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Abstract. An analytical recursive method for solving the inverse 
problem of photocount statistics, that is, for reconstructing the pho-
ton-number distribution from the photocount distribution, is pro-
posed for few-photon light. It is shown that if the inverse problem is 
represented as a system of linear equations, then for finite distribu-
tions one can obtain a recurrence formula relating the photocount 
distribution and the photon-number distribution without restrictions 
on the quantum efficiency of photodetection.

Keywords: quantum optics, photocount statistics, inverse problem, 
recursive method.

1. Introduction 

The photon counting is one of the main methods for measur-
ing the characteristics of light fields in quantum optics. This 
method of recording optical radiation has more than a cen-
tury of history [1], but it began to develop especially inten-
sively soon after the advent of lasers. To date, the photon 
counting method is widely used both in applied [2 – 6] and in 
fundamental research [7 – 10]. The method is based on the 
photoelectric effect, in which an electron is emitted from the 
cathode surface after the absorption of one or a few photons. 
The photon counting method counts the number of photo-
electrons ‘knocked out’ by the light incident on the photo-
cathode over a certain fixed time interval T. When recording 
continuous or periodic pulsed radiation, multiple repetitions 
of measurements are possible. In this case, the value of the 
photon counting method increases, since it becomes possible 
to measure a more informative characteristic of the photo-
electric effect, namely, the photocount statistics, that is, the 
probability distribution Qm that m photoelectrons will be 
detected during the measurement time T.

Recently, in connection with the development of quantum 
optical technologies, the significance of information on the 
statistical properties of few-photon radiation has increased, 
which has stimulated additional interest in a deeper study of 
both the direct and inverse problems of photocount statistics. 
From a practical point of view, the inverse problem seems to 
be more important, namely, the reconstruction of the pho-
ton-number distribution from the measured photocount sta-

tistics. The importance of this problem, in particular, is due 
to the wide use in current optical technologies and in quan-
tum optics [11 – 13] of few-photon light sources, whose shot 
noise is comparable to the average intensity of the light sig-
nal or even higher. The energy characteristics of such sources 
can be obtained most easily using photoelectric measure-
ments. 

As follows from the quantum theory of the photoelectric 
effect, knowledge of the photocount statistics is not enough 
for complete reconstruction of the quantum state of the field, 
generally determined by a density matrix, but it is sufficient to 
determine its diagonal elements [14, 15]. In terms of informa-
tion value, knowing the density matrix diagonal elements for 
few-photon light is similar to knowing the power for cw radi-
ation or the intensity profile for pulsed radiation from bright 
light sources. The photocount statistics, in principle, allows 
obtaining a complete energy description of few-photon light 
sources, but for this purpose, the inverse problem of photo-
count statistics must be solved. 

Already at the initial stage of the development of the pho-
ton counting method for classical light, in addition to the direct 
problem of finding the photocount statistics from the intensity 
distribution, of interest was the inverse problem, that is, the 
reconstruction of the light intensity distribution from the pho-
tocount statistics. Apparently, for the first time, this problem 
was solved in [16]. The authors proceeded from the semi-classi-
cal Mandel formula [17], according to which the photocount 
distribution is the radiation intensity distribution averaged 
over the Poisson distribution. Later, various approaches to 
solving this problem were developed (see, e.g., [18 – 21]). These 
approaches were also based on the Mandel formula. 

In the quantum description, which is valid not only for 
classical, but also for nonclassical light, the intensity corre-
sponds to the photon number operator, and the intensity dis-
tribution turns into a discrete photon-number distribution Pn, 
that is, the probability that during the measurement time T 
there will be n photons in the light flux. In this case, the direct 
problem of the photocount statistics is to find the photocount 
distribution Qm from a given photon-number distribution Pn. 
These distributions, according to [15, 22 – 24], are related 
through the Bernoulli transformation: 

( )Q C P1m n
m m n m

n
n m

h h= -
H

-/ , (1)

where h is the quantum efficiency of photodetection; and 
!/[ !( ) !]C n m n mn

m = -  is the binomial coefficient. 
Thus, in the case of few-photon light, the inverse problem 

of the photocount statistics should be understood as finding 
the photon-number distribution Pn in Eqn (1) from a given 
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photocount distribution Qm. Two analytical methods are 
known for solving this problem. The first of them is based on 
a direct inversion of the Bernoulli transformation [23], the 
second on the generating-function approach [25]. 

In this paper, we would like to draw attention to the pos-
sibility of associating the inverse problem of photocount sta-
tistics with a system of linear equations and the possibility of 
solving it by the recursive method, which may be useful for 
reconstructing finite distributions of photons. 

2. Recurrence formula relating the distribution  
of photons with the photocount distribution

The solution of the direct problem of photocount statistics (1) 
can be represented in matrix form [15]: 

Qm = Dmn (h)Pn, (2)

where the triangular matrix Dmn (h) has the form

( ) (1 ) , ,
, .

D C n m
n m0

mn
n
m m n m

1

Hh h h
=

- -

) . (3)

Photon-number distributions can be finite, for example, the 
number distribution of photons emitted by an ensemble of 
quantum dots [26] or fluorescent molecules [27], and infinite, 
such as the Poisson and Bose – Einstein distributions, as well 
as the photon-number distribution in quadrature-squeezed 
states [28].

For finite distributions, there is such a maximum number of 
photons N, at which for n > N the value Pn º 0. In this case, 
Eqn  (2) can be interpreted as a system of N linear equations. 
Since the matrix Dmn (h) is triangular, one can use the well-known 
Gaussian back substitution and restore the photon-number dis-
tribution in a recursive way, starting from the last term. 

Based on Eqn (2), we write out expressions for the last few 
elements of the photocount distribution in explicit form: 
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and successively express the elements of the photon-number 
distribution with a smaller number of photons through the 
elements with a larger number of photons: 
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Continuing the recursive series, by induction we obtain a 
recurrence formula for reconstructing the distribution Pn 
from a given distribution Qm: 

( )P Q C P1n
n

n k
n k n

k
k n

N

h h= - -
2

- -/ . (4) 

From Eqn (4) it follows that the photon-number distribution 
can be found by passing successively from the probabilities of 
a larger number of photocounts to the probabilities of a 
smaller number of them. 

3. Reconstruction of the binomial distribution  
of photons using the recurrence formula 

As an example, consider the finite binomial photon-number dis-
tribution emitted by an ensemble of N independent emitters [29]. 
If we assume that each emitter emits a photon with probability r, 
then the photon-number distribution will have the form 

( )P C r r1n N
n n N n= - - . (5)

A substitution of this distribution into Eqn (1) easily shows 
that the photocount distribution is also binomial: 

( ) ( )Q C r r1m N
m m N mh h= - - . (6)

By this example, we demonstrate that the obtained recur-
rence formula allows a correct solution of the inverse problem 
of the photocount statistics for a finite distribution. According 
to Eqn (5), we specified the binomial photon-number distri-
bution Pn

in with parameters r = 0.5 and N = 10. Formula (2) 
was used to calculate the photocount distribution at h = 0.3, 
from which the photon-number distribution Pn

rec was recon-
structed using Eqn (4) and compared with Pn

in. 
Figure 1 shows the initial photon-number distribution 

(Pn
in) and the one reconstructed using the recurrence formula 

(4) (Pn
rec). The distributions are seen to coincide, which con-

firms the correctness of Eqn (4) obtained in this work. 

4. Conclusions

It is shown that for finite distributions of photons, if a system 
of linear algebraic equations is associated with the inverse 
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Figure 1. Example of restoring the finite binomial photon-number dis-
tribution using the recurrence formula (4). Pn

in is the initial photon-
number distribution; Pn

rec is the reconstructed photon-number distribu-
tion; Qm is the photocount distribution initiated by the light flux with 
the photon-number distribution Pn

in; the calculations were performed at 
N = 10, h = 0.3, and r = 0.5.
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problem of photocount statistics, a recurrence formula relat-
ing the photocount distribution and the photon-number dis-
tribution can be obtained. The formula is numerically tested 
on a finite binomial photon-number distribution. The pho-
ton-number distribution reconstructed using the recurrence 
formula coincided with the original one up to the 16th deci-
mal place. 

The results presented show that, to solve the inverse prob-
lem of photocount statistics, along with the inversion of the 
Bernoulli transformation and the method of generating func-
tions, one can also use the recursive method proposed in this 
work. Note that caution should be exercised when using the 
recursive method to estimate the infinite photon-number distri-
butions from the statistics of a finite sample of photocounts. 
This remark applies not only to the recursive method proposed 
in this work, but also to all other analytical methods for solving 
the inverse problem of photocount statistics. The problem of 
correctly estimating the infinite distributions of photons is 
related to the stability of the solution to the inverse problem for 
a finite sample size and, in principle, requires an individual 
analysis for each specific distribution Qm.
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