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Abstract.  We report the results of an analytical and numerical 
analysis of the evolution of nanosecond probe pulses in the case of 
electromagnetically induced transparency in the L-scheme of 
degenerate quantum transitions. It is assumed that the probe and 
control fields at the active medium input are elliptically polarised, 
and one of them is phase modulated. It is shown analytically that 
probe radiation in a medium is the sum of two normal modes propa-
gating independently of each other. Because the group velocities of 
normal mode pulses are different, a single probe pulse entering the 
medium decays inside the medium into separate pulses, each of 
which transfers the energy of one of the normal modes. Numerical 
simulations have shown that with a sufficiently large phase modula-
tion, normal modes, whose intensity on the input surface is described 
by a bell-shaped curve, turn into trains of subpulses in the medium. 
Phase modulation of the input field has practically no effect on the 
group propagation velocities of normal modes, but it reduces the 
transparency of the medium for probe radiation.

Keywords: electromagnetically induced transparency, phase modu-
lation, normal modes.

1. Introduction

Resonant action of two coherent laser fields on two quantum 
transitions with a common energy level [1] leads to a number 
of effects interesting from the theoretical and practical points 
of view. Among them, a special place is occupied by the phe-
nomenon of electromagnetically induced transparency (EIT) 
[2 – 4]. The use of EIT opens up new opportunities for the 
development of optical memory [3], quantum communica-
tions [3, 5, 6], quantum information systems [2 – 4], devices for 
high-precision measurement of magnetic fields [7], and chro-
nometry devices [8]. The EIT phenomenon underlies the 
methods of generating large optical nonlinearities [4, 9] and 
amplifying radiation without population inversion of quan-
tum transitions [10]. Research is underway of the features of 
the EIT manifestation in new situations, for example, in 
strongly correlated quantum gases [11], in the case of radio 
waves [12], on impurities in photonic crystals [13], near a 
nanofiber [14], and in the presence of an angular orbital 
momentum in the probe field [15].

In the case of degeneracy of the energy levels of quantum 
transitions, the EIT phenomenon acquires new features asso-

ciated with the polarisation states of the interacting fields. 
For example, the authors of Refs [16, 17] studied theoretically 
and experimentally the rotation of the polarisation plane of 
the probe field with a change in the control radiation inten-
sity. The results of theoretical and experimental studies of the 
effect of a constant magnetic field on the evolution of the cir-
cular components of the probe radiation are presented in 
[18,  19]. Yoon et al. [20] studied experimentally and theoreti-
cally the circular birefringence of the probe field accompany-
ing the EIT phenomenon. Kis et al. [21] predicted theoreti-
cally the possibility of propagation of a probe field in the 
form of two modes with different polarisation states in the 
stationary EIT regime.

In the above works, the theory was based on the adiabatic 
approximation [22, 23], which is applicable to the description 
of pulses of sufficiently long duration [24]. In our paper [25], 
we considered theoretically, without using the adiabatic 
approximation, the pulsed regime of the EIT phenomenon in 
the L-scheme formed by the levels 3P0, 3P2, P3 1

0  of the 208Pb 
isotope, in which EIT of circularly polarised laser fields was 
experimentally observed [26, 27]. It was shown in [25] that the 
probe field inside the medium is the sum of normal modes, the 
pulses of which propagate with different group velocities. The 
theory developed in [25] had a limited field of application due 
to the assumption that, at the resonant medium input, pulses 
of interacting radiations do not exhibit phase modulation 
(PM). This paper presents the results of an analytical and 
numerical study of the features of the EIT phenomenon in the 
presence of phase modulation of one of the interacting fields 
on the input surface of a resonant medium.

2. Initial equations

The L-scheme in question is formed by simple degenerate 
lower (3P0), fivefold degenerate middle (3P2), and triply degen-
erate upper ( )P3 1

0  levels of the 208Pb atom. We introduce an 
orthonormal basis fk (k = 1, 2, . . . , 9) of the common eigen-
functions of the operators of energy, square and projection of 
the angular momentum on the z axis of the 208Pb isotope, cor-
responding to the lower (k = 1, M = 0), upper (k = 2, 3, 4; 
M = –1, 0, 1) and middle (k = 5, 6, . . . , 9; M = –2, –1, 0, 1, 2) 
levels. Let D1 and D2 be the reduced electric dipole moments 
of the 3P0 ® P3 1

0  and 3P2 ® P3 1
0  transitions, respectively, and 

w1 and w2 (w1 > w2) be the frequencies of these transitions for 
an atom at rest. We describe the inhomogeneous broadening 
of spectral lines by a Doppler contour with the parameter T1. 
The width D1 of the inhomogeneously broadened 3P0 ® P3 1

0  
transition line determined from the e–1 level is given by the 
ratio D1 = 2/T1.

We define the strength E of the total electric field acting 
on the medium in the form
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E = E1 + E2,   [ ( )cosE t k zE el l x xl l l xlm w d= - +

	 ( )], 1, 2.cosE t k z ley yl l l ylw d+ - + = 	 (1)

Here El and wl are the electric field strength and the carrier 
frequency of the probe (l = 1) and control (l = 2) fields;

/l2 1l &m = + (|Dl|T1); ex and ey are unit vectors along the x 
and y axes; Exl and Eyl are nonnegative real amplitudes; 
dxl and dyl (–p £ dxl, dyl £ p) are the phase additions of the 
x- and y-components of the probe (l = 1) and control (l = 2) 
fields; and kl = wl /c. Following [28], we introduce fl and gl, 
which denote the amplitudes of the left- and right-hand circu-
lar components of the probe (l = 1) and control (l = 2) fields. 
Let us define the normalised independent variables

s = z/z0,  w = (t – z/c)/T1,

where z0 = 3&c/(2pN|D1|2T1w1) and N is the concentration of 
atoms. We introduce ( ),T1 1 1 1e w w= - l  and e2 = w2e1/w1, 
where 1w l is the frequency of the 3P0 ® P3 1

0  transition of a 
moving atom, and the constant x = 0.6(w2/w1)|D2/D1|2. Using 
Maxwell’s equations and the Schrödinger equation, we obtain 
in the first approximation of slow envelopes the system of 
equations:
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(2)

Here ci = 1, 2, 4, 5, 7, 9 are quantities proportional to the 
amplitudes of the probability of the populations of the energy 

levels of the L-scheme; g = T1/(2t); and t is the radiative life-
time of the P3 1

0  level. {A detailed derivation of equations (2) 
is presented in work [25].}

For the parameters of the polarisation ellipse of the 
probe (l = 1) and control (l = 2) fields, we use the following 
notations: al is the semi-major axis of the polarisation ellipse 
measured in  ml units; al is the angle (in radians) between the 
semi-major axis and the х axis; and gl is the contraction 
parameter (0 £ al £ p, –1 £ gl £ 1). Note that |gl| is the ratio 
of the minor axis of the polarisation ellipse to its major axis, 
with gl < 0 and gl > 0 for the right- and left-handed elliptical 
polarisations, respectively. The parameters al and gl are here-
inafter referred to as the polarisation characteristics of the 
radiation. Note that specifying al, al, and gl as well as of the 
phase additions dxl or dyl is equivalent to defining the field by 
formulae (1). Below, we use the dimensionless intensities Il of 
the probe (l = 1) and control (l = 2) fields, measured in units 
of / (8 )c 1

2 pm .
The initial conditions assume that up to the instant w = 0 

all the atoms of the medium are at the lower level of the 
L-scheme. Let al 0, al 0, gl 0, and dxl 0 (l = 1, 2) be the values of 
al, al, gl, and dxl on the input surface (s = 0) of the resonant 
medium. The quantities dx10 and dx20 are functions of w, 
describing the phase-modulated radiations on this surface. 
We write the boundary conditions for system (3) as follows:

a10 = 0.2sech[(w – 300)/50],   a10 = p/6,

g10 = – 0.5,   dx1 = dx10;	

(3)

a20 = 6.65,   a20 = 0,   g20 = – 0.3,   dx2 = dx20.	 (4)

The reasons for choosing the values of the resonant 
medium and input radiation parameters are described in 
detail in [29]. Here we note that T1 = 1.6 ́  10–10 s, and z0 = 
0.03  cm at a temperature TPb = 950  K of saturated lead 
vapour. Conditions (3) describe an elliptically polarised input 
pulse of probe radiation with a bell-shaped envelope having a 
duration of 15 ns and a peak intensity of 65 W cm–2; condi-
tions (4) describe input control radiation with a constant 
intensity of 20 kW cm–2. The intensity of the control radiation 
in the above-mentioned experimental works [26, 27] was 
approximately the same. The constancy of the value of a20 for 
the control radiation corresponds to the scheme of counterin-
tuitive superposition of the control field, which is usually used 
in EIT experiments [2].

3. Normal modes in a medium

In what follows, we will assume that the probe field intensity 
is so low that the influence of this field on the control radia-
tion can be neglected. Conditions (3) and (4) are in agreement 
with this assumption. Repeating the calculations of [25], we 
can show that the control radiation should propagate without 
absorption at the speed of light in a vacuum. Let a20 = 0 and 
g20 be a constant with |g20| ¹ 1; the constant k is given by the 
relations

, / ( ) .p p p1 10 12
20 20

2k g g=- + + = -

Then the representation ,f f f( ) ( )
1 1

1
1
2= +  g1 = ,g g( ) ( )

1
1

1
2+  

where ,f g( ) ( )
1
1

1
1k=  and (1/ ) ,f g( ) ( )

1
2

1
2k=  is valid, and the sys-
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tem of equations (2) simplified under the assumption of a 
weak probe field splits into two independent systems that 
determine the values of g ( )k

1  (k = 1, 2):
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Here

/ (1 ) ( ),exp ig a1 2 x20 20 20 20g d= -_ i

q1 = 1 + k2[k2 + (1/k)]/6,

q2 = 1 + k2(k2 – k)/6,  k2 = (1 + g20)/(1 – g20).

The functions Uk and Vk (k = 1, 2) are expressed in the 
form of linear combinations of the quantities ci (i = 2, 4, 5, 
7, 9) included in system (2). Details of reducing system (2) to 
two independent systems (5) are presented in [25]. Note that 
in [25] the quantities a20, a20, g20, and dx20 were considered 
constant. However, the proof that led to Eqns (5) remains 
valid in the case under consideration, when only the quanti-
ties a20 and g20 are constant, while a20 and dx20 are functions 
of w.

The system of equations (5) at k = 1, as shown in [25], 
describes a probe pulse with the strength E ( )

1
1  with the follow-

ing characteristics of the polarisation ellipse:

, 0, , ,a a ( ) ( ) ( ) ( )
x x1 1

1
1 1

1
1 1

1
1 1

1a a g g d d= = = = =

where ( 1) / ( 1)( )
1
1g k k= - +  is a constant, and a ( )

1
1  and ( )

x1
1d  

may depend on w and s. This pulse will be called a parallel 
mode, since the main axis of its polarisation ellipse is parallel 
to the main axis of the polarisation ellipse of the control field.

System (5) for k = 2 according to [25] describes a probe 
pulse with the strength E ( )

1
2 , for which

, /2,a a ( ) ( )
1 1

2
1 1

2 pa a= = =

, ,( ) ( ) ( )
x x1 1

2
1
1

1 1
2g g g d d= =- =

where a ( )
1
2  and ( )

x1
2d  may depend on w and s. This pulse is 

called a perpendicular mode, since the main axis of its polari-
sation ellipse is perpendicular to the main axis of the polarisa-
tion ellipse of the control field. If the control field is specified 
by formulae (4), .0 7417( )

1
1g = .

The strength E1 of the probe electric field inside the 
medium is represented by the formula E E E1

( ) ( )
1
1

1
2= + . In 

what follows, we will call the field with the strength E1 the 
total probe field. In this case, at any points (s, w) the relation  
I I I1

( ) ( )
1
1

1
2= +  is satisfied, where I1 is the intensity of the total 

probe field; and I ( )
1
1  and I ( )

1
2  are the intensities of the parallel 

and perpendicular normal modes, respectively.

4. Normal modes on the input surface 
of a medium

To describe the evolution of normal modes in a medium using 
a boundary value problem, system (2) or two systems (5) 
require expressions that relate boundary conditions (3) for 
the total input probe field with the boundary conditions for 
normal modes from which this field is composed. In [25], such 
expressions were obtained for the case when the radiation on 
the input surface is not phase modulated. Below we present a 
technique for finding the boundary conditions for modes in 
the presence of phase modulation.

On the input surface (s = 0), the x- and y-components of 
the Jones vector J10 of the total probe radiation are deter-
mined by the formulae

Jx10 = m1a10W (+)exp(idx10),

Jy10 = m1a10W (–)exp[i(dx10 + d1)],

where

[ ( ) ] /cos1 1 2 2( )
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The components of the Jones vector J ( )k
10  of parallel (k = 1) 

and perpendicular (k = 2) normal modes on the input surface 
at g20 ¹ 0, which is assumed below, have the form

( )exp iJ a( )
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where a ( )k
10  and 

( )
x
k
10d  are the values of the quantities a ( )k

1  and 
( )
x
k
1d  for parallel (k = 1) and perpendicular (k = 2) normal 

modes at s = 0. Using the equality J J J10
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	 (6)

where ( ) ( )
x10

1
10
1

1j d d= -  and .( ) ( )
x10

2
10
2

1j d d= -  The system of 
equations (6) is equivalent to a system of four real equations 
for the variables ,a ( ) ( )k k

10 10j  (k = 1, 2).
We introduce the notations
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A = W (+),  B = sign(g2)W (–)cosd1,

C = – sign(g2)W (–)sind1,

( )
,

( )
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A C
Y

B
1 1( )

( )
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1 2
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1
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1 2g

g
g

=
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Solving system (6), we have

, ,a a X Y a a Z T( )
10

2 2 ( )
10
1

10
2

10
2 2= + = +

( ),Arg iX Y( )
x x10
1

10d d= + +

( ) .Arg iZ T( )
x x10
2

10d d= + +

Using the described technique and taking into account for-
mulae (3) and (4), we obtain the boundary conditions for nor-
mal modes:

a ( )
10
1  = 0.0720sech[(w – 300)/50], 0,( )

10
1a =

0.7417, 0.4993;( ) ( )
x x10

1
10
1

10g d d= = - 	

(7)

a ( )
10
2  = 0.1645sech[(w – 300)/50], /2,( )

10
2 pa =

0.7417, 0. .2884( ) ( )
x x10

2
10
2

10g d d=- = + 	

(8)

Note that on the input surface, the intensities of the normal 
modes have a bell-shaped shape, similar to that of the inten-
sity of the total input probe field.

5. Results of numerical analysis

5.1. Phase modulation of probe radiation

We set in boundary conditions (3) and (4)

dx10 = 200sech[(w – 300)/50],   dx20 = 0.	 (9) 

These conditions describe the situation when the input probe 
pulse is phase modulated with an instantaneous frequency 
deviation equal to D1, and phase modulation of the control 
field is absent. (Below, the instantaneous frequency deviation 
will be called the modulus of the maximum displacement of 
the instantaneous frequency relative to the carrier frequency 
w1.)

Figure 1 shows the dependences of the quantities a1, a1 
and g1 on the variable w for four values of the variable s. One 
can see that the input pulse of the total probe radiation decays 
in the medium into two fragments 1 and 2 with constant val-
ues of a1 and g1 (see Figs 1c and 1d). The values of these quan-
tities for fragment 1 coincide with the values inherent in the 
parallel normal mode, and for fragment 2 – with the values 
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Figure 1.  Evolution of the characteristics of the total probe field in a medium (a1 = thick curves, a1 = dashed lines, and g1 = thin lines) at s = (a) 0, 
(b) 1600, (c) 3000, and (d) 4000.
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inherent in the perpendicular normal mode. The intensities 
I ( )
1
1  and I ( )

1
2 , obtained by solving system (2) with boundary 

conditions (7) and (8), respectively, and the intensity I1 of the 
total probe field, obtained by solving system (2) with bound-
ary conditions (3) and (4), satisfy the condition I I I( ) ( )

1 1
1

2
2= +  

with an error less than 2 % for all s and w. Hence it follows 
that fragments 1 and 2 are, respectively, parallel and perpen-
dicular normal modes.

Fragments of normal modes at s = 4000 are shown in 
Fig. 2. Each mode is a train of subpulses with a duration in 
the range from 4 to 10 units of time w (from 0.6 to 1.6 ns, 
respectively). Note that the deviation of the instantaneous 
frequency in the region of each subpulse is approximately 
0.07D1. This is much less than the deviation of the instanta-
neous frequency of the total probe field at the resonant 
medium input.

5.2. Pulsed phase modulation of control radiation

Below are the results of two calculations. In the first calcula-
tion it is assumed that

dx10 = 0,   dx20 = 200sech[(w – 500)/50],	 (10)

and in the second, it is assumed that

dx10 = 0,   dx20 = 200sech[(w – 300)/50].	 (11)

Both calculations correspond to the case when the total 
input probe radiation has no phase modulation, and the 
phase modulation of the input control radiation is concen-
trated on a limited time interval, that is, has a pulsed charac-
ter. Conditions (10) relate to the case when the pulse of the 
phase-modulated control radiation arrives at the input sur-
face after the input probe pulse passed through this surface, 
catching up with it inside the medium. Conditions (11) 
describe the situation when the pulse of the phase-modulated 
control field crosses the input surface simultaneously with the 
pulse of the total probe radiation.

Figure 3 shows the calculated dependences of the charac-
teristics a1, a1 and g1 on the variable w at s = 1600 and 4000 
for boundary conditions (10) and (11). (The dependences of 
the quantities a1, a1 and g1 on w at s = 0 are shown in Fig. 1a.) 
According to Figs 3a and 3b, the bell-shaped input pulse of 
the total probe field in the medium splits into pulses of nor-
mal modes with bell-shaped envelopes a1 and values of polar-
isation characteristics a1 and g1 inherent in normal modes. 
This character of propagation of probe radiation in a medium 
is also realised in the absence of phase modulation of the 
interacting fields [25]. According to Figs 3c and 3d, the enve-
lope has a multi-spike structure similar to that described in 
Section 5.1. The condition I I I( ) ( )

1 1
1

2
2= +  is implemented with 

an error less than 2 % in both calculations.
The dependences of the quantities I1 and dx1 for normal 

modes, obtained as a result of calculations with boundary 
conditions (10) at a distance of s = 4000, are shown in Fig. 4. 
The deviation of the instantaneous frequency of the parallel 
mode is approximately 0.13D1, and that of the perpendicular 
mode is 0.05D1, which is much less than the deviation of the 
instantaneous frequency of the control radiation, equal to D1. 
Under boundary conditions (11), phase modulation of the 
normal modes of the probe field in the medium is close to that 
shown in Fig. 2.

Note that the control radiation propagates in the medium 
faster than normal mode pulses. Therefore, the pulse of the 
phase-modulated control radiation has practically no effect 
on the propagation of the probe radiation if it crosses the 
input surface before the probe radiation pulse arrives at it.

5.3. Continuous phase modulation of control radiation

Below are the results of calculations in which it is assumed 
that

dx10 = 0,   dx20 = 20sin[(w – 300)/25].	 (12)

According to (12), the input probe radiation is not phase 
modulated, and phase modulation of the input control radia-
tion has a periodic character with an instantaneous frequency 
deviation equal to 0.4D1. Figure 5 shows the dependences of 
a1, a1 and g1 on the variable w for four values of the variable 
s. One can see that the input probe pulse splits in the medium 
into two separate pulses. The values of the polarisation char-
acteristics of these pulses indicate that one of them (pulse 1 in 
Figs 5c and 5d) is a parallel pulse, and the other (pulse 2) is a 
pulse of the perpendicular normal mode. This is confirmed by 
the fulfilment (with an error less than 2 %) of the condition 
I I I( ) ( )
1 1

1
2
2= + .

Fragments of normal modes at s = 4000 are shown in 
Fig. 6. Each mode is a train of subpulses with a duration in 
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Figure 2.  Evolution of the quantities I1 (thick curves) and dx1 (thin 
curves) at s = 4000 for (a) parallel and (b) perpendicular normal 
modes.
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the range from 5 to 20 units of time w (from 0.8 to 3 ns, respec-
tively). In the region of the most intense subpulses, the devia-
tion of the instantaneous frequency is about 0.25D1 for the 
parallel normal mode and 0.7D1 for the perpendicular normal 
mode.

5.4. Normal mode velocities

The values of the group velocities of propagation of normal 
modes differ insignificantly when passing from one calcula-
tion to another. With an error less than 3 %, we can assume 
that 9.5V ( )

1
1 = , while .V 3 7( )

1
2 = , where V ( )k

1  are the velocities 
of the parallel (k = 1) and perpendicular (k = 2) modes in the 
reference frame w, s. At TPb = 950 K, we find that if 

( )
1
1n  and 

( )
1
2n  are the velocities of pulses of parallel and perpendicular 

normal modes in a stationary frame of reference z, t, and c is 
the speed of light in a vacuum, then /c ( )

1
1n  » 16, while /c ( )

1
2n  » 

40. According to the calculations given in [25], in the absence 
of phase-modulated input radiation, the normal mode pulse 
velocities have almost the same values.

5.5. Transparency of the medium

Let us define the transparency of the medium for the probe 
field as Tr = W(s)/W(0), where W(s) is the amount of energy 
transferred by the probe radiation through a unit cross-sec-
tional area located at a distance s from the input surface for 
the entire time of radiation propagation through this section. 
The Tr value is an important characteristic of the efficiency of 
the EIT phenomenon.

Calculations have shown that in all cases the Tr value for 
the parallel normal mode is greater than that for the perpen-
dicular normal mode. The largest Tr values are obtained by in 

0

0

500 1000 1500 w

0 500 1000 1500 w0 500 1000 1500 w

0 500 1000 1500 w

0.03

0.06

0.12

0.09

a1

0.03

0.06

0.12

0.09

0.03

0.06

0.12

0.09

a1

a1

0.03

0.06

0.121

0.09

a1

-3

-2

-1

al, g1

0

1

-3

-2

-1

a1, g1

0

1

-3

-2

-1

a1, g1

0

1

-3

-2

-1

a1, g1

а b

c d
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calculations with boundary conditions (10), which mean that 
the pulse of the phase-modulated control field on the input 
surface lags in time from the pulse of the probe field. In this 
case, for s = 4000, the Tr values are 0.86 and 0.41 for the par-
allel and perpendicular normal modes, respectively, and 0.48 
for the total probe field consisting of emissions from these 
modes.

The smallest Tr value was recorded in calculations with 
initial conditions (9). The corresponding dependences of Tr 
on s for the total field and fields of normal modes are shown 
in Fig. 7 by thick curves. For comparison, an additional cal-
culation was carried out, in which instead of condition (9) it 
was assumed that dx10 = dx20 = 0, that is, it was assumed that 
both input fields exhibited no phase modulation (thin curves 
in Fig. 7). One can see that the presence of phase modulation 
of the input probe field significantly reduces the EIT effi-
ciency.

Another additional calculation proceeded from condi-
tions (9), but instead of the value a20 = 6.65 in conditions (4), 
it was assumed that a20 = 0. This corresponds to the absence 
of control radiation, that is, to the absence of the EIT phe-
nomenon. This calculation showed that Tr < 10–3 at s = 100; 
at the same distance, the transparency of the medium for the 
parallel and perpendicular normal modes is 0.56 and 0.22, 
respectively. Hence, we can conclude that in the presence of 
the phase-modulated input probe radiation the EIT phenom-
enon occurs quite efficiently. This conclusion remains valid 
for all calculations presented in this work.

6. Conclusions

The obtained results indicate that even with a significant 
phase modulation of the input probe radiation (the deviation 
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of the instantaneous frequency is equal to the inhomogeneous 
width D1 of the transition line resonant to this radiation), the 
probe field in the medium is the sum of normal modes propa-
gating independently of each other. If a total probe field at 
the medium input is represented by a bell-shaped pulse, then 
on the input surface the normal modes have the same shape. 
However, inside the medium, each normal mode takes the 
form of a train of short subpulses. In this case, phase modula-
tion of each subpulse is small: the maximum deviation of the 
instantaneous frequency is less than 0.1D1.

The mode structure of the probe field in the medium is 
retained even in the presence of phase-modulated control 
radiation. If phase modulation of the control field is concen-
trated on a limited time interval that does not overlap with the 
time the probe pulse crosses the input surface of the medium, 
then it insignificantly affects the EIT process: the mode pulses 
in the medium have a bell-shaped shape and an insignificant 
phase modulation. (The bell-shaped structure of the enve-
lopes is inherent in modes in the absence of phase modulation 
of the interacting fields.) However, if the pulse of the phase-
modulated control field and the input probe pulse pass 
through the input surface simultaneously, the normal modes 
inside the medium have a multi-spike structure similar to that 
described above. Continuous phase modulation of the con-
trol field also leads to a multi-spike structure of normal 
modes.

The presence of phase-modulated interacting fields sig-
nificantly reduces the transparency of the medium for probe 
radiation, except for the case when the pulse of the phase-
modulated control field on the input surface does not overlap 
in time with the pulse of the input probe radiation. However, 
the influence of the phase-modulated input fields on the prop-
agation velocity of normal modes is insignificant in all cases.

The results of this work can be used in the development 
and improvement of devices based on the EIT phenomenon 
of pulsed probe radiation, for example, optical memory [3], 
quantum communications [3, 5, 6] and quantum information 
systems [2 – 4].
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Figure 7.  Dependences of the medium transparency Tr on s in the pres-
ence of phase modulation of the input probe radiation (thick curves) 
and in its absence (thin curves) for ( 1 ) parallel and ( 3 ) perpendicular 
normal modes as well as for ( 2 ) total radiation.


