3. Method for partitioning the unit sphere of directions

A unit sphere of directions is divided into a hemisphere of 
forward directions and a hemisphere of backward directions. 
Light fluxes propagating in the direction of the half-space 
located behind the layered system (sz > 0) will be called for-
ward, while light fluxes propagating in the direction of the 
half-space located in front of the layered system will be called 
backward (sz < 0). To describe the propagation of light inside 
the scattering layers of the layered system, which are assumed 
to have the same or similar average refractive indices, a basic 
grid of light propagation directions is introduced, corre-
sponding to a medium with an average refractive index nbase 
of the scattering layers. The basic grid of forward directions is 
obtained by dividing the unit hemisphere into M = 4N 2 (N is 
an integer) spherical triangles with similar areas (a basic grid 
for forward radiation at N = 17 is shown in Fig. 2). Each ele-
mentary spherical triangle represents an elementary cell. The 
basic grid for backward radiation is the mirror image of the 
basic grid for forward radiation in the xy plane, with the 
numbering of the cells being such that the ith grid cell for 
backward radiation is a mirror image of the ith grid cell for 
forward radiation. The complete basic grid, which combines 
the grids for forward and backward radiation, has 2M cells, 
the first M of which correspond to the cells of the basic grid 
for forward radiation, and the remaining M cells correspond 
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to the cells of the basic grid for backward radiation. With this 
cell numbering, the column vectors Efl and Eex entering into 
Eqns (7) and (8) can be represented as

Efl = 
E
E

fl

fl

v

we o,   Eex = 
E
E
ex

ex

v

we o,

where column vectors with a right arrow characterise the for-
ward propagating radiation, and column vectors with a left 
arrow characterise the backward propagating radiation.

3. Solution of radiative transfer equations for a 
homogeneous layer

3.1. General solution

Here, to simplify the formulae, we will assume that the bound-
ary of a homogeneous layer coincides with the plane z = 0 and 
that the layer is located in the half-space z ³ 0. We represent 
the vector Eex in the form of a linear combination of nor-
malised eigenvectors yex j ( yT

ex j yex j = 1, where the superscript 
T denotes transposition) of the matrix Dex:

Eex = 
j

M

1

2

=

/Aex j yex j = Yex Aex,	 (9)

where Yex is a matrix whose columns are vectors yex j,

Yex = (yex 1  yex 2  ...  yex (2M ) ),

and Aex = [Aex j ] is a 2M column vector of the amplitudes Aex j. 
We will refer to vectors such as Eex as state vectors in the 
E-representation, and vectors such as Aex, as state vectors in 
the A-representation. Let us rewrite equation (8) using the 
A-representation:

d
d

z
Aex  = gex Aex.	 (10)

Here, gex = 1
exY- DexYex is a diagonal matrix with elements 

[ gex ]ii = gex i, where gex i is the eigenvalue of the matrix Dex, cor-

responding to the eigenvector yex i. The general solution of 
equation (10) can be represented as

Aex (z) = e gexzAex(0),	 (11)

where e gexz is a diagonal matrix with elements [e gexz ]ii = e gex i z. 
According to (9) and (11), equation (8) has the following gen-
eral solution:

Eex(z) = Yexe gexz 1
exY- Eex(0).	 (12)

Now, similarly to (9), we represent the vector Efl as a linear 
combination of the normalised eigenvectors yfl i of the matrix 
Dfl:

Efl = Yfl Afl,

and, using (11), we write (7) in the A-representation:

d
d

z
Afl  = gfl Afl + Fe gexzAex(0),	 (13)

where F = 1
flY- Dex-flYex; gfl is a diagonal matrix with elements 

[ gfl ]ii = gfl i; and gfl i  is the eigenvalue corresponding to the 
eigenvector yfl i. The general solution (13) can be taken in the 
form

Afl(z) = e gexzA0(0) + G e gexzAex(0),

where G is a matrix with elements

[G  ]ij = 
[ ]

,  at
F

ex fl
ex fl

ex fl

j i

ij
j i

ij j i

!g g g g
-

at[ ] .z F g g=
*

In the E-representation, this solution has the form:

Efl(z) = Yfl e gexz 1
flY- E0(0) + Yfl G e gexz 1

exY- Eex(0).	 (14)

3.2. Algorithm for calculating transmission and reflection 
matrices for a homogeneous layer

Using the general solution (12), we find expressions for the 
transmission and reflection matrices of a layer of thickness d. 
Let us assume that the layer is bounded by the planes z = z1 
and z = z2 (z2 – z1 = d ). The transmission matrix Tv  [Eexv (z2) = 
TvEexv (z1) at Eexw (z2) = O, where O is the zero vector] and the 
reflection matrix Rv  [ Eexw (z1) = Rv Eexv (z1) at Eexw (z2) = O ] for 
radiation incident on the layer from the side z = z1 are derived 
using the boundary condition Eexw (z2) = O, and the trans-
mission matrix Tw  [Eexw (z1) = TwEexw (z2) at Eexv (z1) =  O] and the 
reflection matrix Rw  [Eexv (z2) = RwEexw (z2) at Eexv (z1) = O ] for radi-
ation incident on the layer from the side z = z2 are calculated 
based on the condition Eexv (z1) = O. According to (12),

Eex(z2) = Tex(d )Eex(z1),   Tex(d ) = Yex e gexd 1
exY- ,

where Tex(d ) is the 2M ́  2M transfer matrix for the layer at 
the excitation wavelength. There are various methods for cal-
culating transmission and reflection matrices based on such a 

y

x

z

Figure 2.  Basic grid for forward radiation.
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representation [28, 32, 33]. It is known that the methods of 
direct calculation of transmission and reflection matrices  for 
a layer from transfer matrices such as Tex(d )  (transfer matrix 
technique) are numerically unstable at large layer thicknesses 
[33] because the transfer matrix has very large elements calcu-
lated using the elements of the exponential matrix that expo-
tentially grow with increasing d. At layer thicknesses for 
which the values of these elements become very large, the 
quantities of interest are given as small differences of very 
large numbers, which in computer calculations leads to a large 
loss of accuracy due to the finite word length of the machine. As 
numerical experiments have shown, when computations are 
performed with double precision arithmetic, the transfer 
matrix technique is capable of providing good calculation 
accuracy only if the value of the largest of the exponential 
matrix elements does not exceed е15, i. e., the applicability of 
this technique in our case is limited to the thickness range d £ 
15/gmax, where gmax is the value of the maximum of gex i (for 
example, in calculations of Section 7 for skin at a wavelength 
of 519 nm, gmax = 0.419 mm–1).

To avoid instabilities in the numerical solution of such 
problems, somewhat more complex methods are used, in which 
operations with growing exponents are excluded. Thus, Carroll 
and Aronson [28] proposed a numerically stable algorithm 
for calculating the transmission and reflection matrices in the 
framework of the method of singular eigenfunction expansions 
using the PN method. Based on the same principle, we have 
developed a fairly fast and stable algorithm for calculating 
transmission and reflection matrices for the problem under 
consideration. It consists in the following. Since the spectrum 
of eigenvalues of the transfer equation consists of pairs of 
eigenvalues equal in magnitude but opposite in sign 
[13, 21, 28, 31, 32], and in our case, this, in particular, means 
that the number of positive and negative terms in the set {gex i} 
(i = 1, 2, …, 2M ) is the same, we can number the pairs  gex i and 
yex i  so that gex i are negative for the first M pairs. With this 
choice of the eigenmode basis, the vector Aex has the form

Aex = 
A
A
ex

ex

v

we o,	 (15)

where the vector Av ex contains the amplitudes Aex i of mode 
components with negative gex i and characterises the radiation 
propagating in the +z-direction, and the vector Aw ex character-
ises the radiation propagating in the – z-direction. Having 
chosen the mode basis in this way, we represent the matrices 
Yex and e gexd in block form:

Yex = 11ex

ex

ex

ex12

21

22

Y
Y

Y
Y

e o,   e gexd = e
e0

0d

d

ex

ex

g

g

+

-
e o,	 (16)

where 0 is a zero matrix. The values of all nonzero elements of 
the diagonal matrix gex+ are negative, and the values of all 
nonzero elements of the matrix gex– are positive. Let us intro-
duce the notation:

CEAex1 = 1
ex11Y- ,   CEEex1 = Yex21

1
ex11Y- ,

CAEex1 = Yex22 – Yex21
1

ex11Y- Yex12,

CAAex1 = – 1
ex11Y- Yex12,

CAEex2 = Yex11 – Yex12
1

ex22Y- Yex21,	
(17)

CAAex2 = – 1
ex22Y- Yex21,

CEAex2 = 1
ex22Y- ,   CEEex2 = Yex12

1
ex22Y-

.

Then, in accordance with (12) and the boundary conditions, 
the matrices Tv, Rv , Tw , and Rw  can be represented as follows:

Tv = CAEex2Yexv ,   Tw  = CAEex1 e– gex–dYexw ,	 (18)

Rv  = CEEex1 + CAEex1e– gex–dCAAex2 Yexv ,

Rw  = CEEex2 + CAEex2e gex+d CAAex1e– gex–dYexw ,	
(19)

Yexv  = (U – e gex+dCAAex1e– gex–dCAAex2)–1e gex+dCEAex1,

Yexw  = (U – CAAex2e gex+dCAAex1e– gex–d  )–1CEAex2,

where U is the identity matrix. These formulae have no expo-
nential factors increasing with d, which makes them very con-
venient and computationally reliable when considering layers 
of any thickness (see the Appendix). The matrices requiring 
inversion in expressions (18) and (19) asymptotically approach 
the identity matrix with increasing d; therefore, their inverses 
also asymptotically approach the identity matrix with increas-
ing d and retain their stability. None of the matrices that are 
used in calculations of the transmission and reflection matri-
ces have very large elements in comparison with unity in this 
case; therefore, no significant loss of accuracy due to round-
ing caused by the finite word length of the machine occurs 
when use is made of these formulae. According to (19), the 
reflection matrix for a layer of infinite thickness (semi-infinite 
layer) can be calculated by the formula

Rv  = CEEex1.

Similar transmission and reflection operators for lumines-
cent radiation, tv (Efl

v (z2 ) = tvEfl
v (z1 ) at Efl

w (z2 ) = O), rv (Efl
w (z1) = 

rvEfl
v (z1 ) at Efl

w (z2 ) = O), tw (Efl
w (z1 ) = twEfl

w (z2 ) at Efl
v (z1 ) = O), 

and rw(Efl
v (z2 ) = rwEfl

w (z2 ) at Efl
v (z1 ) = O), can be calculated in the 

same way.

3.3. Algorithm for calculating the luminescence excitation 
matrices

We will describe the relationship between the fluxes of lumi-
nescent radiation emerging from the layer and the flux of 
exciting radiation when the latter is incident on the layer from 
the side z < z1 and z > z2 using the excitation matrices Fv  (Efl

v  
= FvEexv ) andBv  (Efl

w  = BvEexv ) and Fw  (Efl
w  = FwEexw ) and Bw  (Efl

v  = 
BwEexw ), respectively. The matrices Fv  and Bv  correspond to the 
boundary conditions Eexw (z2) = O, Efl

w (z2) = O, and Efl
v (z1) = O, 

and the matrices Fw  and Bw  correspond to the boundary con-
ditions Eexv (z1) = O, Efl

w (z2) = O, and Efl
v (z1) = O. Using the 

general solution (14), as well as formulae (15) – (17), we can 
obtain the expressions for these excitation matrices:

Fv  = CAEfl2 pv ,   Fw  = CAEfl1e– gfl–d pw  + JYexw w ,	 (20)

Bv  = Lv  + CAEfl1e– gfl–dCAAfl2 pv  + JwCAAex2Yexv ,
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Bw  = CAEfl2 (LYexw w  + e gfl+dCAAfl1e– gfl–d pw ),	 (21)

where

pv  = (U – e gfl+dCAAfl1e– gfl–dCAAfl2)–1(Jv + LwCAAex2Yexv );

pw  = (U – CAAfl2e gfl+dCAAfl1e– gfl–d )–1CAAfl2LwYexw ;

Jv = e gfl+dqv + FA
v CEAex1;   Jw = CAEfl1qw;

Lv = CAEfl1BA
v CEAex1;

Lw = BA
w  + e gfl+dCAAfl1qw  + FA

v CAAex1e– gex–d;

qv = CAAfl1BA
v CEAex1;   qw = FA

w  + BA
v CAAex1e– gex–d;	 (22)

FA
v  = G11e gex+d – e gfl+dG11;   BA

v  = G21 – e– gfl–dG21e gex+d;

FA
w  = G22e– gex–d – e– gfl–dG22;   BA

w  = G12 – e gfl+dG12e– gex–d;

CAEfl1 = Yfl22 – Yfl21
1

fl11Y- Yfl12;   CAAfl1 = – 1
fl11Y- Yfl12;

CAEfl2 = Yfl11 – Yfl12
1

fl22Y- Yfl21;

CAAfl2 = – 1
fl22Y- Yfl21;

and Gij are the matrix blocks of

G = 11

21

12

22

G
G

G
G

e o.

The calculation of the excitation matrices by formulae 
(20) – (22) is numerically stable, since there are no exponents 
in the calculations that increase with d, and these formulae 
can be used for layers of any thickness (in contrast to the 
expressions for similar operators obtained in [26]). For a 
semi-infinite layer, the luminescence excitation operator can 
be calculated by the formula

Bv  = CAEfl1G21CEAex1.

4. Adding technique for a multi-layer system

The adding technique allows recursively calculating the 
matrices Tv, Rv , tv, rv, Fv, Bv , Tw , Rw , tw, rw, Fw , and Bw  for the entire 
layered system using the corresponding operators for indi-
vidual layers. Suppose that for the subsystem consisting of the 
first n layers, we have calculated a complete set of transmis-
sion, reflection, and luminescence excitation operators, T( )n

v , 
R( )n
v , t ( )n

v , r( )nv , F( )n
v , B( )n

v , T( )n
w , R( )n

w , t ( )n
w , r( )nw , F( )n

w , and B( )n
w , as well as 

a complete set of such operators for the n + 1th layer, Tn 1+
v , 

Rn 1+
v , tn 1+

v , rn 1+v , Fn 1+
v , Bn 1+

v , Tn 1+
w , Rn 1+

w , tn 1+
w , rn 1+w , Fn 1+

w  and 
Bn 1+
w . By matching the forward and backward radiation fluxes 

at the boundary between nth and n + 1th layers (see Section 
7.2.2 in [33]), one can obtain the expressions for the operators 
of the subsystem of n + 1 layers:

T( )n 1+
v  = Tn 1+

v Mn 1+
v ,   T( )n 1+

w  = T( )n
w Mn 1+

w ,	 (23)

R( )n 1+
v  = R( )n

v  + T( )n
w Rn 1+

v Mn 1+
v ,

R( )n 1+
w  = Rn 1+

w  + Tn 1+
v R( )n

w Mn 1+
w ,	 (24)

t ( )n 1+
v  = tn 1+

v l n 1+
v ,   t ( )n 1+

w  = t ( )n
w l n 1+

w ,	 (25)

r( )n 1+v  = r( )nv  + t ( )n
w rn 1+v l n 1+

v ,

r( )n 1+w  = rn 1+w  + tn 1+
v r( )nw l n 1+

w ,	 (26)

F( )n 1+
v  = tn 1+

v mn 1+v  + Fn 1+
v Mn 1+

v ,	 (27)

B( )n 1+
v  = B( )n

v  + t ( )n
w ( Bn 1+

v Mn 1+
v  + rn 1+v mn 1+v )

	 + F( )n
w Rn 1+

v Mn 1+
v ,	 (28)

F( )n 1+
w  = t ( )n

w mn 1+w  + F( )n
w Mn 1+

w ,	 (29)

B( )n 1+
w  = Bn 1+

w  + tn 1+
v ( B( )n

w Mn 1+
w  + r( )nw mn 1+w )

	 + Fn 1+
v R( )n

w Mn 1+
w ,	 (30)

mn 1+v  = (U – r( )nw rn 1+v )–1(F( )n
v  + B( )n

w Rn 1+
v Mn 1+

v

	 + r( )nw Bn 1+
v Mn 1+

v ),

mn 1+w  = (U – rn 1+v r( )nw )–1(Fn 1+
w  + Bn 1+

v R( )n
w Mn 1+

w

	 + rn 1+v B( )n
w Mn 1+

w ),

Mn 1+
v  = (U – R( )n

w Rn 1+
v )–1T( )n

v ,

Mn 1+
w  = (U – Rn 1+

v R( )n
w )–1Tn 1+

w ,

l n 1+
v  = (U – r( )nw rn 1+v )–1t ( )n

v ,

l n 1+
w  = (U – rn 1+v r( )nw )–1tn 1+

w .

Expressions similar to (23) – (26) were obtained for nonlu-
minescent media in [11, 33]. Expressions similar to (27) and 
(28) can be found in [26]. Calculations start from T( )0v  = U, R( )0

v  
= 0, t ( )0v  = U, r( )0v  = 0, F( )0v  = 0, B( )0v  = 0, T( )0w  = U, R( )0

w  = 0, t ( )0w  = 
U, r( )0w  = 0, F( )0w  = 0, and B( )0w  = 0; then, reccurence formulae 
(23) – (30) are used.

5. Operators characterising the interaction  
of light with interfaces with a sharp jump  
in the refractive index

The formulae for individual layers given in Sections 3.2 and 
3.3 are valid in the case of light incidence from a medium with 
a refractive index equal to nbase. In realistic model systems, as 
a rule, there is at least one interface with a sharp jump in the 
refractive index. In the model used in this work (see Section 
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7), this is the air – scattering medium (skin) interface. To take 
into account the reflection at such interfaces, the correspond-
ing transmission and reflection operators are used, which are 
usually calculated using the Fresnel formulae for the trans-
mission and reflection coefficients of an interface (see, for 
example, [11]). Within the framework of the proposed met
hod, for radiation in air and nonscattering layers with refrac-
tive indices different from nbase, it is convenient to use grids 
conjugated with the basic grid, the nodal directions of which 
are related to the corresponding nodal directions of the basic 
grid by Snell's law. Let us assume that unit vectors nb0 j and nbij 
(i = 1, 2, 3) indicate, respectively, the mean direction and ver-
tices for the jth cell of the basic grid of directions (for layers 
with a refractive index nbase ) and nbij = (xbij, ybij, zbij) (i = 
0, 1, 2, 3) in the xyz coordinate system. Then, the correspond-
ing vectors for the jth cell of the conjugate grid for a 
medium with a refractive index ns, provided that ns > nbase, 
can be represented as follows:

nsij = (xsij, ysij, zsij ) = , ,n
n

x n
n

y
n

b
1

s

base
b

s

base
b

s
ij ij

ij
2

-
2

f p,	 (31)

where bij
2  = nbase

2 (xbij
2  + ybij

2 ). For ns < nbase, as in the case of 
air (ns = 1), for some directions nbij the condition

bij
2  > n s

2 	 (32)

is met. These directions correspond to surface (evanescent) 
modes in a medium with a refractive index ns. The cells of the 
conjugate grid, for all vertices of which condition (32) is satis-
fied or bij

2  = n s
2 , are considered to be cells of surface modes 

(the concept of a vertex in this case is conventional). The cells 
of the conjugate grid, for all vertices of which relation (32) is 
not satisfied, correspond to the ordinary propagating modes. 
The vectors nsij for them are calculated by formula (31). The 
basic grid can always be chosen such that the medium with a 
given ns in the conjugate grid has no elementary cells at which 
both surface and ordinary modes fall. The advantage of using 
conjugate grids is that the calculation of the transmission and 
reflection matrices for the interfaces in this case is simple, and 
the matrices themselves are diagonal. In the calculations of 
Section 7, the diagonal elements of the transmission matrices, 
Tv  (tv) and Tw  (tw), and the reflection matrices, Rv  (rv) and Rw  (rw), 
for the air – scattering medium interface were calculated as the 
corresponding transmittivities and reflectivities of a plane 
interface between media with refractive indices ns = 1 and nbase 
= 1.4 for unpolarised incident light and directions of its inci-
dence corresponding to the centres of grid cells. This interface 
was included in the recursive scheme presented in Section 4 as 
the very first element.

6. Correction for nonlinearity of luminescence 
excitation

If only one layer is luminescent in the layered system, the solu-
tion for luminescent radiation obtained by the method 
described above can be considered as a solution to the problem 
of light propagation from a planar source enclosed between 
non-emitting layers. Properties of this source, the luminosity 
and the angular dependence of the radiance, can be easily 
calculated under the given illumination conditions for the 
system, as well as the radiance of the exciting radiation inci-
dent on the luminescent layer and the irradiance of the layer 
boundaries produced by this radiation. Equation (2) prede-

termines a linear dependence of the luminescence of the lumi-
nescent layer on its irradiance produced by exciting radiation. 
In the case of up-conversion luminescence, this dependence is 
more complicated due to the nonlinear dependence of the 
luminescence power on the power of the exciting radiation 
[34]. If the optical density of the luminescent layer is low, 
which is typical for problems associated with the use of up-
conversion nanoparticles for thermometry, the nonlinearity 
of luminescence excitation to a first approximation can be 
taken into account by changing the luminosity of the lumines-
cent layer in accordance with the specified functional depen-
dence of the luminosity on the irradiance produced by the 
exciting radiation upon preservation of the angular distribu-
tion of the radiance of the luminescent radiation emerging 
from the layer. Mathematically, within the framework of the 
method under consideration, such a correction is reduced to a 
simple renormalisation of the state vectors of the lumines-
cence radiation emerging from the system. The shape of the 
spectrum of the output luminescence radiation does not 
change with this correction; therefore, if the final goal of the 
calculations is to estimate the coefficients atp(lr, li), there is no 
need to carry out the correction.

7. Evaluation of correction factors  
for various locations of fluorescent nanoparticles  
in the subcutaneous layers

Using the above method, we estimated the degree of transfor-
mation of the spectrum shape of luminescent radiation on its 
way from the luminescence source (NaYF4 : Er3+,Yb3+ 
nanoparticles embedded in the subcutaneous layers) to the 
photodetector. The calculations were performed for the fol-
lowing three-layer model. The first 2-mm-thick layer was a 
skin model, and the second 0.5-mm-thick layer was a model 
layer of the subcutaneous adipose tissue. The third layer, con-
sidered in the calculations as semi-infinite, served as a model 
of the muscle tissue. Four variants of location of nanoparti-
cles in the subcutaneous layers were considered. In all four 
cases, it was assumed that the particles were evenly distrib-
uted over a 100 mm thick region: in the first case (variant 1), in 
the adipose layer in the immediate vicinity of the skin; in the 
second case (variant 2), in the adipose layer near the muscle 
layer; and in the third (variant 3) and fourth (variant 4) cases, 
in the muscle layer at depths from 0.5 mm and from 1 mm, 
respectively, measured from the lower border of the adipose 
layer. The single scattering phase functions pex(s, s'  ) and 
pfl (s, s'  ) for all layers were taken in the form of the 
Henyey – Greenstein functions; the fluorescent emission from 
nanoparticles was considered isotropic [  f (s, s'  ) = 1/4p]. It was 
assumed that exciting radiation with a wavelength of lex = 
980 nm is normally incident on the sample from a medium 
with a refractive index equal to 1 (air). The coefficients 
atp(lr, li) were calculated at lr = 519 nm (G1, Fig. 1), l1 = 526 
nm (G2), l2 = 538 nm (G3), and l3 = 546 nm (G4) for detec-
tion angles of 5°, 35.6°, and 48.2° (angle between the normal 
to the outer boundary of the system and the mean direction of 
propagation of the luminescent radiation entering the photo-
detector). The values of the absorption (  ma) and scattering 
( ms) coefficients used in the calculations, as well as the scatter-
ing anisotropy factor g at wavelengths of 519, 526, 538, 546, 
and 980 nm for all three layers are presented in Table 1. The 
ma values for skin and adipose layer correspond to the data 
given in [35]. The values of g for these two layers were taken 
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from [36, 37], and the ms coefficients were calculated from the 
values of the reduced scattering coefficient m's [35] and the 
chosen values of g. The data for the muscle layer were taken 
from [38]. The average refractive index of all layers is taken 
equal to 1.4. The coefficient mex-a 0 at l = 980 nm in the region 
of location of nanoparticles is taken equal to 9.2 cm–1. At 
luminescence wavelengths, the absorption of light by 
nanoparticles was neglected. In the region of location of 
nanoparticles, the value of ma at l = 980 nm was increased by 
the value of mex-a 0 relative to the value of ma in the region of 
the layer free of nanoparticles. The assumed values of the 
energy yield of luminescence Q( l) were as follows: Q(519 nm) 
= 0.0047, Q(526 nm) = 0.0049, Q(538 nm) = 0.0274, and 
Q(546 nm) = 0.0151 [at these Q, the relations fp(lr, li) are close 
to the experimental ones at a temperature of 24 °C (see Fig. 1), 
and the quantum yield at a wavelength of 538 nm is ~ 0.05]. 
Note that theoretically, the values of atp(lr, li) should not 
depend on the choice of Q( l).

The calculation program was written in C#. For algebraic 
operations with matrices and calculation of eigenvalues and 
eigenvectors of matrices, it uses the corresponding tools of the 
Math.Net Numerics library [39]. The calculations were per-
formed using double precision arithmetic. All calculations 
were performed using the base grid with N = 12 (an increase 
in N for N ³ 12 did not lead to a significant change in the 
final results). On a personal computer with a quad-core AMD 
Ryzen 5 3500U (2.1 GHz) processor, the calculation time for 

one luminescence wavelength did not exceed 1 min for any of 
the variants under consideration.

The calculation results are shown in Table 2 and Fig. 3. It 
can be seen from the presented data that in all the cases under 
study the coefficients atp(lr, li) differ significantly from 1, 
despite the closeness of the values of li and lr. In this case, the 
atp(lr, li) values corresponding to different variants of 
nanoparticle location differ significantly. At the same time, it 
can be seen that the course of the atp(lr, l) function is mainly 
determined by the optical properties of the skin. Noteworthy 
is the fact that the atp(lr, li) values obtained for different 
angles of detection differ little from each other. This leads to 
the idea that in practical measurements under similar condi-
tions the dependence of atp(lr, li) on the angle of detection in 
a wide range of its values can be neglected.

8. Conclusions

Thus, we have proposed an efficient and stable method for 
calculating the characteristics of light fields that arise when 
light is incident on a layered system containing scattering and 
luminescent layers. This method is applicable in the case of 
oblique incidence of the light on the layered medium and is 
equally effective when considering thin, thick, or semi-infi-
nite layers. The latter distinguishes it favourably from meth-
ods of stochastic tracing of wave packets based on the Monte 
Carlo method, the computational efficiency of which sharply 
decreases with increasing layer thickness. The proposed method 
is used to estimate the transformation of the shape of the lumi-
nescent radiation spectrum caused by scattering and absorp-
tion in the medium, when transcutaneous laser excitation of 
the luminescence of up-conversion nanoparticles embedded 
in the subcutaneous layers is performed. The correction fac-
tors necessary to determine the temperature from the recorded 
luminescence spectra were estimated at different locations of 
nanoparticles in the subcutaneous layers. The presented sim-
ulation results make it possible to estimate the error in deter-
mining the temperature at different accuracies of localisation 
of luminescent nanoparticles.
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Appendix. Program testing results

When testing the software modules for calculating the trans-
mission and reflection operators of homogeneous layers by 
formulae (18) and (19) (Section 3.2), we compared the results 
of calculating the integral transmittance (Ttot) and reflectance 

Table  1.  Absorption and scattering parameters of the layers used in the 
calculations.

Layer Wavelength /nm ma /cm–1 ms  /cm–1 g

Skin 519 3.33 179.67 0.77

526 3.27 172.35 0.77

538 3.18 166.92 0.775

546 3.13 156.45 0.78

980 2.48 130.5 0.92

Subcutaneous 519 1.41 457.67 0.97

adipose layer 526 1.42 450.67 0.97

538 1.44 441.33 0.97

546 1.4 443 0.97

980 1.06 378.8 0.975

Muscle tissue 519 1.38 92.33 0.91

526 1.47 92.09 0.91

538 1.61 91.69 0.91

546 1.71 91.42 0.91

980 0.73 55.14 0.94

Table  2.  Calculated values of the coefficients atp (lr, li).

Detection 
angle /deg

i li /nm
atp(lr, li)

variant 1 variant 2 variant 3 variant 4

5 1 526 1.118 1.114 1.098 1.087

2 538 1.292 1.28 1.236 1.204

3 546 1.563 1.541 1.463 1.409

35.6 1 526 1.117 1.113 1.098 1.086

2 538 1.291 1.279 1.235 1.203

3 546 1.559 1.538 1.46 1.406

48.2 1 526 1.117 1.113 1.098 1.086

2 538 1.291 1.279 1.235 1.202

3 546 1.557 1.536 1.458 1.405

atp(lr,l)

1.8

1.6

1.4

1.2

1.0

0.8
515 520 525 530 535 540 545 l/nm

variant 1
variant 2
variant 3
variant 4

Figure 3.  Calculated values of the coefficients atp(lr, li) for a detection 
angle of 5°.
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(Rtot ) of the scattering layers at normal light incidence by the 
proposed method with the results obtained using the well-
known and widely used version of the adding – doubling 
method developed by Prahl [11, 40], which are presented in 
Tables 5.3 and 5.4 of Ref. [40]. We compared the results 
obtained for layers of media with g = 0.895 at ms /(  ms + ma ) = 
0.6, 0.9, and 0.99 and the optical thicknesses of the layer, (  ms 

+ ma )d, from 1 to 512. The calculation by the proposed 
method was carried out at N = 12. In all cases, the absolute 
difference between the values obtained by these two methods 
did not exceed 0.015. We also present here for comparison the 
estimates of Ttot and Rtot for a 0.02-cm-thick layer of a 
medium with ms = 90 cm–1, ma = 10 cm–1, and g = 0.75, pre-
sented in [11] and [41] (in both cases, Monte Carlo algorithms 
were employed), and estimates of these quantities obtained 
by the proposed method for N = 12 and 14: Ttot = 0.09711, 
0.09734, 0.09807, 0.09789 and Rtot = 0.66159, 0.66096, 
0.65956, 0.65994 (in the order of mention).
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