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Abstract. It is shown that the quantum cryptography protocol on 
geometrically uniform coherent states, which uses the restriction 
for unambiguous discrimination of a set of symmetric coherent 
states and allows resisting an unambiguous state discrimination 
attack (USD attack), is not secure to a number of other attacks. 
The key length formula from the work of S.N. Molotkov [ JETP 
Lett., 101 (8), 579 (2015)] and the key generation rate for a number 
of constructive attacks of the eavesdropper are compared and it is 
shown that the key generation rate in this work is significantly 
overestimated. This leads to the fact that the distributed key is not 
secret.

Keywords: quantum cryptography, coherent states, quantum infor-
mation theory.

1. Introduction

The goal of quantum cryptography [1 – 3], or, more precisely, 
quantum key distribution, is the distribution of a shared key 
between two remote users, the key secrecy being not based on 
any assumptions about the limited capabilities of the eaves-
dropper. Thus, the distributed key must be secure against any 
actions (attacks) of an eavesdropper that do not contradict 
the laws of quantum mechanics. For a number of protocols of 
quantum key distribution, security proof have been obtained 
[4 – 7]; however, for some protocols, the construction of the 
security proof against all possible attacks is an unsolved and 
very challenging task.

A number of attacks in quantum cryptography are best 
known because they most clearly demonstrate the capabilities 
of an eavesdropper due to certain technological restrictions 
imposed on legitimate users. In this regard, when proposing a 
new quantum cryptography protocol, it is reasonable to test 
its security against the most well-known attacks. However, 
this resistance does not mean that the protocol will remain 
secure against all other attacks.

The quantum cryptography protocol on geometrically 
uniform coherent states [8 – 10] is aimed at counteracting an 
unambiguous state discrimination attack (USD attack) [11], 
also called unambiguous measurement attack (UM attack). 

In this attack, which is possible for linearly independent states 
in a lossy line, the eavesdropper obtains full information from 
them with a certain probability of success. In the case of fail-
ure, the eavesdropper blocks the states, and in the case of suc-
cess, the eavesdropper sends them to the receiving side, 
increasing their intensity. The protocol uses a configuration 
of symmetric coherent states, for which the upper bound for 
the unambiguous discrimination probability is known [12]. 
This makes it possible to ensure the impossibility of a USD 
attack at practically important distances due to the use of a 
sufficiently large number of states. Molotkov [9] presented a 
formula for generating a secret key, which, among other 
things, is related to the USD success probability.

However, being secure against a USD attack does not 
mean being resilient against any other attack for a lossy line. 
The key disadvantage of a USD attack from an eavesdrop-
per’s point of view is that it does not use information about 
the bases that legitimate users announce when communicat-
ing over a public channel. Given the use of a large number of 
states, this information is quite valuable and can be used to 
construct a number of other attacks. This paper proposes 
attacks that exploit this information. Conditions are pre-
sented under which the considered attacks demonstrate an 
overestimation of the key generation rate presented in [9], 
which leads to the nonsecrecy of the distributed keys.

Chefles and Barnett [12] note that the formulae for 
working with symmetric coherent states cannot be reduced 
to a simple form; therefore, the main results of the work, 
presented in the plots of the key generation rate and criti-
cal intensities, were obtained numerically. For each con-
structed attack, physical ideas describing its fundamental 
feasibility and the reasons for its effectiveness will be con-
sidered.

The paper is organised as follows. Section 2 briefly 
describes the quantum cryptography protocol on geometri-
cally uniform coherent states. Section 3 is devoted to the deri-
vation of the formula for the key generation rate presented in 
[9]. Section 4 discusses the most conceptually simple attack in 
quantum cryptography – the beam splitting attack. It is 
shown that even against such an attack, the key generation 
rate is overestimated. The eavesdropping scheme using an 
active beam splitter is also described, which will be used in 
further sections. Sections 5 – 7 discuss other attacks: modified 
photon-number splitting attack, state amplification attack, 
and key bit discrimination attack. For some attacks, the key 
generation rates are presented, and for others, the critical 
value of the intensity depending on the length of the commu-
nication line. The Conclusions presents the main results of the 
work.
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2. Protocol on geometrically uniform states

The idea of using symmetric coherent states in quantum cryp-
tography is found in Refs [13 – 16], as well as in later works 
[8 – 10, 17, 18], and some protocols have been implemented in 
practice [19 – 21]. Here is a description of the protocol from 
Refs [8 – 10].

Recall that the coherent state |añ is written as
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where |nñ is the Fock basis. The protocol uses N symmetric 
coherent states of the form [12]

j| | ( 2 / )exp i j NH Hpa a= ,   , ,j N0 1f= - , 

that is, for all such states, the intensities m = | a |2 coincide, and 
the phase takes values {2 / }j N j

N
0
1p =
-  from a set with equal inter-

vals. Since N is an even number, the states are divided by M = 
N/2 bases. The phase shifts q inside each basis coincide and, 
therefore, the states of one basis b, corresponding to sending 
0 and 1, have the form

| | [ 2 ( ) / ]exp i k b Nb
0H Ha p= a ,

| | { [2 ( ) / ]}exp i k b Nb
1H Ha p q= +a , 

(1)

where the initial value of k(b) for each basis is determined by 
the configuration of states.

In what follows, we will use the notations traditional for 
quantum cryptography, as well as we will call Alice and Bob 
legitimate users, and the eavesdropper will be called Eve.

At the first step, Alice randomly chooses a basis  b d 
{0, , 1}Mf -  and a bit {0,1}k d  in each position, and then 
sends the corresponding state | b

kHa  to Bob. More precisely, 
Alice sends a reference state |añ, the phase of which is known 
and is always the same [8], and an information state; there-
fore, her states have the form

| | |b
k

b
k7H H Hy a a= .  (2)

Bob receives a state after the signal has passed a com-
munication line of length L. Coherent states in fibre-optic 
communication lines are converted in a self-similar way, and 
Bob’s state in the absence of an eavesdropper will differ 
from Alice’s state only by the intensity m, which is converted 
into

10 /L 10
#m m= k-u ,  (3)

where k is the attenuation coefficient in the communication 
line, which is approximately 0.2 dB km–1 for optical fibre 
(hereafter, we will use this value).

Bob randomly chooses a basis and performs an unambig-
uous discrimination between the states of this basis [22]. The 
theoretical probability of success with unambiguous discrimi-
nation of states {| , | }b b

0 1H Ha au u , where a m=u u  [the reference 
state |añ in (2) is needed to make a measurement, but it does 
not change scalar relations and the probability of success] 
[23], is

- |1 | | 1 [ (1 ) ]exp cospmaxsucc n n
0 1G Ha a q m= = - - -u u u .  (4)

In practice, however, the scheme may be less effective and 
give a lower probability of success. The scheme proposed in 
[9] with one detector and a phase modulator for selecting a bit 
within the basis gives the success probability (for more details, 
see [17])

( )exp cosp 1 1succ 2
1

2
1 q m= - - - u6 @" ,.  (5)

In what follows, for the success probability with unam-
biguous state discrimination, we will use formula (5), although 
formula (4) gives similar results. Let us assume that the equip-
ment of legitimate users works perfectly: In particular, the 
detectors on the receiving side have a unit efficiency and a 
zero dark count rate.

After Alice transmits states in all positions, and Bob 
makes measurements, they proceed to the stage of basis recon-
ciliation: Through a public channel, they reveal the bases used 
to prepare and measure states in each position, and discard 
messages in case of mismatch (the probability of basis match-
ing is 1/M = 2/N). Messages where Bob’s measurement gave 
an inconclusive outcome are also discarded. As a result, a raw 
key is obtained.

At the next stage – error correction, Alice and Bob correct 
errors in the raw key, also communicating over a public chan-
nel; as a result, part of the information about the key is 
revealed. Before that, they evaluate the error by revealing a 
part of the raw key and then discarding the revealed positions 
(note that there are more efficient methods for evaluating the 
error, see, for example, [24, 25]). Information leakage to the 
eavesdropper at this stage is denoted as leak, and it is also 
taken into account when calculating the length of the final 
key. After error correction, Alice and Bob have matching 
keys (except for a very small probability of incorrect opera-
tion of the error correction module, which we will neglect in 
our work).

At the last stage – privacy amplification, legitimate users 
compress their key to discard the eavesdropper’s information. 
At this stage, it is important that the correct upper estimate of 
the eavesdropper’s information is used in the formula for the 
length of the final key: In this case, the eavesdropeer’s infor-
mation about the final key will be close to zero. An error in 
evaluating the eavesdropper’s information and overestimat-
ing the key length can lead to the fact that part of the final key 
will be known to the eavesdropper, which is unacceptable. 
Section 3 describes the formula for the length of the secret key 
from paper [9].

Vtyurina et al. [20] and Borisova et al. [21] mention the 
practical implementation of the protocol; in particular, 
Borisova et al. [21] present the most relevant sets of parame-
ters from a practical point of view: an intensity,  m = 0.3 –  0.5 
photons per pulse, an attenuation of 18 dB in the channel 
(which in our the model corresponds to a 90-km-long fibre-
optic communication line, although in practical systems such 
attenuation is possible at other communication line lengths), 
and a quantum bit error rate of 3 % – 6 %.

3. Formula for the secret key generation rate

The formula for the secret key generation rate is a major theo-
retical element of the quantum cryptography protocol. In 
fact, the security proof is reduced to the proof of the fact [6,  7] 
that if we choose the length of the final key according to the 
formula, then the key will be secret in accordance with the 
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secrecy parameter (for more details about the secrecy param-
eter, see [26]).

As the basic formula for the secret key length (or, which is 
the same, the secret key generation rate), Molotkov [9] uses 
the Devetak – Winter formula [27] 

Rkey = I(A : B) – I(A : E) = H(X|E) – leak,  (6)

where I is the mutual information between the users (A stands 
for Alice; B, for Bob; and E, for Eve); and H(X|E) is the con-
ditional entropy that characterises Eve’s lack of information 
about the key X if she has quantum states obtained with the 
best attack.

From formula (6) it follows that the length of the secret 
key in terms of one message is determined by the difference 
between the mutual information of legitimate users and the 
eavesdropper’s information about the key. Evaluation of the 
eavesdropper’s information is nontrivial: As follows from [9], 
it should depend only on the parameters observed on the 
receiving side, as well as on the state configuration that is 
known to legitimate users. Let pclick be the probability of the 
detector click at the receiver side; then ploss = 1 – pclick is the 
observed probability of loss. The observed parameters also 
include Q, that is, the quantum bit error rate in the raw keys 
of legitimate users.

The USD attack is considered the most powerful attack in 
the case of attenuation. Let us denote the probability of suc-
cess with unambiguous discrimination of initial states by 
pUSD; for this probability an upper bound was given in [12]. If 
ploss is greater than the probability of failure of unambiguous 
discrimination of initial states, 1 – pUSD, then the eavesdrop-
per knows the entire key, since it can carry out a USD attack. 
If the level of losses is less than the probability of failure of 
unambiguous discrimination, then it is assumed that the opti-
mal strategy for the eavesdropper is to apply unambiguous 
state discrimination to the fraction of messages, d. In fact, 
Eve in each position with probability d applies unambiguous 
state discrimination, and in the rest of the messages, the frac-
tion of which is 1 – d, performs optimal individual measure-
ments. Moreover, when evaluating Eve’s information 
extracted from such a measurement, it is assumed that at the 
time of measurement, Eve knows the basis, but does not know 
the set of codewords, as a result of which her information is 
estimated through C1, that is, the one-shot capacity for two 
vectors in one basis [28, 29]. For two pure equiprobable states 
{| , | }b b

0 1H Ha a ,

-1
| | |

C h
2

1 1 b b
1 2

0 1 2G Ha a
= -

-c m,

where h2(x) = – xlog2x – (1 – x)log2(1 – x) is the Shannon 
binary entropy.

It is also important that both for the positions in which 
unambiguous discrimination was applied, and for the posi-
tions in which Eve did not apply this discrimination, she 
resends the states with high intensity instead of the original 
ones to Bob. This is done in order to compensate for the 
insertion loss as much as possible: In this case, unambiguous 
discrimination can be applied to a larger fraction of the 
states.

In this case, the total length of the raw key (the eavesdrop-
per’s information is not taken into account here) is

Rraw key = 1 – d + dpUSD = 1 – ploss,

from which we can conclude that the fraction of the messages 
d, to which unambiguous discrimination is applied, is ploss ´ 
(1 – pUSD)–1.

The length of the secret key, taking into account Eve’s 
information, is expressed as follows. From the entire raw key 
of length 1 – ploss Eve knows the leak information obtained 
from the public channel during error correction (this value 
depends both on the observed error Q and on the error cor-
rection method used by legitimate users). She also knows all 
the information about the dpUSD part for which unambiguous 
discrimination was successful, and the C1 information about 
the 1 – d part, to which unambiguous discrimination was not 
applied, but which got into the key. We have

Rkey = (1 – ploss)(1 – leak) – (1 – d)C1 – dpUSD,  (7)

which coincides with formula (11) in [9] {see also [30], where 
this formula is given under number (7) with duplication of 
argumentation}.

It is emphasised that this formula includes a conservative 
upper bound for Eve’s information, and it depends only on 
the values observed and calculated based on the parameters 
of the protocol.

Let us briefly list the main mistakes made in the derivation 
of formula (7):

1. The application of unambiguous discrimination to a 
part of the messages is not an optimal strategy; more effective 
attacks will be proposed below.

2. It is incorrect to evaluate the information of the eaves-
dropper through the one-shot capacity, C1, since in other 
attacks it can make measurements knowing the set of code-
words.

In the following sections, these theses are clarified, and 
attacks are demonstrated in which the eavesdropper has more 
information, that is, in which the key generation rate should 
be lower. In fact, this means that if we use formula (7), then 
part of the key turns out to be known to the eavesdropper, 
which, of course, is unacceptable.

Figure 1 shows the dependence of the secret key genera-
tion rate on the distance between legitimate users, as well as 
this rate per one bit of the raw key:

R R
R

/key bit
raw key

key
=

 
( ) ( ) ( )leak

p
p C p

1
1 1 1

loss

loss USD1d d
=

-
- - - - - .  (8)

The dependence obtained by formula (8) is more evident on a 
linear scale; therefore, in the future we will often compare the 
key lengths for this particular case. Note that formulae (7) and 
(8) do not contain the probability of basis matching 1/M; how-
ever, when choosing the optimal parameters of the protocol, 
these probabilities, of course, must be taken into account.

4. Beam splitting attack, schematic  
of an active beam splitter 

This section shows that formula (7) turns out to be inaccurate 
even when the eavesdropper uses the conceptually simplest 
attack for a lossy line: the beam splitting attack. This attack 
boils down to the fact that Eve simulates losses in the channel 
using a beam splitter, taking away part of the state, and then 
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measures this part, knowing the basis. This section also 
describes the scheme of an active beam splitter, which will be 
needed below to build more effective attacks.

The action of the beam splitter on the coherent state |añ, 
where the vacuum state is at the second input, can be 
described as

|añA ® |tañB |rañE,  (9)

where r and t are the reflectance and transmittance, respec-
tively; and |r|2 + |t |2 = 1. In order for Bob to obtain the state 
with the intensity mu , determined from (3), Eve needs to use 
the coefficient /t m m= u .

Next, Eve sends the states /t m m= u  over a lossless chan-
nel to Bob, and Bob receives exactly what he expects. Eve 
stores the states |rañE in her quantum memory and measures 
them after the bases are anounced and after the disclosure of 
the rest of the information (such as the set of codewords for 
error correction). Eve’s information IBS(A : E) in this case is 
given by the Holevo value [28, 31] of the states {| , | }r r Eb b

0 1
EH Ha a  

within the basis:

IBS(A : E) 
| | |

h
r r
2

1 E Eb b
2

0 1G Ha a
=

-
=c m

 
[ ( ) ( )]exp cos

h
2

1 1
2

q m m
=

- - - - u
' 1.

The eavesdropper’s information yields the key generation 
rate per one message

Rkey/bit, BS = 1 – IBS(A : E)

 
[ ( ) ( )]exp cos

h1
2

1 1
2

q m m
= -

- - - - u
' 1.  (10)

With a long communication line, mu  ® 0 and Eve’s informa-
tion tends to the Holevo value of the initial states; therefore, 
with such an attack, the eavesdropper does not receive full 
information even at very large channel losses.

Figure 2 shows the secret key generation rates per one bit 
of the raw key for formula (8) and for a beam splitting attack 
according to (10). One can see that at communication line of 
12 – 172 km in length, the beam splitting attack works effi-
ciently and the key generation rate turns out to be lower 
than that obtained by formula (8). The error that led to the 
overestimation of the key generation rate in (8) was already 
mentioned above: This is the use of the one-shot capacity C1 
instead of the Holevo value to estimate the eavesdropper’s 
information. Such use is justified when an eavesdropper faces 
the need to measure states without a set of codewords [29] (see 
also [32]); however, in the case of a beam splitting attack, this 
is not necessary, and the eavesdropper can wait for the 
announcement of codewords. Thus, with a 90-km-long com-
munication line (a loss of 18 dB, as in [21]), the key generation 
rate is overestimated by about 20 %, which means that the 
eavesdropper knows more than 17 % of the key.

It should be noted that if in (8) we replace the one-shot 
capacity C1 by the Holevo value of states within the basis, 
then the beam splitting attack will no longer lead to a loss of 
secrecy, since the key obtained by the formula

/key bit 1
(1 )(1 ) ( )leak

R
p

p p1
loss

loss USDd c d
=

-
- - - - -

l ,  (11)
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Figure 1. Dependences of the secret key generation rate on the distance 
between legitimate users for the protocol on geometrically uniform 
states with N = 8 states, divided into M = 4 bases (intensity m = 0.4 pho-
tons per pulse, phase shift within the basis q = p/4) according to for-
mula (7) (a) and in terms of one bit of the raw key according to formula 
(8) (b). The attenuation in the communication line is k = 0.2 dB km–1 
and the error is zero.
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Figure 2. Dependences of the secret key generation rate on the distance 
between legitimate users in the case of a beam splitting attack, obtained 
by formula (10) (solid line), by formula (8) (dashed line), and also by 
formula (11) (dotted line). Protocol parameters are as follows: N = 8 
states (M = 4 bases), intensity m = 0.4 photons per pulse, and phase shift 
within the basis q = p/4. The attenuation in the communication line is 
k = 0.2 dB km–1, and the error is zero.
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where the Holevo value c of equiprobable states {| ,b
0Ha  

| }b
1Ha  is

-({| , | })
| | |

h
2

1
b b

b b0 1
2

0 1

H H G H
c a a

a a
= c m,

turns out to be shorter than the secret key obtained by for-
mula (10) (Fig. 2). In what follows, however, more effective 
attacks will be described, for which formula (11) also turns 
out to be incorrect.

Let us describe here the scheme of an active beam splitter 
(Fig. 3), which has already been used for a number of attacks 
[33, 34] and will be used in our work. The essence of this 
eavesdropping technology is that Eve does not just keep the 
states assigned by the beam splitter in her quantum memory, 
but applies a transformation and, depending on its result, 
blocks the remaining state or sends it to the receiving side. 
This scheme allows for greater flexibility: Eve can send states 
to Bob only in those positions in which she is sure that she can 
get a lot of information from her states and block states in 
other cases. Another important advantage of such a scheme is 
that Eve performs the transformation over a part of the state 
that Bob does not get, and so she can introduce any changes 
there, and this will not lead to an error on the receiving side.

The condition for the applicability of an active beam split-
ting attack is that Bob’s detector should be triggered with the 
same probability as in the absence of an attack. If Eve sends 
states with intensity |t|2 m to the receiving side, then this 
imposes the following requirement on the probability of suc-
cess p Esucc of her transformation (that is, on the probability of 
sending states):

{1 [ (1 ) ]}exp cos2
1

2
1 q m- - - u

 {1 [ (1 ) | | ]}exp cosp tsucc
E

2
1

2
1 2q m= - - - .  (12)

The left-hand side of this expression corresponds to the 
expected probability (5) of obtaining a conclusive outcome 
within the basis in the absence of an eavesdropper. The right-
hand side corresponds to the fact that the eavesdropper with 
the probability p Esucc sends pulses with the intensity |t|2 m to the 
receiving side, and a conclusive outcome is obtained for these 
pulses on the receiving side.

Note that the scheme of an active beam splitter presented 
here has a drawback: In case of failure, the remaining state is 
blocked, while it is more efficient to apply a transformation 
over the entire state, so that in case of success, it also has a 
state for sending to Bob, and in case of failure, it always gives 
one and the same state at the output. Then, unitarity condi-
tions will increase the overall probability of success (see, for 
example, [35]). Nevertheless, such a technique will complicate 
the mathematical description of the above attacks and make 

their physical interpretation less clear. However, since attack 
optimisation is not the goal of this work, we will consider 
below a conceptually simple active beam splitter scheme 
described here.

5. Variant of a photon-number splitting attack 

This section will describe an attack that most clearly demon-
strates the inaccuracy of formula (7) for the secret key length.

A photon-number splitting attack (PNS) was developed 
for the BB84 protocol and is described in detail in [15]. The 
essence of this attack is that if legitimate users use coherent 
states with phase randomisation

( ) ( )exp expi i
d
20

2
HG pr m f m f

f
=

p
m y

 ( )
!
| |exp

n
n n

n

n 0

HGm
m

= -
3

=

+

/ ,

then the eavesdropper can perform a nondemolishing mea-
surement of the number of photons in a pulse, and then, if 
there are more than one photon, take some of them into its 
quantum memory. After revealing the bases, the eavesdrop-
per performs a measurement in the required basis and receives 
all the information.

It is important to note here that the reasoning that led to 
formulae (7) and (8) for the secret key length does not depend 
in any way on the phase shift q between states within the basis 
used in the protocol on geometrically uniform states. 
Therefore, if this reasoning is correct, the formulae should be 
valid for any value of q. Moreover, it is not difficult to carry 
out numerical optimisation of the key length according to 
these formulae for an arbitrary length of the communication 
line, taking into account the probability of the basis mis-
match, and to see that the optimal value of the phase shift is 
q = p. This also follows from such considerations: In formula 
(7), the key length depends on the scalar product between the 
vectors within the basis and on the probability of unambigu-
ous state discrimination. If we fix the number of states and the 
scalar product within the basis, then the minimum probability 
of success for unambiguous state discrimination will be 
achieved on states with low intensity and with a phase shift p 
within the basis. In this case, the probability of a conclusive 
outcome on the receiving side, as can be seen from (4) and (5), 
depends only on the scalar product. Therefore, the optimal 
phase shift within the basis, according to (7), is the shift p. All 
the argumentation that led to formula (7) turns out to be valid 
for this case as well: Eve still has a limited probability of suc-
cess for unambiguous state discrimination (which depends 
only on the intensity m and the number N of coherent states 
rather than on q); in addition, Eve’s information is limited 
due to the nonorthogonality of states within the basis 
(although it was shown above that the use of the Holevo value 
instead of the one-shot capacity would be more justified). The 
phase shift q will affect the value of C1, but otherwise the for-
mula for the key generation rate should remain correct.

Let us show that the use of the phase shift q = p  leads to 
a catastrophic loss of secrecy.

At first glance, the PNS attack is not applicable to a pro-
tocol that uses pure states without phase randomisation, since 
measuring the number of photons will result in the loss of 
phase information. However, we will show that the scheme of 
an active beam splitter described in Section 4 allows us to 

Quantum transformation 
performed by Eve

Alice Bob

Eve’s blocking 
decision

Lossless channel

Figure 3. Scheme of an active beam splitting attack.
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bypass this problem. Let Eve leave some of the states with the 
intensity |t|2 m to Bob, and assign herself the states with the 
intensity |r |2 m. Eve can perform any transformations allowed 
by quantum mechanics over her states. In particular, Eve can 
perform a general phase randomisation for a pair of the refer-
ence and information states |rañ |raexp(ig)ñ [see (2)], after 
which it will have the form [15]

| ( ) ( )|exp expi ir rE

0

2
HGr a f a f=

p
g y

 | [ ( )] [ ( )]|
2

exp expi i
d

r r7 HG pa f g a f g
f

+ +

 ( 2 | | )
!

( | | )
| ( ) ( )|exp r

n
r2 n

n
n n

2
2

0

HGm
m

y g y g= -
3

=

+

/ .  (13)

It is a mixture of states

| ( ) ( ) | |exp iC m n m m
2n n
n
m

m

n

0

H H Hy g g= -
=

/   (14)

with a certain number of photons n, which the eavesdropper 
can measure without disturbing the states |yn (g)ñ. In fact, the 
eavesdropper measures the total number of photons in two 
modes – reference and information modes, rather than the 
number of photons in each of them. If there is at least one pho-
ton, the eavesdropper stores it in his quantum memory, and 
sends the state of intensity |t|2 m left after the beam splitter to 
Bob. If the number of photons is zero, the eavesdropper blocks 
the pulse heading towards Bob. After the basis is announced, 
the eavesdropper faces the task of extracting information from 
single-photon states {|y1(2pk(b)/N)ñ,  |y1(2pk(b)/N + q)ñ} 
within one known basis [see (1)], which, as it is easy to see, are 
mutually orthogonal for the phase shift q = p:

| (2 ( ) / ) (|1 |0 [ 2 ( ) / ] |0 |1 )exp ik b N k b N
2
1

1 H H H H Hp py = + .

| (2 ( ) / ) (|1 |0 [ 2 ( ) / ] |0 |1 )exp ik b N k b N
2
1

1 H H H H Hp p p py + = + + .

Thus, in the presence of at least one photon in its state (13), 
which happens with the probability 1 ( 2 | | ),expp rsucc

E 2m= - -  
the eavesdropper has all the information. The condition for 
the applicability of attack (12), as noted above, consists in the 
fact that the losses introduced by the eavesdropper are equal 
to the expected ones.

It is important to note here that condition (12) is indepen-
dent of the total number of states N, that is, an increase in the 
number of states prevents the application of the USD attack, 
but does not interfere with the modification of the PNS attack 
described here. The effectiveness of the proposed attack arises 
due to the fact that the eavesdropper does not try to perform 
complex actions, such as discrimination of all N states. She 
only maps these states to mutually orthogonal pairs in each 
basis, which occurs during phase randomisation and blocking 
of messages in which the number of photons is zero. This 
operation has a significantly higher probability of success, 
which is independent of the number of states. It should also 
be noted that the described attack, in contrast to the USD 
attack, essentially uses information about the basis that is 
announced later, as a result of which it has a high efficiency. 
The fact that such an attack was not taken into account in the 

derivation of the secret key generation formula may have 
been caused by a gross error in [10, 30], where the PNS attack 
was called a special case of the USD attack. This is not the 
case, and in this section it is shown that the PNS attack is 
more powerful due to the use of subsequently announced 
information about the bases, which makes it unnecessary for 
the eavesdropper to discriminate all N states at the time of the 
attack.

Figure 4 shows the optimal intensity for each length of the 
communication line with a phase shift q = p within the basis 
(with the optimal choice of the number of bases M ) according 
to formula (7), taking into account the probability of basis 
matching, as well as the critical intensity at which the protocol 
ceases to be secret in the case of the PNS attack described 
here. It can be seen that, starting from a length of 45 km, with 
the signal intensity optimal from the point of view of (7), Eve 
receives all the information about the key.

The main conclusion of this Section is that for the phase-
shift q = p, formula (7) turns out to be grossly incorrect. For 
other phase shifts, the attack considered here turns out to be 
less effective, since when only one photon is diverted, the 
eavesdropper has incomplete information due to the nonor-
thogonality of one-photon states of form (14). However, the 
eavesdropper can keep more than one photon, which can also 
increase the effectiveness of the proposed attack. A complete 
analysis of the constructed attack is beyond the scope of this 
work, the purpose of which is to demonstrate the most strik-
ing examples of the incorrectness of formula (7). In the subse-
quent sections, we consider the values q = p/M corresponding 
to [9] and the attacks for them.

6. State amplification attack 

In this Section, we will consider an attack that demonstrates 
significant key overestimation in practical conditions [21].

According to formula (7), if the probability of loss in the 
channel is less than the probability of failure with unambigu-
ous discrimination of input states, Eve can no longer apply 
unambiguous discrimination to each position. Therefore, the 
USD attack is impossible at communication line lengths less 
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Figure 4. Dependences of the critical intensity m, at which the eaves-
dropper knows the entire key, on the communication line length, if the 
eavesdropper uses a modified PNS attack (solid curve), as well as the 
optimal intensity according to (7) (dashed curve). The phase shift within 
the basis is q = p, the attenuation in the communication line is k = 
0.2 dB km–1, and the error is zero.
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than the critical one, when Alice and Bob expect small losses. 
However, it is assumed in (7) that, at such small lengths, the 
optimal strategy for the eavesdropper is to apply unambigu-
ous discrimination to the fraction d of messages, and for the 
remainder, to use other eavesdropping strategies.

In papers [34, 36, 37], a different approach is proposed to 
the actions of an eavesdropper at the lengths of the communi-
cation line, in which a USD attack is impossible. Eve may not 
apply unambiguous discrimination in a probabilistic way, but 
make it only ‘partially’, that is, increase the distinguishability 
of input states without making them completely orthogonal 
(see also [38]). This operation has a higher probability of suc-
cess, and therefore it is acceptable even in conditions of small 
losses in the channel. In this Section, we will offer a modified 
version of the attack from [37], which is simpler and more 
effective.

Let A be a matrix whose columns are the coefficients of 
each vector {|aj ñ}j expanded in some orthonormal basis. Due 
to the linear independence of states, there is an inverse matrix 
A–1. It is easy to see that the vectors {A–1 |aj ñ}j are mutually 
orthogonal and have unit length. Next, we consider the set  
{| bj ñ}j of also symmetric coherent states with intensity mB, and 
the corresponding matrix of coefficients B. Obviously,

| bj ñ = BA–1 |aj ñ;

thus, the BA–1 transformation, in the case when mB > m, 
increases the intensity of each state, while preserving their 
other properties. The Kraus operators for a quantum channel 
corresponding to success and failure can be defined as fol-
lows:

M BA
succ

1

l
=

-

,   M M M1fail succ succ= - @ ,  (15)

where l is the maximum eigenvalue of the matrix (BA–1)†BA–1. 
This quantum transformation, if successful, increases the 
intensity of all coherent states.

The attack based on the constructed transformation is 
simple: Eve performs transformation (15) and blocks the 
states in case of failure, and in case of success, she assigns part 
of them to her quantum memory, and sends part of them to 
Bob through a lossless channel. The attack has only two 
parameters: the intensity mB of states at the output of trans-
formation (15), as well as the intensity of the state that Eve 
retains in case of success. It is not difficult to find numerically 
the values of these parameters for each channel length, which 
would yield maximum information to the eavesdropper. The 
eavesdropper’s information about the key is given, as in the 
case of a beam splitting attack, by the Holevo value of its 
states within the basis.

Figure 5 shows the dependences of the key length on the 
length of the communication line for a protocol with N = 8 
states with an intensity m = 0.4, divided into M = 4 bases. One 
can see that, for example, for a 165-km-long communication 
line, formula (8) overestimates the key length by about 64 %; 
this means that approximately 39 % of the keys are known to 
the eavesdropper. It is also shown that, in contrast to the 
beam splitting attack, even if the C1 value in (8) is replaced by 
the Holevo value of the states, the secret key length will still be 
overestimated.

In addition, it makes sense to describe the results of apply-
ing the attack for the practical parameters presented in [21]: 
For example, on the city line of PJSC Rostelecom (attenua-

tion of 18 dB, initial intensity of 0.5 photons per pulse, and 
observed error of 6 %) overestimation of the key length 
exceeds 88 %, that is the eavesdropper knows more than 46 % 
of the key. Such a large overestimate is due to the fact that in 
the presence of an error, the eavsedropper receives relatively 
large information from the public channel during the error 
correction procedure, and the difference between the key 
lengths becomes even more significant. Note that here we 
considered the worst case for the eavesdropper, when, with 
the observed error Q, she receives only h2 (Q) information, 
which corresponds to the use of codes with ideal efficiency. 
With practically available error correction methods, the 
eavesdropper has more information [9, 30], and the key length 
is even more overestimated.

Thus, the transformation of soft filtering [35, 36, 39], the 
next version of which was demonstrated here, is more effec-
tive for attacking and obtaining information with a given 
probability of success than the probabilistic application of 
unambiguous state discrimination, which was used to derive 
(7).

Note in addition that the attack proposed in [37], if 
applied to the same input parameters, also demonstrates an 
overestimation of the key length in formula (7).

7. Key bit discrimination attack 

In this Section, we will consider an attack that shows that 
increasing the number of bases does not necessarily signifi-
cantly help legitimate users to protect themselves from an 
eavesdropper in the case of attenuation. In this attack, the 
eavesdropper does not try to discriminate between all trans-
mitted states, as she does in the USD attack and (in a milder 
form) in the state amplification attack described in Section 6. 
This action is quite ‘expensive’ for an eavesdropper, since it 
has a low probability of success with a large number of states. 
However, it is important to note that when carrying out an 
attack, the ultimate goal of an eavesdropper is to know the 
bits of the key, rather than which state is sent over the chan-
nel. Here we consider a generalisation of unambiguous state 
discrimination, which has a significantly higher probability of 
success, but identifies not a state, but only its belonging to a 

Rkey/bit

0.8

0.6

0.4

0.5

0.7

0.3

0 50 100 150 200

Distance/km

Figure 5. Dependence of the secret key generation rate on the distance 
between legitimate users in a state amplification attack (solid line), as 
well as dependences obtained by formulas (8) (dashed line) and (11) 
(dotted line). Protocol parameters are as follows: N = 8 states (M = 4 
bases), intensity m = 0.4 photons per pulse, and phase shift within the 
basis q = p/4. The attenuation in the communication line is k = 
0.2 dB km–1, and the error is zero.
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class of states. This allows the discrimination between 0 and 1 
in a raw key with a significantly increased probability of suc-
cess, which finally gives all the information to the eavesdrop-
per.

Let us first consider in more detail the measurement cor-
responding to unambiguous discrimination of states {|aj ñ}j. 
Each element of the observable, corresponding to a successful 
outcome k, can be written in the form [40]

| | ( )M c c I Pk k k kHGy y= = -= = ,  (16)

where | k Hy=  is a vector orthogonal to all vectors {|aj ñ}j, j ¹k and 
Pk is a projector onto the subspace spanned by the vectors 
{|aj ñ}j, j ¹k. The coefficient c is determined by the requirement 
that the failure operator M? is nonnegative:

( )M M1 0?min min k
k

N

1

l l= - =
=

e o/ .  (17)

It is easy to see that the error probability for such a measure-
ment is zero: 

( | ) | | | | | | | |Trp k j M c ck j j j k j k jk
2 2HG G H G Ha y y d= = == =a a a ,

while the success probability is determined by requirement 
(17) and the resulting value of the coefficient c (the same for 
all operators Mk in the symmetric case).

In a similar way, we can define an observable with three 
elements, {M0, M1, M?}, which does not completely identify 
the vector, but only gives information about its belonging to 
a set of vectors corresponding to 0 or 1 in the raw key:

M0 = c (I – P1),  M1 = c (I – P0),  M? = I – M0 – M1,  (18)

where Pi is a projector onto the subspace spanned by the vec-
tors {| }b

i
bHa , corresponding to 0 or 1 in the raw key. It is easy 

to make sure that outcome 0 of such a measurement occurs 
only on states corresponding to zeros in the raw key, and out-
come 1, only on states corresponding to ones. In this case, the 
probability of failure can be much lower than for transforma-
tion (16), since measurement (18) yields, generally speaking, 
less information about the state itself. But for an attack in 
quantum cryptography, it turns out to be very useful because 
of the higher probability of success, which is easy to calculate 
using a specific orthonormal basis in the space spanned by 
symmetric coherent states and the expansion coefficients 
from [12].

In fact, this transformation corresponds to unambiguous 
discrimination of two states,

| |M
1

b
b

b
0 0HGa a/ ,   | |M

1
b

b
b

1 1HGa a/ ,

which correspond to sending bits 0 and 1 of keys, respectively, 
when the basis b is unknown. Methods for unambiguous dis-
crimination of mixed states are well known [41, 42].

Let us consider right away a small modification of the 
measurement that makes the corresponding attack more 
effective. Because Eve subsequently receives information 
about the basis, she does not need to discriminate between 
exactly the zeros and ones of the raw key. It is enough for Eve 
to discriminate only between two groups of states, where the 
states of each basis belong to different groups. For example, 
for eight states with a phase shift within the basis q = p/4, 

these can be groups of state numbers Ga = {0, 3, 4, 7} and Gb = 
{1, 2, 5, 6}. Then the belonging of the state to group a will 
mean the vector with the index 0, if the first basis is used; vec-
tor 3, if the second basis is used, and so on: Knowledge of the 
group and the basis uniquely identifies the state, and hence 
the bit of the raw key. In this case, due to the geometry of the 
states, it is possible to discriminate between the Ga and Gb 
groups with a higher probability of success than the groups G0 
= {0, 2, 4, 6} and G1 = {1,3,5,7}, corresponding to bits 0 and 1 
of the key.

An attack based on the proposed transformation is based 
on the scheme of an active beam splitter (see Section 4). Eve 
takes part of the state with the intensity |r|2 m and performs 
over it discrimination between two groups of states. If this 
discrimination is successful, the remainder of the state with 
intensity |t|2 m is sent to Bob; otherwise, it is blocked. In fact, 
the attack has only one parameter – the assigned part of the 
state, and with a known attenuation, an attack is possible 
starting from a certain critical value of the intensity. If an 
attack is possible, Eve receives the entire secret key.

Figure 6 shows the optimal intensities obtained by for-
mula (7) for each link length, and the critical intensity values 
at which the eavesdropper knows the entire key while carry-
ing out the attack described in this Section. The number of 
states and configuration are fixed. It can be seen that for the 

0 100 200 300
Distance/km

50 150 250 350
Distance/km

0.5

1.0

1.5

m

0

1

2

3

m

a

b

Figure 6. Dependences of the critical intensity m, at which the eaves-
dropper knows the entire key, on the communication line length when 
the eavesdropper uses a key bit discrimination attack (solid curves) and 
the optimal intensity according to (7) (dashed curves), as well as the 
critical intensity at which the eavesdropper knows the entire key in the 
case of a USD attack (dotted line) with (a) M = 4 bases, the phase shift 
within the basis q = p/4 and (b) M = 8 bases, the phase shift within the 
basis q = p/8. The attenuation in the communication line is k = 
0.2 dB km–1, and the error is zero.
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communication line length when using four basis sets with a 
phase shift q = p/4, the critical intensity becomes more opti-
mal starting from a distance of about 210 km, and when using 
eight basis sets with a phase shift q = p/8, this occurs starting 
approximately from 130 km. For comparison, the critical 
intensities are shown when using the USD attack, and, as 
expected, they turn out to be higher than the optimal ones. 
Thus, the protocol focuses on the USD attack and proposes 
measures to counter it, while when using a large number of 
bases, the resistance of the protocol to other attacks is not 
guaranteed.

It should be noted that for a number of lengths, the USD 
attack is more effective (as can be seen in Fig. 6a, at a length 
of up to 90 km). This, at first glance, unexpected fact is due to 
the fact that during a USD attack, Eve receives full informa-
tion about the signal and can prepare the correct state with a 
high intensity, thereby triggering the detector in a position 
convenient for her. Eve is deprived of this possibility in the 
case of using the attack described in this Section and, there-
fore, for some sets of parameters, it turns out to be less effec-
tive.

It should also be noted that this attack is technically sim-
ple for the eavesdropper: It does not require Eve to have long-
term quantum memory. Eve only needs to store the classic 
measurement result, which gives her information about the 
key bit after the bases are announced.

8. Conclusions

We have considered a set of attacks that demonstrate an over-
estimation of the secret key generation rate in a protocol on 
geometrically uniform coherent states. For a beam splitting 
attack and a state amplification attack in which Eve receives 
incomplete information, a comparison has been made between 
the length of the secret key calculated by formula (8) and the 
length of the secret key obtained during the attack. For a mod-
ified PNS attack and a key bit discrimination attack, in which 
Eve receives complete information, the critical intensity was 
compared for each length of the communication line with the 
optimal intensity for the same configuration of states obtained 
in accordance with (7). All attacks under certain conditions 
demonstrate an overestimation of the secret key length in for-
mula (7); this means that the key distributed over the corre-
sponding protocol is not secret. Thus, the incorrectness of the 
secrete key rate formula (7) has been shown.

Note that most attacks presented here have some draw-
backs, the elimination of which will make the attacks more 
effective, but will complicate their detailed description and 
analysis. The aim of the work is to describe the simplest 
attacks that demonstrate the inaccuracy of formula (7); there-
fore, little attention has been paid to maximising their effec-
tiveness. For example, attacks that introduce errors into the 
transmitted states are not considered at all, although this can 
significantly increase the amount of information known to 
the eavesdropper. The ideal operation of the equipment of 
legitimate users has been considered: full efficiency of detec-
tors, absence of dark detectors, etc. Most likely, the optimal 
attack on this quantum cryptography protocol will combine 
the properties of several attacks presented here and will be 
much more complex. (See also [43], where another attack was 
constructed using more complex heterodyne measurements 
and demonstrating that increasing the number of bases does 

not necessarily allow counteracting the eavesdropper in the 
presence of a lossy channel.)

The protocol on geometrically uniform states uses a large 
number of states, which complicates its complete security 
proof, and the statements of the authors about its provable 
security [10, 44] are incorrect. At first glance, a complex con-
figuration of states also complicates attacks, but our work has 
shown that, on the contrary, such a configuration of states 
opens up many new possibilities for the eavesdropper.

The main result of the work is the conclusion that the use of 
intuitive formulae for the secret key length, based on the 
assumptions about the use of certain attacks by the eaves-
droper, is very risky and can lead to the compromise of the 
entire system: Chances are high that some of the effective 
actions of the eavesdropper are not taken into account when 
considering known attacks. A key advantage of quantum cryp-
tography is the ability to rigorously prove its security against 
all eavesdropper actions (see, for example, [4 – 7, 45,  46]).
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