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Abstract. Based on the previously developed theory of transforma-
tion (time integration and differentiation) of ultrashort pulses in 
thin metal films, we study the possibility of time differentiation and 
integration of unipolar pulses. Unipolar pulses of unusual shape – 
rectangular and triangular – are considered, and their mutual 
transformation upon propagation through thin films with certain 
parameters is demonstrated. The conservation of the electrical area 
in such problems is shown.
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1. Introduction

Recently, the possibility of obtaining unipolar electromag-
netic pulses with a high-power field burst of the same polarity 
and a nonzero electric area has been studied (see review [1], 
papers [2 – 9] and references therein). The electrical area of the 
pulse is defined as [10 – 12]

SE = 
3+

( )dE t t
3-

y , (1)

where E(t) is the electric field strength at a given point in 
space.

Interest in obtaining such pulses is associated, first of all, 
with the possibility of efficient and ultrafast control of wave 
packets in matter [13 – 15], acceleration of charges [16], and 
with a number of other applications [1].

The electrical area of subcycle pulses is their important 
characteristic, since this area determines the degree of impact 
on quantum objects [13 – 15]. On the other hand, of funda-
mental importance is the rule of conservation of the electric 
area of extremely short pulses in the electrodynamics of con-
tinuous media, first proposed in [10] and studied in detail later 
[8, 11, 12]. This rule is fulfilled in one-dimensional distribution 
problems and has the form:

dz
d SE  = 0. (2)

This rule is a new law of conservation in physics and should 
be taken into account in the problems of propagation of 
extremely short and, in particular, unipolar pulses in matter. 
From a practical point of view, the issue of obtaining unipo-
lar pulses with a large electric area for affecting quantum 
objects is important [13 – 15]. Note that unipolar pulses can 
exist not only in nature, but also effectively propagate in 
waveguides [17] and be formed in various systems, for exam-
ple, in the far zone of a source [18].

In issues related to the use of unipolar pulses and their 
propagation in various media, the problem of controlling 
their shape is of great importance. Pakhomov et al. [6, 7] stud-
ied the possibility of obtaining unipolar terahertz pulses of 
unusual shape – rectangular and triangular – due to superra-
diance of a pulse of stopped polarisation. Rectangular pulses 
in the terahertz range can also be obtained in the form of 
precursors as a result of optical rectification in nonlinear crys-
tals [4, 5].

The operations of integration and differentiation of elec-
trical pulses using RC and RL circuits are well known and 
used in radio electronics. It would seem that in relation to 
harmonic pulses of optical radiation, which have been obta-
ined in optics for many years and contain tens and hundreds 
of oscillation cycles, these operations do not make sense, since 
differentiation and integration of harmonic functions also 
yields harmonic functions.

However, in recent years, extremely short light pulses 
have been generated, containing one or even half a cycle of 
oscillations [2, 3, 19 – 21], which made it possible to propose 
methods for obtaining unipolar pulses of nonharmonic 
shape [1, 6, 7]. For such pulses, the question of their integra-
tion and differentiation with respect to time can be raised. 
As in radioelectronic circuits, this will allow a strong trans-
formation of the pulse shapes, which can be important for 
various applications. In order to accomplish such tasks in 
optics, it is necessary to look for systems that are analogues 
of RC circuits.

Pakhomov et al. [22] constructed a theory of time integra-
tion and differentiation of extremely short light pulses in thin 
metal films. It is important to note that previously such oper-
ations were performed only for slowly varying envelopes of 
ultrashort nano- and picosecond pulses [23 – 30]. In our paper 
[22], however, we described for the first time the method of 
time integration and differentiation of the direct temporal 
dependence of the electric field strength in extremely short 
pulses, rather than a slow envelope. In this case, the pulses 
considered in [22] were mainly bipolar, while the transforma-
tion of unipolar pulses was discussed only briefly.

In this paper, on the basis of the theory developed in [22], 
we study the possibility of integrating and differentiating uni-
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polar pulses. In particular, we consider the transformation of 
unipolar pulses of unusual shape – rectangular and triangu-
lar, the possibility of obtaining which was shown earlier [6, 7] 
and for which such operations of time integration and differ-
entiation are most obvious. In addition, the conservation of 
the electrical area in such problems is demonstrated.

2. Time transformations of pulses of unusual 
shapes

Let us consider the problem of propagation of rectangular 
and triangular unipolar pulses obtained in [6, 7] through thin 
metal films. As shown in [22], the time integration of extremely 
short pulses reflected from thin metal films is possible if the 
condition on the pulse spectrum

exp c
L

4
1

2p pw w
- -c m; E << w << wp (3)

is met, where w is the circular frequency of the pulse; wp is the 
plasma frequency of the metal in the film; and L is the metal 
film thickness. In this case, the film thickness for the most 
efficient pulse integration is chosen as

L << c
pw . (4)

As can be seen from expression (1), a nonzero area of a unipo-
lar pulse means that the spectrum of such a pulse contains a 
constant field component. However, inequality (3) does not 
include near-zero-frequency spectral components, although 
the expression on the left-hand side of (3) can be made suffi-
ciently small for a small film thickness. Consequently, the 
spectral range of integration (3) cannot completely cover the 
spectrum of a unipolar pulse, but it can overlap its significant 
part. This limitation can be circumvented by using quasi-uni-
polar pulses, that is, pulses consisting of a unipolar burst and 
a long tail of opposite polarity, so that the total value of the 
electrical area of the pulse is zero [1]. In this case, the pulse 
spectrum has no near-zero-frequency components, and the 
spectral range of integration (3) can cover the entire spectrum 
of the pulse.

In the case of time differentiation for transmission, the 
pulse spectrum must satisfy the inequality [22]

w << 1 exp c
L

4
2p pw w

- -c m; E, (5)

while the optimal film thickness has the form

L ~ c
pw . (6)

Condition (6) contains only a limitation on the maximum fre-
quency in the pulse spectrum. Thus, unipolar pulses contain-
ing close-to-zero frequencies in the spectrum can easily satisfy 
inequality (5) with an appropriate selection of the parameters 
of the metal film.

Consider the problem of time differentiation for the case 
of a triangular unipolar pulse. For a metal film, following for-
mula (6), we take the following parameters: wp = 1016 s–1, and 
L = 30 nm. Note that the chosen value of the plasma fre-
quency wp corresponds to its characteristic values for most 
common metals. The incident pulse on the film is a 100-fs uni-
polar linearly polarised triangular pulse with a plane wave-

front (see Fig. 1). The passage of a pulse through a metal film 
is described by the standard wave equation for an electric 
field:
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where P is the macroscopic polarisation of the medium, and z 
is the longitudinal coordinate. The dispersion properties of 
the metal in the film were described using the standard 
Drude – Lorentz model, which for the macroscopic polarisa-
tion of the medium has the form:

Pp  + gPo  = Ep
2w , (8)

where g is the attenuation coefficient. Equations (7) and (8) 
were solved numerically using the finite-difference time-
domain (FDTD) method.

Unipolar pulses can propagate in coaxial waveguides, 
since they lack mode dispersion and cutoff frequency [17]. 
This leads to the fact that, with an appropriate technological 
design, a coaxial cable can behave like a waveguide in which 
the transverse components of unipolar radiation pulses do 
not change their shape during propagation. This propagation 
is described by the one-dimensional wave equation (7) for the 
transverse field components with a zero right-hand side 
[17, 31]. Thus, the use of a one-dimensional model can be con-
sidered justified.

Figure 1 shows the results of numerical simulation of 
the propagation of a 100-fs triangular unipolar pulse 
through a metal film with the above parameters for two 
values of the attenuation coefficient: g = 0 and 1013 s–1. 
Because the problem in question is linear with respect to 
the field of the incident pulse, the amplitudes of the inci-
dent and transmitted pulses will be expressed in arbitrary 
units. As can be seen from Fig. 1, at small values of the 
attenation coefficient g, when gtp << 1, the pulse transmit-
ted through the film is rectangular, that is, the profile of 
the electric field of the pulse is differentiated in time. At 
large values of the attenuation coefficient, gtp ~  1, the 
shape of the transmitted pulse begins to differ from rectan-
gular, that is, the accuracy of the differentiation operation 
decreases.
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Figure 1. Triangular unipolar pulse of 100-fs duration, incident on a 
metal film with a thickness of L = 30 nm at a plasma frequency wp = 
1016 s–1 ( solid line ), as well as a pulse transmitted through the film at 
attenuation coefficients g = (dashed line) 0 and (dotted line) 1013 s–1.
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It is of interest to check the fulfilment of the law of conser-
vation of the electric area (2) in the problem under consider-
ation. To this end, in the last case from those shown in Fig. 1, 
that is, at g = 1013 s–1, the time integration of the electric field 
strength at each point of the integration region was performed 
during the entire calculation time. The calculation results are 
shown in Fig. 2. One can see that the electric area is indeed 
constant throughout the entire region of integration, and this 
allows us to draw a number of important conclusions. For 
example, it is possible to transform a unipolar pulse into a 
bipolar one or, conversely, with their linear propagation 
through a layer of a dissipating arbitrary medium. In this 
case, it is only required that the sum of the electrical areas of 
the incident and reflected pulses be equal to the electrical area 
of the pulse transmitted through the layer.

Let us now consider the possibility of inverse transforma-
tion of a rectangular unipolar pulse into a triangular one by 
means of time integration. Following estimate (3), in order to 
effectively integrate unipolar pulses with a duration of tens or 
hundreds of femtoseconds, the plasma frequency wp must be 
reduced in comparison with the previous example; in what 
follows, we will take wp = 1015 s–1. Then, in order for the spec-
tral range (3) to include frequencies w ~ 1013 – 1014 s–1, it is 
necessary that the left-hand side of inequality (4) be at least 
two to three orders of magnitude smaller than the right-hand 
side. For further calculations, we will take a metal film 3 nm 
thick and consider the reflected field when a rectangular pulse 
propagates through such a film in one-dimensional geometry. 
Figure 3 shows both the incident rectangular pulse and the 
reflected pulses for g = 0 and 1013 s–1. It can be seen that the 
reflected pulse has a triangular shape with a nonzero electric 
area (1), that is, the profile of the incident pulse field is inte-
grated in time. Even in the case g = 0, due to the finite thick-
ness of the metal film and the presence of the lower boundary 
of the spectral range of integration (3), the integration accu-
racy turns out to be limited, and noticeable extended tails of 
reflected pulses with opposite field polarity are formed.

As in the previously considered example of time differen-
tiation, we also checked the fulfilment of the law of conserva-
tion of the electric area (2); it again turned out to be constant, 
in full agreement with the conservation law (2).

Thus, the obtained results show that, by combining metal 
films with certain parameters that satisfy conditions (3) – (6), 

it is possible to carry out mutual transformations of rectangu-
lar and triangular unipolar pulses with durations of tens and 
hundreds of femtoseconds. In this case, rectangular pulses are 
transformed into triangular ones due to the integration of the 
time dependence of the electric field strength of the incident 
pulse during reflection, while the inverse transformation of 
triangular pulses into rectangular ones is due to the differen-
tiation of the time dependence of the electric field strength 
during propagation through the film. The accuracy of both 
operations in this case strongly depends on the value of the 
attenuation coefficient g. In those cases when the attenuation 
turns out to be significant at times of the order of the dura-
tion of the incident pulse, the shapes of the obtained pulses 
can differ markedly from the results of the exact time integra-
tion/differentiation of the incident pulse, which is also accom-
panied by the formation of extended tails at the trailing edge 
of the pulses.

3. Conclusions

We have considered the propagation of rectangular and trian-
gular unipolar pulses through thin metal films. We have 
shown that with an appropriate choice of the parameters of 
the incident unipolar pulse and the film thickness, it is possi-
ble to perform time transformations of the shape of these 
pulses, such as time integration (reflection) and differentia-
tion (transmission). In this case, as a result of time integration 
of rectangular pulses, triangular pulses are formed, and as a 
result of time differentiation of triangular pulses, rectangular 
ones are generated. Thus, depending on the choice of the con-
figuration of the system in question, pulses of a similar shape 
can be converted into each other. It is important to note that 
the described time transformations of pulses relate directly to 
the time dependence of the electric field strength in the pulse 
E(t) rather than to the slowly varying pulse envelope, as in 
many other works.

The obtained results demonstrate new approaches to con-
trolling the shape of extremely short pulses. In particular, 
femtosecond unipolar pulses can be of great interest for con-
trolling various ultrafast processes in matter, including the 
dynamics of electrons, ions, and excitation of atoms and mol-
ecules. The possibility of controlled transformations of the 
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Figure 2. Dependence of the electrical area SE on the coordinate for the 
parameters from Fig. 1; the attenuation coefficient g = 1013 s–1.
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Figure 3. Rectangular bipolar pulse of 100-fs durarion, incident on a 
metal film with a thickness of L = 3 nm at a plasma frequency wp = 
1015 s–1 ( solid line ), as well as a pulse reflected from the film at attenua-
tion coefficients g = 0 ( dashed line ) and 1013 s–1 ( dotted line ).
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temporal shape of such ultrashort unipolar pulses becomes 
one of the key difficulties in this case. The described opera-
tions of time integration and differentiation of unipolar pulses 
provide one of the possible ways to control the pulse profile 
within a fairly wide range.
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