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Abstract. As applied to laser acceleration of ions, we have con-
structed an analytical solution to the Cauchy problem for the 
kinetic equation, which describes the radial motion of particles 
under the action of a ponderomotive force in a tubular focus of a 
high-power laser beam propagating in a transparent plasma. For 
axisymmetric geometry, we have obtained the time and spatial 
dependences of the ion distribution function and have found their 
integral characteristics, such as density, average velocity, and 
energy spectrum. The appearance of ion density peaks inside the 
laser caustics, the cumulation of ions on the axis, and the effect of 
the formation of a multi-flux regime of ion motion are described 
analytically. The efficiency of the generation of neutron bursts by a 
laser pulse in the focal region in the case of cylindrical cumulation 
of ions is estimated.

Keywords: laser acceleration of ions, cumulation of ions, multiflux 
regime, tubular laser beam, neutron generation.

1. Introduction

Among the widely discussed schemes for the generation of 
high-energy ions by an intense laser pulse, the scheme of 
radial ion acceleration from a laser-plasma channel formed 
during the propagation of the light in a transparent plasma of 
subcritical density is often considered [1 – 8]. Laser-accelerated 
ions from a low-density plasma are interesting from the point 
of view of their use for obtaining neutrons and various radio-
nuclides, including medical ones [2, 9 – 11].

The dynamics of the radial acceleration of ions by laser 
radiation in a low-density plasma formed in targets such as, 
for example, a gas jet [2], evaporated foil [12], and nanopo-
rous carbon [13], is largely due to the ponderomotive action 
of a laser pulse on plasma electrons. The latter are pushed out 
by the ponderomotive force from the region with a high laser-
intensity gradient, resulting in the formation of a channel 
with a strong radial electric field of charge separation, which 

accelerates the ions. The problem of ion acceleration consid-
ered in [3, 6] served as a convincing example of the fact that 
the analytical description of particle acceleration by a laser 
pulse from a plasma channel formed in the caustic region or 
arising as a result of self-focusing is a challenging task even 
for approximate approaches. Therefore, the existing theoreti-
cal models [3, 4, 6] only very qualitatively characterise the 
radial acceleration of particles from the laser-plasma channel. 
Consequently, the spatiotemporal distribution of laser-accel-
erated particles is investigated mainly by kinetic numerical 
modelling techniques, usually by the particle-in-cell (PIC) 
method [14 – 16]. Some simplification is introduced by the 
numerical one-dimensional electrostatic model of pondero-
motive acceleration, describing the dynamics of radial plasma 
expansion under the action of a given field [3, 6], when only 
the slow dynamics of plasma electrons is taken into account, 
which corresponds to averaging over their fast oscillations in 
the laser field. Based on numerical simulations, Sarkisov et al. 
[3] and Macchi et al. [6] found that electrons quickly respond 
to the ponderomotive action of the laser radiation, so that the 
electric field in the channel is determined with a good degree 
of accuracy by the condition for the balance between the elec-
trostatic force that returns electrons to the channel and the 
ponderomotive force that pushes them out. While such a bal-
ance exists, the dynamics of ion acceleration can be studied 
rigorously analytically using the kinetic equation for ions 
with a given electrostatic field, which was implemented in 
[7, 8] for a cylindrical laser beam.

Note that the authors of Refs [3 – 8] discussed laser beams 
with an intensity that had a maximum on the beam axis and 
decreased monotonically with increasing radius, which led to 
the acceleration of ions from the axis of the laser beam to its 
periphery. This monotonic distribution of the laser beam 
intensity is not the only interesting configuration for ion 
acceleration. Along with it, another configuration is dis-
cussed, that is, a tubular one of a laser beam with an intensity 
maximum, which is located at a finite distance from the beam 
axis (ring) [2, 17 – 19]. It provides the cumulation of acceler-
ated ions on the axis, which, in particular, can be realised 
using Bessel – Gaussian beams (see, for example, [20, 21]). 
Such cumulation can be more effective than simple irradia-
tion of a cylindrical cavity with a laser pulse [17]. Focusing the 
laser beam into a ring-shaped spot leads to the fact that some 
of the ions located on the inner side of the ring experience 
radial acceleration towards the centre and form a converging 
collisionless cylindrical shock wave. Some time later, fast ions 
cumulate on the axis of the laser beam with the formation of 
a high-density plasma filament from interpenetrating ion 
fluxes with a small (compared to the ring diameter) transverse 
size and a length comparable to the length of the laser radia-
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tion caustic. Such cumulation opens up opportunities for the 
efficient implementation of nuclear reactions, the rate of 
which is proportional to the product of the densities of the 
colliding particles. In this case, the ion energy can be con-
trolled by changing the size of the focusing ring, the intensity 
distribution at the focus, as well as the laser radiation energy 
and duration. To optimise the proposed scheme of ion accel-
eration by a tubular laser beam and select the desired param-
eters to obtain a maximum reaction yield, it is important to 
construct an analytical model of the ion cumulation effect, 
which, although previously discussed [19, 22], has not yet 
been described. The latter is the main goal of our work, which 
represents the development of a simpler theoretical approach 
[7] as applied to the study of the dynamics of ion acceleration 
in the case of tubular laser beam geometry.

2. Kinetic model of ponderomotive acceleration 
of ions

Let us consider a cylindrically symmetric tubular laser beam in 
a transparent plasma. The inhomogeneity of the electric laser 
field along the radius leads to the displacement of plasma elec-
trons from the region of the action of a strong electric field, that 
is, to the appearance of inhomogeneity of the electron density 
and the charge separation field, which, in turn, causes a redis-
tribution of the ion density and the acceleration of ions to high 
energies in the radial direction. The dynamics of this process 
can be described using kinetic equations for the distribution 
functions of plasma electrons and ions, and the effect of the 
electric field is taken into account in the kinetic equation for 
electrons in the form of an additional electrostatic force that 
specifies the action of the ponderomotive force averaged over 
the high frequency of the laser field [23, 24]. However, as shown 
by the results of numerical simulations [6], until significant tem-
perature gradients appear in the plasma and there occurs the 
breaking of the radial profile of the ion flux, the electric field in 
the plasma in the beam propagation region is determined by 
the balance condition for the electrostatic force, –eE, which 
returns electrons into the channel, and the ponderomotive 
force that pushes them out, Fp = – mc2 Ñ /a1 22+  (a is the 
standard dimensionless vector potential of the laser field), that 
is, eE = Fp. This is quite natural due to the small mass of elec-
trons, which, while rapidly oscillating at the laser and plasma 
frequencies, tend to establish such an equilibrium state. In this 
case, it is also assumed that the intrinsic electron pressure is 
small in comparison with the light pressure.

Taking this fact into account, it is possible to greatly sim-
plify the mathematical model describing the acceleration of 
ions, leaving only the kinetic equation for ions, in which the 
electric field is assumed to be specified. Taking into account 
the symmetry of the laser beam propagating along the z axis, 
we will consider the ion kinetic equation for the ion distribu-
tion function integrated over the longitudinal and axial veloc-
ity components in the cylindrical coordinate system {r, j, z} 
with allowance for its dependence only on time t, radial coor-
dinate r and radial component ur of the ion velocity. As a 
result, we arrive at the Cauchy problem for the kinetic equa-
tion for the ion distribution function of plasma particles f i(t, 
x, u) integrated over uj and uz (for definiteness, we neglect the 
thermal spread in velocities uj and uz ):

¶ ¶ ¶ 0, , ( , ),f f p f f xf p p xxu t+ + = = =t u
u u u u

 | ( , ) .f f x0 u=t= 0

 (1)

Here t = wL i t is the dimensionless time; wL i is the Langmuir 
frequency of ions with mass Mi = AM and charge ei = Ze; A 
and Z are the mass and charge numbers of ions; M is the pro-
ton mass; x = r/R is the dimensionless coordinate; R is the 
characteristic spatial scale of the localisation of the laser 
intensity along the radius; u = ur /(wL i R) is the dimensionless 
ion velocity; p = ZeE/(Mi RwL i 

2 ) is the dimensionless electric 
field; f i = [n0/(wL i R)]  f is the dimensionless distribution func-
tion of ions; and n0 is the unperturbed ion density. In expres-
sion (1), the choice of the normalisation f i to the characteris-
tic ion velocity wL i R, rather than to the typically used thermal 
velocity, is due to the fact that in the formulation of the prob-
lem discussed here, the thermal spread of ions in velocities is 
insignificant and, therefore, the thermal velocity of ions is 
small in comparison with the value of wL i R used for normali-
sation.

Taking into account the relationship between the electric 
field in plasma and the laser intensity gradient, the expression 
for the electric field takes the form

¶ 1 ( , ) /2p
R
c a x
Le

x2 2

2
2

w
t= - + . (2)

Here wLe is the Langmuir frequency of electrons with mass m 
and charge ee = –e; a2(t, x) = A(t)a2(x) characterises the 
dimensionless intensity (energy flux density) of laser radia-
tion; a2(x) = a0

2 I0(x, a0
2); a0 = 0.85 ´ 10–9l I00; l is the wave-

length of laser radiation (mm); I00 is the intensity (energy flux 
density) of the laser pulse at maximum (W cm–2); and the 
function A(t) is the laser pulse envelope. The function a2(x) 
characterises the distribution of the laser intensity along the 
radius; for example, for a laser beam with a monotonic 
decrease in intensity with distance from the axis [6] the variant 
with I0 = exp(–x2) was used in numerical calculations, and for 
a tubular laser beam [2] the intensity distribution along the 
radius in dimensional variables was set in the form I0 =
(r/r0)4exp[2 – 2(r/r0)2 ], where r0 is the radius of the tubular 
beam related to the focal spot size 2Rlas (according to the 
position of the intensity maximum) by the expression Rlas = 
r0. In the dimensionless variables used by us, this distribution 
of the tubular beam intensity takes the form

( / ) [2 2( / )expI x b x b0
4 2= - ], (3)

where b = r0/R is the dimensionless radius that specifies the 
position of the maximum intensity of the tubular beam.

When studying equations of form (1), use is convention-
ally made of the method of characteristics. This equation is 
most simply studied for a time-independent electric field, p = 
p(x), which corresponds to the quasi-stationary regime, in 
which the laser pulse duration exceeds the characteristic time 
of ion acceleration. In this case, the characteristics of Eqn (1) 
are integrated and its solution ( , )f F j j1 2=u  is written in terms 
of the invariants j1 and j2

/ ,
( ) ( )

dj j
j

2
2

1
2

2
1

u tF
Y F F

F
= - = -

+
y , (4)

where the potential F and the function Y(F) are related by 
implicit expressions

¶( ) ( )p x xF Y F= = . (5)



1011Cumulation and mixing of ions in a tubular focus of a high-power laser pulse

For a detailed understanding of the ion acceleration pro-
cess, of greatest interest is the case when integrals (4) are cal-
culated explicitly. This is realised with a special specification 
of the spatial distribution of the electric field p, which, never-
theless, must correspond to the physically justified profile of 
the laser intensity of the tubular beam. Let us consider a sim-
ple example of calculating invariants and writing the solution 
of the kinetic equation (1) for a radially localised electric field 
distribution of the form

, ( / 1),tanh coshp y y
R
c a2 1 2
Le

2
2 2

2

0
2r r

w
= = + --

 x b y- = .
 (6)

Due to the cylindrical symmetry of the problem, the elec-
tric field at the beam centre (x = 0) should vanish, which for 
the above electric field is satisfied with an exponentially small 
error at b >> 1. Formally, the condition p|x = 0 = 0 can be 
exactly satisfied for the potential [1 ( )]exp x2 2aF F= - -u , 
a >> 1, differing from F by an additional factor, which coin-
cides with unity everywhere except in a small vicinity of zero, 
x << 1/a. In what follows, the difference between F and Fu  for 
b >> 1 will be neglected, considering it exponentially small. 
Dependence (6) of the electric field on the coordinate x cor-
responds to a linear change with increasing | y | of the electric 
field in the plasma cylinder at | y | << 1 and to its exponential 
decay at large radii | y | >> 1. The electric field in (6) can be 
represented, as in (2), in the form of the spatial gradient of the 
potential of the electric field generated by the ponderomotive 
force,

¶ coshp y
2 x

2r
= - - . (7)

Comparison of (2) with (7) implies that the intensity of 
laser radiation, which is formed by an electric field (6), has the 
form

( ) 2{[1 ( / 1) ] 1}cosha x a y1 22
0
2 2 2= + + - -- . (8)

The chosen dependence (8) is also characterised by a 
monotonic decrease in the intensity ( , )I x a0 0

2 , typical for a 
tubular beam, with distance in both directions from the maxi-
mum localised at point x = b, I0(b, a0

2) = 1.
The use of (6) in (4) generates a solution to the kinetic 

equation (1) of the form:

( , ), , /coshf F x v y2 2 2 2t t r n n u r= = + =-u { { { ,

/sinh sinh cosh cosh sinh coshy y y y2 2t n t n= - + -{ { { , (9)

cosh cosh cosh cosh sinh sinhy y y y2 2n n t n t= - + -{ { { { .

For a negligibly low ion temperature (the limit of cold 
ions) and a uniform initial ion density, we have F|t = 0 = n0d(u), 
and solution (9) is written in the form

( )f n x
x

0 d r n=
{ { . (10)

Multiplying (10) by unity and u as well as integrating over 
u, we obtain expressions for the integral characteristics of ions 
with distribution function (10) – their density and average 
velocity,

¶{| | }n n x
x

| |av const
k

k
x0

1
kn= n n n=

-
=

{
{/ ,

¶{| | }n
n

x
x v | |av

av
const

k

k
k x

0 1
kn r n= n n n=

-
=

{
{ {/ .

 (11)

Here ( , )x x xk kn={ {  and the summation is performed over all 
values of the roots nk of the equation 0n ={ , which in the vari-
ables y, n has a simple form:

/ ( ) 0cosh tanh tanh coshy y y2 2 2 2n n t n+ - + =- -u ,

 t t r=u .
 (12)

It is easy to verify that equation (12) does not change 
when n is replaced by –n and y by –y, that is, the curves on the 
phase plane {y, n} are symmetric with respect to point y = 0, 
n = 0. The ions lying in regions with y > 0 (at x > b) are accel-
erated by the electric field into the outer region of the tubular 
beam. Ions located in the inner region of the tubular beam 
–b < y < 0 (at 0 < x < b) are accelerated towards its axis. 
This situation persists at least until a certain time instant t = 
tc, which is determined from the condition that the ions accel-
erated inside the shell of the tubular beam reach its axis. The 
graphs of the curves 0n ={  on the phase plane {y, n} for –b < 
y < ∞ at various times tu  < tc are shown in Fig. 1 for b = 10.

The behaviour of the curves on the phase plane in the 
outer region, y > 0, actually repeats (after replacing x with y) 
the results of [7]. It follows from them that at large times tu  > 
t*u  the dependence n(y) is not unambiguous in the entire range 
of variation of the variable y and resembles, for example, the 
velocity profile in a Coulomb plasma explosion [25], which 
demonstrates the overtaking of peripheral particles by inter-
nal particles that are in a stronger accelerating field. The 
upper yup and lower ylow boundaries of the domains of multi-
valuedness of the solution ylow < | y | < yup are determined by 
the condition that the derivative of the inverse function ¶ny = 0 
vanishes, which leads to the following two equations for the 
coordinates of the boundaries:

–10
–1.0

–0.5

0.5

n

–5 0

0

5 y

1

2 3 4

Figure 1. Graphs of curves n = n(y) on the phase plane {y, n} for the 
instants of time: ( 1 ) *t t=u u  » 2.78989 (the moment of the breaking of 
the ion velocity profile with the formation of a three-flux regime), ( 4 ) 

ct t=u u  » 11.6955 (the moment of the onset of ion cumulation in the 
inner region on the beam axis  y = –b = –10), and ( 2 ) tu  = 6 and ( 3 ) tu  = 
9 (intermediate values of time).
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0tanh tanhytn w w- =u ,

( ) 0tanh tanh coshy 2w tn w w w- + =-u , (13)

cosh y2 2w t n= + -u .

The moment t*u  of the emergence of a multiflux (three-
flux) regime is found from the conditions for the simultane-
ous vanishing of the derivatives ¶ny = ¶nny = 0. These condi-
tions are written in the form of three equations combining 
(13) and the equation

[1 2 (1 )] 0cosh tanh cosh tanhy* * * * * *
2 2 2w w w n w w+ + - =* ,

cosh y* *
2 2w t n= + -

**u .

 (14)

Numerical solution of equations (13) and (14) yields ‘uni-
versal’ (that is, valid for any value of r and b, taking into 
account b >> 1) values t*

u  » 2.78989, y* » ±2.01412, and *n  » 
±0.55715. Here, the plus sign corresponds to the outer region 
of the tubular beam (y > 0), and the minus sign corresponds 
to the inner (axial) region of the tubular beam (–b < y < 0).

For tu  > t*u  and y > 0, or, which is the same, x > b, three 
values of the variable n = n1, n2 or n3 corresponds to each yi 
from the region ylow < y < yup. At the upper and lower bound-
aries of the domain of multivaluedness, y = ylow and yup, two 
of the three roots merge.

For the inner region of a tubular beam (–b < y < 0), the 
pattern of curves on the phase plane is more complex, taking 
into account additional space – time constraints. First, the 
breaking of the ion flux upon cumulation of ions onto the 
axis, which occurs at tu  = t*u , implies that the moment of 
breaking is reached before the ions cross the beam axis, that 
is, the coordinate of the breaking point y* > –b.

Taking into account the initial assumption about the 
exponential smallness of the electric field on the beam axis, 
the last condition is satisfied with a margin, | y* | << b. Second, 
the difference in the behaviour of ions in the inner region 
from the three-flux region in the outer region begins to mani-
fest itself when ions accelerated by the electric field of the 
inner part of the shell of the tubular beam cross the beam axis. 
The instant ctu  of reaching the beam axis by the ions and the 
velocity nc < 0 at this instant are found from the condition 
that the boundary of the three-flux flow specified by Eqns (13) 
coincides with the beam axis y = –b, that is x = 0:

(1 )cosh tanh tanhb b /
c c c

2 2 1 2t w w= -u ,

( )
tanh

tanh tanh
tanh tanh

b
b b

1
1

c c
c

2 2
2 2

2 2

n w
w

=
-

- , (15)

1 ( 1) 0tanh tanh tanh tanh tanhb bc c c c c
2 2 2w w w w w- + - = .

The change in the position of the boundaries of the three-
flux flow with time tu  after the breaking and up to the moment 
of cumulation onto the axis, *c 2 2t t tu u u , is shown in Fig. 2a.

To study the behaviour of the kinetic equation after 
cumulation of ions onto the axis, it is necessary to understand 
the processes of crossing the beam axis by ions and their fur-
ther evolution in a decelerating electric field. Since, due to the 
cylindrical symmetry of the problem, the electric field van-
ishes on the axis of the laser beam, its intersection by ions is 

equivalent to the appearance of ions reflected from the axis, 
the dynamics of which can be considered on the basis of solv-
ing the ‘initial-value’ problem for ions located at the initial 
moment (determined by the time of cumulation on the axis) 
on the beam axis and having a velocity directed from the 
beam axis. We emphasise that the process of cumulation on 
the beam axis does not occur simultaneously for different 
groups of ions: ions located at the boundary of the three-flux 
flow are the first to be there. With increasing time t > tc, the 
beam axis is reached by the ions with velocities both higher 
and lower than nc. The range of these velocities at t > tc is 
characterised by the lowest n2 < 0 and highest n1 < 0 (in abso-
lute value) velocities and is given by solving equations of form 
(12), in which we set y = –b:

( ) 0
cosh

tanh tanh cosh
b

b b
,

,
,

1 2
2 2

1 2
1 2
2 2

n

n
t n

+
+ + =

-

-u . (16)

After reflection from the axis, the ions form a cloud of 
ions flying from it in a decelerating electric field: their move-
ment in the axial region of the beam becomes five-flux. The 
analytical solution of the boundary value problem for 
reflected ions is obtained, as before, using the first integrals 
for the kinetic equation (1). The ‘initial’ conditions are set by 
the positive (that is, directed from the beam axis) ion velocity, 
| na | > 0, on the beam axis, y = –b, after reflection at time 

at t=u u . The ion velocities before reflection (that is, directed to 
the beam axis) are found from the equation of form (16) with 
n1,2 replaced by na, and the position of point yst{ , from which 

12 13 14 15 16 t  

–0.2

–8

–6

–4

y

ylow

yup

–10

n

–0.4

–0.6

–0.8

n1

n2

~

t  ~4 6 8 10
a

b

Figure 2. (a) Coordinates of the boundaries  yup, ylow < 0 of the three-
flux flow zone,yup < y < ylow, for the inner region of the tubular beam 
–b < y < 0  at b = 10 and cG Gt t t*

u u u , t*
u  » 2.78989, and  ctu  » 11.6955, 

as well as (b) the velocities of ions,  n1,2 < 0, reaching the axis in the in-
ner region of the tubular beam at  tu  > ctu  » 11.6955, as functions of 
time  tu  .
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ions come to the axis with a velocity na < 0, is given by the 
expression

sinh sinh cosh
cosh

cosh sinhy b
b

b
st a

a

a a
2 2

w
n

n w
= - -

+ -
{ ,

cosh ba a a
2 2w t n= + -u .

 (17)

In particular, assuming a ct t=u u , we obtain sinhyst ={  
coshw/sinhb c- . Further solving the boundary value problem 

of deceleration for reflected ions with an initial velocity | nc | > 0, 
we find that the ions stop at a point with a coordinate coincid-
ing with the starting point, from where the acceleration pro-
cess began, and the deceleration time is equal to ctu . After 
that, the process is repeated with the formation of a seven-
flux ion flow in the paraxial region. The characteristic spread 
in the velocities of the ions involved in the multiflux movement 
can be estimated by plotting the dependences of the velocities 
n1,2 as a function of time tu  (Fig. 2b). From the analysis of these 
dependences it follows that, in addition to the ions that have 
reached the beam axis at the instant ct t=u u , during the char-
acteristic time of their subsequent deceleration (of the order 
of tcu ), other ions will reach the beam axis, the velocities of 
which lie in the range from n2 to n1, that is the value of the 
spread in ion velocities | n1 – n2 | is comparable to nc, which 
indicates a rapid chaotisation of the ion dynamics in the par-
axial region.

3. Global characteristics of ions

The presence of multiflux flow regions is clearly manifested in 
global characteristics of ions. These are the average character-
istics of accelerated ions, calculated by integrating [by sum-
mation in the case of (10)] the distribution function of ions 
over their velocities, namely: the average density and velocity, 

as well as the spectrum of ions. Crossing the boundary of the 
multivaluedness domain is accompanied by a jump-like 
change in the number of particles contributing to the ionic 
moments, that is, to the density and velocity, which leads to 
corresponding discontinuities in these characteristics.

The use of (12) in (11) leads to a simpler form of the rela-
tions that determine the density and average velocity of ions:

h ¶| |arcsin
cosh
sinh

n n x b
y1

|av
k k

0
1

kw
n= + n n n=

-{c m; E/ ,

h ¶| |arcsin
cosh
sinh

n
n

x b
y

|av
av

k

k k

0 1
kn n

w
n= + n n n=

-{c m; E/ ,

¶
sinh cosh

cosh

y

y
| 0 2 2

n
w

=
+

n n={ {

 y[ ( )]cosh tanh sinh tanh2 2 2
# w w w w- + .

 (18)

As illustrations of formulae (18), Fig. 3 shows typical 
curves of ion density distributions for four moments of time, 
the first of which corresponds to the beginning of the break-
ing of the ion flux, and three subsequent ones belong to the 
region of existence of a multiflux (in this case, three-flux) 
flow.

The transition to a multiflux (three-flux) regime is accom-
panied by the expected formation of singularities in the distri-
bution of the ion density, similar to those observed during the 
evolution of ions in the field of a laser beam with a mono-
tonically decreasing intensity with distance from its axis [7, 8], 
as well as those that have been repeatedly discussed in various 
works related to the emergence of multiflux motions in the 
study of the dynamics of noninteracting particles [26], in the 
analysis of the dynamics of a nondissipative gas in an expand-
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Figure 3. Spatial distribution of the ion density along the x coordinate for the same instants of time as in Fig. 1; b = 10.
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ing universe [27], and in problems of a Coulomb plasma 
explosion (see, for example, [25, 28]). Note that the distance 
between the ion density peaks in the outer region, where the 
dynamics of ions is similar to their dynamics for a beam with 
a maximum intensity on the axis [7], also grows rapidly with 
time, and the peaks themselves have a small width. This can 
be understood from the analysis of the graphs of the curve 

0n ={  on the phase plane {y, n}: regions where the derivative 
¶ny is small, which corresponds to large values of the average 
ion density, are characterised by a small range of variation of 
the y coordinate, and with increasing time the width of such 
regions decreases. This is especially noticeable for the peak 
that is farther away from the position of the maximum inten-
sity of the tubular beam.

A different situation is observed in the inner region of the 
tubular beam: of the two density peaks, the largest width is at 
the peak that is farther away from the position of the maxi-
mum intensity of the tubular beam. The width of this first 
peak moving towards the beam axis increases with time and 
turns out to be maximum by the time the ions are cumulated 
onto the beam axis, that is, a significant fraction of the ions in 
the inner region is localised in the vicinity of the beam axis. 
The width of the second peak of ion density moving towards 
the beam axis turns out to be significantly narrower, and the 
number of ions in its vicinity is small in comparison with the 
first peak. This structure is well observed in a numerical 
experiment with a tubular laser beam [2]. In Fig. 1 in paper 
[2], in the inner region after the breaking of the ion profile, 
one can clearly see the formation of two ion density peaks, the 
first of which broadens as it approaches the beam axis, reach-
ing the largest width at the moment of cumulation on the axis. 
The phenomenon of reflection of ions from the axis with the 
formation of a bunch of reflected ions is also observed. From 
the second peak, only its pedestal is visually observed, since 
the very small width of the ion density peak makes it difficult 
to detect its central region in numerical calculations.

Similarly to how it was done for the average ion density, 
one can use (18) to construct graphs of the average ion veloc-
ity, which, as in the case of beam expansion with a maximum 
intensity on the axis, will also have discontinuities at the inter-
section of the boundaries of the regions of existence of multi-
flux flows. However, we will not dwell on this here, referring 
the reader to the previously obtained results for a cylindrical 
beam with a monotonically decreasing intensity [7].

In addition to formulae (18), which specify the spatial dis-
tribution of the average ion velocity and their density, of 
interest are also formulae that determine the energy spectrum 
of accelerated ions, Ne. The integral of Ne over all admissible 
values of the ion energies 0 < e < ∞ coincides with the total 
number of plasma ions:

3

[ ( , ) ( , )]dN xx f x f x2 2 2
0

p e e e= + -e y . (19)

Substitution of (10) into (19) determines the spectrum of 
ions accelerated by the laser field:
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 ( )tanh cosh tanh tanhy y1 22 2 2 2
# w w

w n- + -8 B .

Here, in (20), the summation, in contrast to (18), is per-
formed over all values of the roots xk of the equation 0n ={ . 
The maximum value of the ion energy, the so-called energy 
cutoff, /2m m

2e n={ , at an arbitrary moment of time, is found 
from a system of two equations:
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Figure 4. Spectrum of the ion energy distribution e for the same instants of time as in Fig. 1. The minus sign in the notation for the spectral density 
Ne

– means that these curves characterise the spectral distribution of ions only from the inner region, that is, those flying towards the beam axis.
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0,tanh tanh coshy ym m m m m m m
2 2tn w w w t n- = = + -u u ,

0tanh cosh tanh tanhy y1 2m m m m m m
2 2 2 2w w w n- + - =^ h .

 (21)

A typical form of the spectral energy distribution of ions 
is shown in Fig. 4 for the same times as the spatial density 
distribution. The curves in Fig. 4 characterise the spectral dis-
tribution of ions only from the inner region, that is, those that 
fly towards the beam axis and are of greatest interest. It is 
seen that at 5Ltu  the ion energy reaches its maximum value, 

me{  » 1/2, which virtually does not change with further growth 
of tu . Note one feature of the spectral distribution of ions for 
a tubular beam, manifesting itself in a relatively smooth 
increase in Ne

– near the upper boundary of the spectrum, 
which indicates the appearance of a noticeable fraction of 
high-energy ions during their acceleration. A similar shape of 
the spectral curves was also observed during ion acceleration 
by a super-Gaussian laser beam [9].

4. Discussion of the results and conclusions

The above-obtained results testify that the maximum value of 
the energy of the accelerated ions, me{ , does not exceed the 
value of 1/2, which is achieved in a time tu , close to the time of 
occurrence of the multiflux motion *tu . This means that to 
achieve the maximum ion energy, the duration of the laser 
pulse lastu  must be at least *tu . In dimensional variables, this 
constraint takes the form

t t Z
A
m
M

c
R

p3 3
2

*
max

las H
t

= *
u , (22)

where pmax is the maximum (in absolute magnitude) value of 
the normalised electric field amplitude p0(y) determined from 
the relation ( / )p c R pLe

2 2 2
0w= . For the discussed electric field 

(6), the extrema p0(y) [a maximum and a minimum of p0(y) in 
the outer and inner regions, respectively] and the value cor-
responding to these extrema

/p
c
R a

3 3

2

3 3
4 1 2 1max

Le
2

2 2

0
2r w

= = + -_ i (23)

are achieved when ymax = h (1/ )arcsin 2 . Note that the num-
ber of extremum points of the electric field for a tubular beam 
is equal to two, in contrast to the version of a cylindrical beam 
with an intensity monotonically decreasing from the axis. 
Passing from a0 << 1 to a0 >> 1, the quadratic dependence of 

(3 )p a3max
1
0
2= -  on a0 is replaced by a linear one: pmax = 

(2/3)3/2a0. To calculate the time of cumulation of ions on the 
axis tc, *tu  should be replaced by ctu  in (22).

By using the parameters of the laser and plasma, the max-
imum value of the ion energy in dimensional variables is writ-
ten in the form

E Zp mc
2

3 3
maxm m

2e= { , (24)

which at 1/2me ={  gives the upper estimate for the energy of 
accelerated ions 3 /4E p Zmc3max max

2= . At times shorter 
than that those required to achieve the maximum energy 

1/2me ={ , the cutoff energy is found from equations (21).
Note that formula (22), as in the case of a cylindrical beam 

with a maximum intensity on the axis, is obviously universal 

in the sense that although a specific numerical value of *tu  is 
related to the details of the spatial structure of the electric 
field (2), the dependence of pmax on the intensity a0

2 in (23) is 
the most important for determining the moment of the onset 
of the multiflux regime. In this case, one should expect ade-
quate estimates of t* using (22) for close spatial distributions 
of laser intensity.

As an example, we consider the cumulation of deuterons 
on the axis of a tubular laser beam with the parameters used 
in [2]: an intensity of 2 ´ 1019 W cm–2 and a laser pulse dura-
tion tlas » 400 fs for irradiating gaseous deuterium with a den-
sity nD » 1020 cm–3. For characteristic scales R » 1 mm and 
b = 10, which corresponds to the radius of the laser spot in 
terms of maximum intensity Rlas = bR = 10 mm and the width 
of the ring at half maximum intensity –1.51 mm, from 
(22) – (24) we obtain t* » 0.28 ps, tc » 1.13 ps and Emax » 
1 MeV.

It is interesting to compare the characteristic times and 
spatial scales of the electric field, which were obtained in this 
work, with similar values used in the numerical experiment 
[2]. For example, the maximum amplitude of the dimension-
less electric field generated by a laser beam with intensity dis-
tribution (3) turns out to be about 4 times less than that given 
by formula (23), while the scale of its localisation along the 
radius is about 4 times larger. Indeed, the electric field anal-
ysed in our work (6) inside the ring has a maximum amplitude 
pmax » 1.54 at x » 9.532 and falls off sharply at 7x K , that is, 
the ion acceleration zone is narrow and is located on the 
boundary of the inner region of the ring, and outside this zone 
ions fly by inertia. In [2], the situation is somewhat different: 
The amplitude of the electric field accelerating ions has a 
maximum of pmax

sar  » 0.377 at x » 5.45, decreases when 
approaching the beam axis and is vanishingly small only in 
the paraxial region x K 1.5. This means that in the numerical 
experiment [2], ions are accelerated virtually in the entire 
inner region, with the exception of the narrow paraxial region 
of the beam. Since the amplitude of the accelerating electric 
field in [2] is four times smaller than that obtained by formula 
(23), the estimate of the characteristic breaking time of the ion 
flux according to (14) should be twice that given above, 

2t tsar = **  » 0.56 ps, which corresponds to the estimates of 
work [2]. In this case, the cumulation time on the axis tc

sar » 
1.2 ps in [2] is twice t*

sar and is comparable with the above tc » 
1.13 ps, which may be due to the formation of a shock density 
wave immediately in the near-axis region, and therefore the 
time needed for it to reach the beam axis is less than that 
obtained for the density wave, which arises in the model dis-
cussed above at the boundary of the inner region of the ring. 
Finally, according to (24) for the conditions of the numerical 
experiment [2], an estimate of the maximum ion energy a 

/1 2me ={  with allowance for a four times smaller amplitude of 
the accelerating electric field pmax

sar  » pmax/4 is Emax
sar  » 250 keV, 

which also agrees with the results of [2].
Note that the employed model of ion dynamics in an 

accelerating field specified by the ponderomotive force of a 
tubular laser beam makes it possible to obtain spatiotemporal 
and spectral characteristics of accelerated ions. A limitation 
on the applicability of this model may be a violation of the 
balance between the strength of the electrostatic field of 
charge separation and the ponderomotive force of the laser 
beam, for example, due to an increase in the thermal pressure 
of electrons. A consistent approach to taking this effect into 
account is associated with the study of the kinetics of elec-
trons and requires further additional studies using the com-
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plete system of equations for the kinetics of plasma particles 
in a self-consistent field. These studies will serve as an addi-
tional justification for the statement that the breaking of the 
ion flux profile is not a significant limitation of the mathemat-
ical model if it occurs outside the region of localisation of a 
strong electric field of the laser beam, where ions move in a 
ballistic regime.

To summarise, we note that within the framework of the 
proposed model, we have analysed the behaviour of the ion 
distribution function as a function of the parameters of the 
plasma and the laser beam and have constructed the spatial 
distributions for the density of plasma ions for different 
instants of times. The spectral energy distribution of the 
accelerated ions and the cutoff energy have been found. The 
condition for the emergence of regions of multiflux ion flows 
with the formation of collisionless shock waves has been 
investigated, the spatial boundaries of the regions have been 
determined, and the moment of the onset of such a regime has 
been indicated. The main conclusion that follows from the 
above analysis is the difference in the behaviour of ions in the 
axial region of the tubular beam, enclosed between the laser 
intensity maximum and the beam axis, and in the off-axis 
region located at larger radii than the position of the intensity 
maximum. After the breaking of the ion flux in the off-axis 
region, three-flux and single-flux regimes of ion expansion are 
formed and subsequently retained. A different situation 
develops in the axial region, where, after the breaking of the 
ion flux, the ions flying towards the axis form single- and 
three-flux regions, and even five-flux regions after reflection 
from the axis. Obviously, over time, this picture becomes 
more complicated: after the reflected ions stop and start 
returning, one should expect the appearance of regions of a 
seven-flux flow. Then, the movement of ions in the paraxial 
region will become completely chaotised. An estimate has 
been obtained for the deceleration time of ions and the cumu-
lation time on the axis, as well as an estimate for the charac-
teristic period of ion oscillations near the beam axis and its 
dependence on the plasma and beam parameters.

The results presented in this work are based on the axial 
symmetry of a tubular relativistic laser beam, which implies 
its stability with respect to filamentation, resulting in the for-
mation of a small-scale filamentary structure of the laser 
beam and the destruction of axial symmetry. A simple condi-
tion for the absence of relativistic filamentation can be writ-
ten in the form of an inequality requiring that the characteris-
tic thickness of the laser beam tube ~R does not exceed the 
characteristic wavelength of filamentation instability 2 / ,Lepg w  
that is, / /R n nlas cr eKl g . Here llas is the laser wavelength; ne 
is the electron density of the medium; ncr is the critical density; 
and /a1 20

2g = + . For the above discussed plasma and 
beam parameters (ncr/ne » 10, g » 3, R/llas » 1) this inequality 
is satisfied with a large margin.

A more rigorous approach to the analysis of the filamen-
tation instability of a relativistic laser beam with allowance 
for the relativistically ponderomotive nonlinearity, supple-
mented by numerical simulation [29], shows that the develop-
ment of filamentation instability is determined by the rela-
tionship between two dimensionless parameters that charac-
terise the laser-plasma system (at least for a cylindrical beam, 
the intensity of which decreases monotonically with increas-
ing r and has a maximum on the axis), namely: m ≡ RlaswLe /c 
and h ≡ P0/Pcr. Here Pcr » 1.6198 ´ 1010 (w/wLe)2 W is the 
critical power, and P0 is the maximum power in the incident 
laser beam. As follows from [29], the region of stable (without 

filamentation) beam propagation includes all h > 1 if the 
value of μ is close to the value corresponding to the lowest 
self-trapped mode in the nonlinear regime, m » me ~ 2. On the 
other hand, filamentation also does not occur in a wide range 
of changes in m for moderate values 1 < h G  10. In fact, this 
means that the filamentation zone approximately corresponds 
to the region m > 20, h > 16 on the plane of parameters {m, h}, 
which indicates a wide range of applicability of our results. 
For the model of a tubular beam, instead of m, one should use 
mtr = RwLe /c, that is, replace Rlas by R. Note that the above 
simple condition for the absence of filamentation agrees with 
the results of a more rigorous consideration based on [29], if 
as h and m we choose their smallest values, hmin and mmin, cor-
responding to the point closest to the origin with coordinates 
{hmin, mmin} at the boundary of the filamentation zone.

The model of cylindrical cumulation of ions on the axis is 
of interest as applied to a pulsed neutron source when initiat-
ing a fusion reaction, the idea of creating which was formu-
lated back in the 1960s [30]. Since the reaction rate is propor-
tional to the product of the densities of colliding particles and 
the cumulation over the laser focal spot size occurs quickly, 
one can expect to obtain a very short-pulse source of thermo-
nuclear neutrons using a sufficiently dense (albeit transpar-
ent) plasma using the already available laser pulses of subpi-
cosecond duration of relativistic intensity. In this case, we are 
not talking about an extremely high intensity, but one that 
provides deuteron energies at a level of less than 1 MeV, 
which corresponds to the parameter 1a K . The duration of a 
neutron burst will be determined by the transit time of a laser 
pulse through a self-focusing channel, tn = LD/c, the length of 
which is determined by the losses of a laser pulse [31], LD » 
actlasncr/4ne, where tlas is the laser pulse duration.

For a tubular beam, the number of ions accelerated in the 
paraxial region and the number of ions accelerated in the off-
axis region are approximately the same, and the maximum 
energies of the accelerated ions are also approximately equal. 
However, the cumulation effect leads to the fact that the val-
ues of the density of accelerated ions in the paraxial and off-
axial regions are different, and, therefore, yields different val-
ues of the number N (per unit length of the laser channel) of 
the accelerated ions participating in the reaction (for example, 
deuterons). An estimate of this number can be obtained from 
the equation

)
d
d
t
N N nd ds u u= ( . (25)

Here Nd is the number of deuterons participating in the 
reaction with the cross section s(u) (per unit length of the 
laser channel), and nd is the deuteron density.

For deuterons flying outward (in the off-axis region), the 
reaction time tout » ld/u is specified by the path length ld of 
accelerated deuterons with a velocity u in a gas of deuterons 
with an unperturbed density nd

+ = n0. Then for the number of 
dd-reactions (generated neutrons) from outward flying deu-
terons (as indicated by the superscript +), we obtain the esti-
mate:

)N l N nout d d 0. s u +( . (26)

For a plasma of subcritical density, the deuteron free path 
significantly exceeds the size of the focal laser spot, ld >>  Rlas. 
Indeed, according to [32], for the parameters of laser radia-
tion and plasma discussed here, the value of ld is ~0.539 cm at 
deuteron energies Emax = 200 keV, ~0.873 cm at 400 keV, and 
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~1.84 cm at 1 MeV, so that the above condition is satisfied 
with a large margin.

For deuterons flying towards the beam axis, two time 
intervals should be distinguished with significantly different 
neutron generation rates. The first corresponds to the charac-
teristic time of flight tc of accelerated deuterons with a veloc-
ity u in a gas of deuterons with an unperturbed density nd

– » 
nd

+ » n0. Then, for the number of neutrons generated by deu-
terons flying inward (as indicated by the superscript ‘–’) dur-
ing the time 0 < t < tc, we obtain the estimate:

( )N t N nin c d
t

0
c . s u u - . (27)

Since the number of deuterons accelerated towards the 
axis, Nd

–, and to the outer region, Nd
+, are approximately 

equal, Nd
– » Nd

+, and are also equal to the gas density of 
unperturbed deuterons, nd

– » nd
+ » n0, the difference between 

estimates (27) and (26) consists only in replacing tc by tout, 
which yields a significantly lower (by a factor of ld/Rlas) value 
of the number of neutrons, /N Nin out

tc  » Rlas/ld << 1.
A much larger contribution should be expected from the 

effect of cumulation on the axis of two interpenetrating fluxes 
of accelerated deuterons with a relative velocity 2u and a den-
sity nd

pl much higher than n0. The characteristic time of neu-
tron generation, which occurs at t > tc, turns out to be of the 
order of the time of flight of deuterons tpl through the central 
region of a ‘compressed’ plasma filament with a characteristic 
transverse size of 2Rpl, that is, tpl » 2Rpl/u. AtRpl <<   Rlas, the 
time of flight of a deuteron through the region of a dense 
plasma filament, that is, the time of a neutron burst, is small 
compared to the time of cumulation on the axis (tc >> tpl). To 
estimate the value of nd

pl, we replace the real inhomogeneous 
distribution of the density of deuterons in a plasma filament 
with a singularity on the axis by an averaged one with a con-
stant density, which can be found from the condition of con-
servation of the number of deuterons emitted from the ring 
region Rlow < r < Rlas, where Rlow = R[b + ylow(tc)], into the 
axial region 0 < r < Rpl,

( / ) [1 ( / ) ]n n R R R Rd
pl

las pl low las0
2 2= - . (28)

As follows from the results of our numerical calculations 
(see Fig. 3), ions accelerated from the adjacent inner region of 
the ring are concentrated not only in the region of the plasma 
filament, but also in the rest of the inner region. This means 
that formula (28) gives a somewhat overestimated, but cor-
rect in order of magnitude, estimate of the deuteron density in 
the plasma filament. For the number of neutrons generated in 
a compressed plasma filament over time tpl, we obtain the 
estimate:

2 (2 )N t N nin pl d d
pltpl . s u u - . (29)

Using the ratio of (29) to (27),

( )
( )

N
N

R
R

R
R4 2
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las

las

low
t

t 2

c

pl

s u
s u

= - c m; E , (30)

we can estimate the role of contributions to Nin from the neu-
tron burst in the plasma filament and from the generation of 
neutrons in the volume from Rpl to Rlow. For example, for the 
parameters Rlow/Rlas » 0.645 and Rlas/Rpl » 102 discussed 
here, we obtain /N Nin in

t tpl c  » 2.4 ´ 102[s(2u)/s(u)] >> 1, taking 
into account the relatively weak dependence of the reaction 

cross section on the rate of deuterons in the range of interest 
near the value of Emax ~1 MeV [the ratio s(2u)/s(u) is 1.935, 
549, and 1.37 at the deuteron energy Emax  = 200 keV, 400 keV, 
and 1 MeV, respectively]. Thus, the number of neutrons gen-
erated in a burst on the axis significantly exceeds the number 
of neutrons generated during the cumulation time tc of deu-
terons on the axis. Note that the number of neutrons pro-
duced during the same time in the outer region is approxi-
mately equal to N in

tc  and, therefore, is also small in compari-
son with the number of neutrons in the burst. However, the 
total number of neutrons generated in the outer region during 
the time tout is ld/Rlas times greater than N in

tc , which gives an 
estimate for the ratio /N Nin out

tpl  » 2.4 ́  102(Rlas/ld)[s(2u)/s(u)]. 
Taking into account the dependence of the reaction cross sec-
tion and the deuteron mean free path on their velocity, that is, 
on the energy, we present the characteristic values of this ratio 
at different deuteron energies. For the upper limit of the dis-
cussed energy range Emax = 1 MeV, which corresponds to an 
intensity of 2 ´ 1019 W cm–2, this ratio is /N Nin out

tpl  » 0.179. 
With decreasing ion energy, this ratio increases: at Emax = 
0.4 MeV, which corresponds to an intensity of 5.42 ´ 
1018 W cm–2, we obtain /N Nin out

tpl  » 0.426, and at Emax = 0.2 
MeV, which corresponds to an intensity of 2.33 ́  1018 W cm–2, 
we have /N Nin out

tpl  »0.861, that is, the quantities N in
tpl  and Nout  

become of the same order of magnitude. Finally, we present 
an estimate of the number of neutrons in the burst (per unit 
length of the laser channel):

4 (2 )N N n R
R

R
R1in d

pl

las

las

lowt
0

2 2
pl s u= -- c m; E . (31)

For deuterons with energy Emax = 0.2 MeV, we have s(2u) 
» 0.0728 ´ 10–24 cm2 and for the rest of the plasma and beam 
parameters used above [n0 = 1020 cm–3, Rlas = 10–3 cm, Rpl = 
10–5 cm, Nd

– = (1– / )n R R Rlas low las0
2 2 2p  » 0.6p ´ 1014 cm–1] we 

obtain N in
tpl  » 3.3 ´ 108 cm–1.

In this work, we have theoretically substantiated the phe-
nomenon of cumulative laser generation of neutrons in the 
form of a short (compared to standard methods) burst that 
occurs when ion fluxes intersect during their cylindrical 
cumulation, which is consistent with numerical calculations. 
We emphasize that the very short duration of the neutron 
pulse turns out to be important, with practically no loss in the 
number of generated thermonuclear neutrons in comparison 
with the usually discussed scheme of their generation from the 
axis of the laser beam in the volume of the surrounding gas 
[9]. Usually, the time tpl is short in comparison with the time 
tn, and the latter determines the duration of the neutron burst, 
which, for example, for a laser pulse of moderate intensity, 
a ~ 1, with a duration of ~400 fs, propagating in a plasma 
with n0 = 1020 cm–3, will be tn = atlasncr /4ne » 5 ps. In this case, 
the yield of dd-neutrons per burst is expected at a level of ~0.5 ´ 
107. A neutron source of ultrashort duration may be of inter-
est for diagnosing fast processes in dense substances.
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