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Abstract.  A neural network architecture is proposed that allows a 
continuous nonlinear spectrum of optical signals to be predicted 
and an inverse nonlinear Fourier transform (NFT) to be performed 
for signal modulation. The average value of the relative error in 
predicting the continuous spectrum by the neural network when cal-
culating the direct NFT is found to be 2.68 ´ 10–3, and the average 
value of the relative error in predicting the signal for the inverse 
NFT is 1.62 ´ 10–4.

Keywords: nonlinear Schrödinger equation, inverse scattering prob-
lem method, Zakharov – Shabat problem, nonlinear Fourier trans-
form, neural networks, machine learning.

1. Introduction

Among various factors limiting the performance of modern 
optical communication systems, optical channel nonlinearity 
is considered to be the one that most seriously degrades the 
characteristics of existing optical communication lines [1]. In 
this regard, methods aimed at increasing the throughput of 
communication lines are being actively investigated [2, 3]. Of 
many alternative methods, signal processing based on the 
nonlinear Fourier transform (NFT) and optical transmission 
methods operating with so-called nonlinear Fourier (NF) 
modes have recently attracted much attention. The nonlinear 
Fourier transform provides efficient linearization of signal 
evolution within a single-mode fibre model, where the propa-
gation of light is well approximated by the nonlinear 
Schrödinger equation (NLSE). In the case of distributed 
Raman amplification or when the optical channel is approxi-
mated by a path-averaged model, the NLSE describes well the 
evolution of the signal along optical fibre. Problems in the 
practical implementation of NFT-based transmission meth-
ods are associated with deviations of the true optical channel 
from the NLSE model and with the sensitivity of the system 
to such deviations [4, 5], as well as with the presence of optical 
noise [6 – 9]. This is explained by the fact that any electronic 
element has its own characteristics that do not coincide with 
the ideal ones, and the properties of optical fibre may vary 

depending on external conditions and differ from the factory 
characteristics. Note also that NFT can be used to analyse 
optical signals [10, 11] and has recently been used to identify 
soliton components in various photonic applications, includ-
ing lasers and microcavities [12 – 16].

The direct and inverse NFT as applied to the focusing 
NLSE was first formulated in the fundamental work of 
Zakharov and Shabat [17]. Direct NFT associates an optical 
signal with its nonlinear spectrum, which in the general case 
may consist of discrete and continuous parts [18]; however, 
each part may be absent for some specific situations. The set 
of discrete eigenvalues corresponds to the soliton (discrete) 
part of the NFT spectrum of the signal, which usually exists 
at sufficiently high signal powers [11]. Nevertheless, the use of 
the continuous part of the NFT spectrum, corresponding to 
dispersion components, turned out to be very effective in 
optical data transmission [4, 9, 18, 19].

Currently, numerous ‘traditional’ numerical approaches 
have been proposed for calculating the nonlinear spectrum 
[20 – 23], and significant progress has been made in reducing 
the computational complexity of algorithms [24], as well as in 
increasing their accuracy [25 – 27]. However, when applied to 
complex signals with a large number of nonlinear compo-
nents, difficulties can often arise associated with the stability 
[28]. In addition, real-time processing of NFT-based, complex 
signals is a challenge, which limits the ability to efficiently 
implement NFTs in hardware. In this case, a promising area 
is the use of machine learning (ML) and, in particular, the 
implementation of NFTs based on neural networks (NNs).

In recent years, a breakthrough has been made in the 
development of ML methods for solving algorithmically 
complex problems, such as, for example, pattern recognition 
and classification [29, 30]. The main steps here are training a 
model on a set of some data array and applying the predictive 
models. The first step may take longer, but the trained model 
is usually much faster to apply, allowing machine learning 
systems to be deployed on a variety of nonproductive devices. 
Note that ML-related methods have been successfully applied 
to compensate for nonlinear effects [31 – 34].

In recent years, ML has also been proposed to be used in 
NFT-based data transmission systems, but mainly for calcu-
lating soliton components (discrete spectrum) [35 – 37]. For 
systems based on a continuous spectrum, NNs were applied 
at the post-processing stage [38, 39]. In a recent paper [40], a 
simple NN was used to process a continuous nonlinear spec-
trum. In this work, the procedure from the MATLAB pack-
age for recognising handwritten numbers was adapted to clas-
sify points of the signal constellation, which imposes signifi-
cant restrictions on the use of this approach. In this paper, we 
propose to implement a more advanced regression approach: 
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to compute a continuous spectrum using a special NN, and 
also to reconstruct the original optical field (that is, to per-
form an inverse NFT) using a special NN architecture.

2. Nonlinear Fourier transform

The propagation of light in optical fibre in the slowly varying 
envelope approximation is described using NLSE, which is 
written in dimensionless form as
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Here q(z, t) is the slowly varying optical field in fibre; z is the 
distance along fibre; and t is the time in the frame of reference 
moving with the group velocity of the wave packet. To sim-
plify the analysis, we do not take into account the fibre gain 
and loss, as well as the presence of noise components [4, 41].

Equation (1) in the presented form belongs to the class of 
integrable equations that can be solved by the method of the 
inverse scattering problem. Direct NFT allows one to deter-
mine the scattering data and consists in solving the 
Zakharov – Shabat spectral problem using a localised ‘poten-
tial’ q(z, t), which is an optical signal:
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Here yi are auxiliary functions, and the complex parameter 
l = x + ih is a nonlinear analogue of frequency. To determine 
the nonlinear spectrum associated with the profile q = q(z, t), 
it is necessary to find a special solution F (t, l) = [f1, f2 ] of 
system (2), satisfying the asymptotic condition: F → [e– ixt, 0] 
at t → – ∞. The main part of the direct NFT consists in calcu-
lating the scattering coefficients a(l) and b(l) determined 
using a special solution F (t, l) as follows:

( ) ( , ) , ( ) ( , )lim lime ea t b ti i

t

t

t

t
1 2x f x x f x= =

" "3 3

x x

+ +

- .

The continuous spectrum r(x) = b(x)/a(x) coincides with the 
real axis of the x-plane and corresponds to the dispersive 
wave component of the signal, while it is a direct analogue of 
the linear Fourier transform and converges to it at low signal 
powers. The discrete part of the nonlinear spectrum is not 
considered in our work, and below we deal only with the con-
tinuous part of the spectrum. The signals were preselected in 
such a way that the corresponding nonlinear spectrum did not 
contain discrete levels, that is, solitons. But we also found 
that the nonlinear effects are significant and that the continu-
ous spectrum differs markedly from its linear Fourier spec-
trum.

3. Advantages of using NNs in nonlinear signal 
processing

Since linear, nonlinear and noise effects manifest themselves 
simultaneously when transmitting data over fibre-optic com-
munication systems, these data are very suitable objects for 
processing using the latest advances in ML methods. Using 
ML, we can solve a multidimensional optimisation problem 
(for example, in terms of transmission quality and through-
put maximisation) without manipulation of all possible 
parameter values. An especially urgent task is the identifica-

tion of some internal features and regularities of data. Here, 
NNs can be used to simulate propagation effects when a sig-
nal travels through a noisy nonlinear fibre environment. In 
other words, using NNs, we can simulate a nonlinear trans-
form without computing the transform directly. The gain lies 
in the speed and versatility of the transform, as well as the 
flexibility and adaptability of NN-based operations: The neu-
ral network does not know what data it is processing; it 
searches for the necessary features in the data that affect the 
final result, and then extracts them. This process is called fea-
ture extraction. Thus, if we want to calculate a certain value 
of some function, then instead of (possibly) complex calcula-
tions, we can use a pre-trained NN.

Another advantage of using NN-based signal processing 
is that NNs can reduce noise in the data. In practice, we 
always have additional noise that can be critical for idealised 
methods. The network can filter out unnecessary information 
within itself, leaving only the basic features necessary for a 
specific task. A possible disadvantage of using NNs is their 
presently achievable accuracy. However, in practice, the accu-
racy of NNs is sufficient for most problems and, even with a 
sufficient set of data for training, exceeds the accuracy of 
existing numerical methods. As noted earlier, NNs have 
already demonstrated their potential in problems of process-
ing optical signals [42] and, in particular, in NFT-based sys-
tems [35 – 39].

4. Results

In this paper, we use an NN to predict the nonlinear con-
tinuous spectrum of complex optical signals and convert the 
spectrum back to a signal (inverse NFT). For this study, we 
have selected examples of signals in the form of a widely 
used wavelength division multiplexing (WDM) format. One 
WDM signal is represented as the sum of independent optical 
carriers:
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where Q is the normalisation factor that is used to control the 
magnitude of nonlinear effects; M is the number of WDM 
channels; wk is the carrier frequency of the kth channel; Ck are 
the data from the signal constellation, transmitted over the 
kth channel; and T is a character interval. The function f(t) is 
the shape of the pulse, which in this work, without loss of 
generality, is expressed (in normalised form) as

( ) 1 cosf t T
t4p
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f(t) = 1 at T/4 < t < 3T/4.

To assess the quality of the NN prediction, we use the for-
mula 
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to determine the relative error for a continuous spectrum. 
Here the symbol ... x  denotes averaging over the spectral 
interval; and the subscripts pred and real refer to the reflec-
tance values r(x) predicted by NNs and to the values previ-
ously calculated by standard numerical methods, respectively. 
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A similar formula for calculating the relative error in predict-
ing the signal itself has the form
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where q(t) is the signal, and the symbol ... t  denotes averag-
ing over the time interval. The relative errors hr(x) and hq(t)  
are determined at points x and t, respectively. We used the 
quantities ( )rh x x  and ( )tq th  to estimate the overall mean of 
the error. We emphasise that the metric was chosen in such a 
way as to take into account even those areas where the value 
of the spectrum or signal is much less than unity.

Figure 1 shows the architecture of the NFT network, 
which performs NFT operations (direct and inverse trans-
forms) with the parameters indicated in the figure. The NFT 
network consists of sequential convolution layers and fully 
connected output layers. A complex signal consisting of 1024 
points arrives at the input to the network. This NN predicts 
only one component of the continuous NF spectrum, and so 
two identical NFT networks must be used to predict the real 
and imaginary parts of r(x). Likewise, converting the spec-
trum back to a signal requires two separate NFT networks for 
the real and imaginary parts of the q(t) signal. Each of the 
four neural networks with the same architecture was trained 
independently.

The dataset consisted of 94 035 signals, of which 9 403 
were used for validation and were not involved in the training 
process. Random data sequences encoded in quadrature 
phase shift keying (QPSK) format were used to generate the 
signals. The energy of all signals was the same and was chosen 
at such a level that the nonlinear effects were strong enough. 
At the selected energy, some signals contained a discrete spec-
trum, but such signals did not fall into the training dataset. 
The continuous spectrum for each signal was pre-computed 
using conventional direct NFT techniques. When training the 
NFT network, we used the mean square error (MSE) as a loss 
function, as well as the Adam (adaptive moment estimation) 
optimisation algorithm with a training step of 10–4. On aver-
age, given the amount of data used, the learning process took 
50 000 epochs.

Figure 2 shows the error hr(x), that is, the difference 
between the predicted and actual (pre-calculated using the 
conventional numerical NFT method) continuous nonlinear 
spectrum for a specific signal, and Fig. 3 demonstrates an 
example of the error hq(t) in finding the inverse NFT. One can 

see that the NN performs both direct and inverse transforms 
with high accuracy. A slight increase in the error at the centre 
for the continuous spectrum is associated with its localisation 
in the middle, while at the edges of the spectral interval the 
values of r(x) tend to zero. There is no such feature for the 
signal, since it is located evenly over the entire time interval. 
The average value of the relative prediction error of the con-
tinuous spectrum ( )rh x x  for the NN when calculating the 
direct NFT is 2.7 ´ 10–3. For the inverse transform, the aver-
age value of the relative signal prediction error ( )tq th  = 1.6 ´ 
10–4. The results obtained demonstrate that neural networks 
can perform direct and inverse nonlinear Fourier transforms 
with high accuracy. To dateoment, the practical application 
of NFT methods is far from commercial implementation but, 
however, already in laboratory conditions, their potential for 
transferring information at record net data rate has been 
demonstrated [43].

5. Conclusions

Presently, ML and NN are modern technologies that are 
actively being investigated in applications to nonlinear sig-
nal processing and optical communication. The proposed 
NN architecture demonstrates the fundamental application 
of the NN for the analysis and (de)modulation of complex 
optical signals used in communications. This opens up pros-
pects for improving existing systems without the need for a 
deep understanding of the internal nonlinear processes that 
affect the signal transmission quality. We emphasise that the 
method proposed in this work is only the first step in the 
development of methods for machine processing of optical 
signals. It can be used to design smart receivers with digital 
backpropagation algorithms based on NFTs and NNs. Our 
results show that the use of NNs can make it possible to 
study not only the internal structure, but also generate new 
signals using autoencoders. The fundamental possibility of 
using NNs for NFT can create new areas for research related 

Figure 1.  (Colour online) Neural network architecture for predicting 
the continuous nonlinear component of the spectrum of a complex sig-
nal; the same architecture was used for inverse NFT, converting the 
continuous spectrum back into a complex signal. To predict the real 
and imaginary parts of the spectrum (or signal), use is made of two 
separate NNs with the same structures, but with different weights.
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Figure 2.  (Colour online) Example of the distribution of the relative er-
ror hr(x) between the pre-calculated and predicted continuous spectrum.
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Figure 3.  (Colour online) Example of the distribution of the relative er-
ror hq(t) between the initial and predicted signals.
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to the analysis of the nonlinear structure of the signal and its 
evolution characteristics.
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