
Quantum Electronics  51 (12)  1076 – 1080  (2021)	 © 2021  Kvantovaya Elektronika and IOP Publishing Limited

Abstract.  A scheme is proposed to compensate for nonlinear distor-
tions in extended fibre-optic communication lines with polarisation 
division multiplexing, based on fully connected neural networks 
with complex-valued arithmetic. The activation function of the 
developed scheme makes it possible to take into account the nonlin-
ear interaction of signals from different polarisation components. 
This scheme is compared with a linear one and a neural network 
that processes signals of different polarisations independently, and 
the superiority of the proposed neural network architecture is dem-
onstrated.

Keywords: fibre-optic communication systems, nonlinearity of opti-
cal fibre, fully connected neural networks, polarisation division 
multiplexing, compensation of nonlinear distortions.

1. Introduction

Currently, due to the regular appearance of new multimedia 
applications and services, there is a constantly growing 
demand for information transmission systems with increased 
capacity [1]. The development of coherent long-haul commu-
nication systems based on polarisation-division multiplexing 
(PDM) technology makes it possible to double the data trans-
mission rate due to the simultaneous propagation of optical 
signals along two polarisation fibre components. However, 
the operation of such systems involves an increase in the total 
signal power in fibre, which leads to an increase in the influ-
ence of nonlinear propagation effects that are known to be 
one of the key factors limiting the capacity of modern infor-
mation transmission systems [2, 3]. To overcome this limita-
tion, various technologies for generating and processing an 
optical signal have recently been proposed.

Among the techniques used for processing optical signals, 
we can single out methods based on perturbation theory [4, 5] 
and phase conjugation of signals [6], as well as methods using 
the Volterra functional series [7] and the Schrödinger nonlin-
ear filter [8]. These approaches are currently competing with 
machine learning (ML) methods, in particular artificial neu-
ral networks (NNs), which allow transmitted symbols to be 
predicted with high accuracy, while maintaining low compu-
tational complexity [9 – 11].

ML methods are a powerful tool that has many applica-
tions for the analysis of complex nonlinear systems. Therefore, 
it is quite natural that ML has become widely used to improve 
the efficiency of complex modern fibre-optic communication 
systems. Due to the accumulation of large arrays of data 
required for analysis and the emergence of easy-to-use soft-
ware, ML methods are currently used in almost all areas of 
optical communication. For example, Zibar et al. [12], using a 
combination of two multilayer NNs, determine the optimal 
pump powers and wavelengths to achieve the required broad-
band Raman gain profile.

In fibre-optic communication lines, a special NN architec-
ture – an autoencoder – is widely used. Using this architec-
ture, Jones et al. [13] solved the problem of optimising the 
shape of the signal constellation, taking into account the 
channel nonlinearity and providing the maximum bandwidth 
of the communication line with wavelength division multi-
plexing. This approach, in addition to the fibre nonlinearity, 
allows one to account for the distortions introduced by the 
components of the transmitter and receiver, and the resulting 
structure of the signal constellation differs significantly from 
that in the case of standard optimisation strategies. Another 
application of an autoencoder for communication lines was 
demonstrated by Karanov et al. [14], who presented a fibre-
optic communication line in the form of an end-to-end deep 
NN and determined the optimal profile of a quadrature 
amplitude modulated optical signal, which ensures the best 
quality of data transmission in a communication system.

ML methods are widely used for failure management in 
communication lines [15]. A large number of works are pre-
sented in which various ML algorithms are used to identify, 
prevent or eliminate failures caused by various reasons in the 
operation of optical networks; these ML algorithms are ran-
dom decision forests [16], artificial NNs [17], support vector 
machines (SVMs) [18], Gaussian processes [19], Bayesian net-
works [20], etc.

One of the main directions of application of ML algo-
rithms in communication systems is the development of meth-
ods for suppression and compensation of nonlinear signal 
distortions. For example, Redyuk et al. [21] proposed to com-
bine the perturbation theory-based model and linear regres-
sion methods to solve this problem. By using this approach 
together with quantising the perturbation coefficients and 
introducing a circular buffer, the authors managed to increase 
the efficiency of nonlinear distortion compensation, while 
maintaining low computational complexity. Many works are 
devoted to the study of methods for processing optical sig-
nals, based on artificial neural networks. Note that most of 
the well-known neural network architectures are currently 
used for this purpose. Thus, for example, using a neural net-
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work, Häger et al. [9] modelled the digital back-propagation 
(DBP) method, which made it possible to achieve high effi-
ciency of compensation of nonlinear distortions. Further 
development of this approach was proposed in [22], where 
digital back-propagation in a communication system with 
wavelength division multiplexing was simulated using convo-
lutional neural networks with complex-valued arithmetic. 
Due to the symmetry of dispersion filters and an improved 
nonlinear activation function, this scheme makes it possible 
to significantly improve the quality of signal transmission, 
while maintaining low computational complexity. 
Deligiannidis et al. [23] demonstrated a signal processing 
scheme in a receiver of a communication line based on long 
short-term memory (LSTM) elements, that is, on a variety of 
recurrent neural networks. Due to the peculiarities of this 
architecture of neural networks, the methods obtained on 
their basis have low computational complexity.

The most popular NN architecture, on the basis of which 
various nonlinear distortion compensation schemes are devel-
oped, is fully connected neural networks. A large number of 
works are devoted to signal processing using such an NN 
architecture in communication lines with pulse amplitude 
modulation [24, 25]. In papers [10, 11], using fully connected 
NNs, nonlinearity is compensated for in systems with 
16-QAM format. On the basis of this type of NNs, schemes 
for processing OFDM signals (orthogonal frequency-division 
multiplexing) have also been proposed [26]. However, in 
almost all of these works, the architecture of such networks is 
implemented using real numbers. The application of the 
Bayesian optimisation method to complex NNs is demon-
strated in [27].

In this paper, we extend the nonlinear distortion com-
pensation scheme based on fully connected neural networks 
with complex-valued arithmetic, proposed in [11], to the 
case of communication systems with polarisation division 
multiplexing. The following sections of the paper describe 
the fibre-optic communication system in question, the archi-
tecture of the proposed NN and the results of applying the 
developed scheme to compensate for nonlinearity in the 
receiver of the communication line and to predict the trans-
mitted symbols.

2. Communication line under study

The data transmission system in question is schematically 
shown in Fig. 1. The communication line consists of a trans-
mitter; twenty 100-km-long spans of standard single-mode 
fibre (SSMF); erbium-doped optical amplifiers with a noise 
factor NF = 4.5 dB, used after each span to compensate for 
losses; and a receiver. The transmitter generates 16-QAM-
PDM signals with a symbol rate of 32 Gbaud. A root raised 
cosine (RRC) filter with a roll-off factor of 0.1 is used to 
shape the pulses.

The nonlinear propagation of signals along an optical 
fibre is described by Manakov’s system of nonlinear equa-
tions [28]:
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where Ax(z, t) and Ay(z, t)  are the x- and y-components of the 
slowly varying envelope of the optical signal with orthogonal 
polarisations, respectively; a = 0.2 dB km–1 is the fibre loss; b2 
= –21 ps2  km–1 is the chromatic dispersion; and g = 
1.3  W–1  km–1 is a nonlinear fibre parameter. Propagation 
equations were solved numerically using the symmetric split-
step Fourier method with a sampling rate of 16 samples per 
symbol.

In the receiver, after separation of the polarisation com-
ponents, the signal passed through a matched RRC filter. 
Then, the accumulated chromatic dispersion was accurately 
compensated for in the frequency domain and the sampling 
rate was downsampled to 1 sample per symbol. Next, non-
linear effects were compensated for using the proposed 
scheme based on a fully connected NN with complex-valued 
arithmetic. To this end, each complex symbol of the received 
signal was fed to a separate input node of the NN. Then the 
signal was demodulated and the bit error rate (BER) was 
calculated.

3. Fully connected neural network-based scheme 
of compensation for nonlinear effects

The architecture of the complex NN proposed in this work is 
shown in Fig. 2. The network consists of two fully connected 
subnets, each of which processes a signal of one of the polari-
sations. In this architecture, subnets are interconnected 
through nonlinear layers. The neural network with complex-
valued arithmetic is based on the description using complex 
numbers of both the state of the neurons themselves and the 
weight coefficients. Thus, each neuron of the considered NN 
is represented as a pair of numbers corresponding to the real 
and imaginary parts of the symbols for which complex-valued 
arithmetic was implemented. This approach looks more natu-
ral when processing received symbols in coherent fibre-optic 
communication lines, which are complex in nature. In addi-
tion, NNs with complex-valued arithmetic make it possible to 
use complex activation functions corresponding to nonlinear 
effects affecting signals when they propagate through an opti-
cal fibre.

The transmitted signals of two polarisations are received 
at the input of the NN at a sampling rate of one sample per 
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Figure 1.  (Colour online) Schematic of a fibre-optic communication line: (CDC) chromatic dispersion compensation; (PBC) polarisation beam 
combiner; (PBS) polarisation beam splitter. 
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symbol, which then propagate through the hidden NN layers. 
When processing each received symbol, N previous and N 
subsequent symbols for each polarisation are simultaneously 
fed to the input, which makes it possible to take into account 
the channel memory effect. Thus, the total number of input 
complex-valued symbols for both polarisations is 2 × (2N + 1). 
Each subnetwork of the proposed NN consists of an input 
layer, two hidden fully connected layers and an output layer 
corresponding to the predicted transmitted symbol for this 
polarisation. The number of symbols N and the number of 
neurons on the hidden layers were optimised during the study 
to improve the efficiency of nonlinear distortion compensa-
tion. Note that the architecture under consideration is an 
extension of the complex fully connected NN proposed in [11] 
for the case of communication systems with polarisation divi-
sion multiplexing.

The linear part of each hidden layer is the result of multi-
plying the vector of neuron values obtained on the previous 
layer by a matrix with complex-valued learning elements of 
size M × P, where M is the number of neurons on the previous 
layer, and P is the size of the current hidden layer. Note that 
symbols for different polarisations propagate along linear 
layers in parallel and independently of each other. To take 
into account the nonlinear interaction of signals of different 
polarisation components with each other, we used the follow-
ing nonlinear activation function:

f (z1) = exp[i(g1| z1 |2 + g2| z2 |2 )]z1,

where z1 and z2 are the values of the neurons of the linear lay-
ers for the first and second polarisations, respectively; and g1 
and g2 are trainable parameters. It should be noted that the 
form of the activation function corresponds to a nonlinear 
step in the split-step method when solving Manakov’s equa-
tions (1). Thus, symbols for different polarisations with their 
parallel propagation along the NN interact only ‘inside’ the 
nonlinear activation functions of hidden layers.

The presented NN was implemented using the TensorFlow 
2.0 library. The initial distribution of the weight coefficients 
was specified by the Xavier function [GlorotNormal() func-
tion in the TensorFlow library]. To find the optimal values of 
the weight coefficients, we used the Adam algorithm (adap-
tive moment estimation). As a loss function, the root-mean-
square error was chosen between the 16-QAM symbols sent 
by the transmitter and the symbols received at the NN out-
put.

To assess the efficiency of the proposed scheme, the results 
of its operation were compared with the results of the opera-
tion of the following nonlinear compensation schemes: a lin-
ear scheme, in which the block with the NN was not used, but 
only the phase of the received signal was restored; schemes 
based on a complex NN, in which signals of both polarisa-
tions were processed independently and, therefore, their influ-
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Figure 2.  (Colour online) Scheme of a complex fully connected NN for joint processing of data obtained for signals of two polarisations.
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ence on each other was not taken into account in any way (in 
this case, the NN subnets were not connected); a complex 
NN, in which the symbols for two polarisations, in addition 
to the connection through activation functions (nonlinear 
layers), as in the proposed scheme, were also connected 
through hidden linear layers, which means that all hidden 
neurons of the subnetwork for one polarisation were con-
nected by the trained parameters with each neuron hidden 
subnet layer for a different polarisation.

4. Results of applying the proposed scheme 
to compensate for nonlinear distortion

The main tasks in the study of the proposed scheme include 
the search for the optimal NN characteristics, which, on the 
one hand, would provide the greatest efficiency of its opera-
tion, and on the other, would lead to the minimum computa-
tional complexity of signal processing. Thus, one of the stud-
ied parameters was the number of processed symbols at the 
NN input.

Figure 3 shows the nonlinearity compensation efficiency 
in terms of BER as a function of the number of processed 
symbols at the input of each NN subnetwork. The case of 
independent data processing for each polarisation is com-
pared with the cases when the subnets were connected either 
only through nonlinear layers, or through linear and nonlin-
ear layers simultaneously. For each architecture under con-
sideration, 32 neurons were used on each hidden layer. One 
can see that, with the exception of the case when there is only 
one symbol at the input, complex NNs provide significantly 
lower BER compared to the linear compensation scheme. In 
addition, for all the considered implementations of neural 
networks, BER decreased with an increase in the number of 
input neurons until it reached 31. Further changes in BER 
were insignificant. It can also be seen that independent data 
processing yielded the worst result in comparison with other 
NN implementations. Obviously, unconnected subnets for 
different polarisations are deprived of the opportunity to take 
into account their influence on each other. The best result is 

obtained when connecting subnets through nonlinear layers. 
While additional connection through line layers should 
potentially provide a larger number of degrees of freedom, 
this case gives higher BER due to too many weights, which 
makes it impossible to effectively train the network.

Figure 4 shows the dependence of BER on the number of 
neurons on each hidden NN layer for the three network archi-
tectures described above. In this case, 21 symbols are supplied 
to the input for each polarisation. One can see that the NN 
efficiency increases with increasing number of neurons on the 
hidden layers up to 32, and a further change in BER is insig-
nificant. In this case, an NN with connection only on nonlin-
ear layers also shows the best efficiency of nonlinear distor-
tion compensation, while the efficiency of a network with 
additional connection on linear layers is slightly inferior to it.

Figure 5 shows the dependence of BER on the input signal 
power for various nonlinear compensation schemes. One can 
see that, due to the effective compensation of the nonlinear 
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Figure 3.  (Colour online) Dependences of BER on the number of sym-
bols at the input of each NN subnetwork for the cases when the symbols 
for both polarisations are processed independently ( ), are connected 
only on nonlinear layers ( ) or on nonlinear and linear layers simultane-
ously ( ). 
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Figure 5.  (Colour online) Dependences of BER on the input signal 
power for a linear compensation scheme (dashed curve), an NN, in 
which the symbols for both polarisations are processed independently 
( ), and an NN, in which the polarisations are connected only on non-
linear layers ( ).
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interaction of signals of two polarisations, the complex NN 
proposed in this work makes it possible to reduce BER at an 
input power of 1 dBm by 52 % in comparison with the linear 
compensation scheme and by 30 % in comparison with the 
NN, in which the symbols for both polarisations are pro-
cessed independently.

5. Conclusions

We have proposed a scheme based on a fully connected NN 
with complex-valued arithmetic for processing optical signals 
in a receiver of a communication system with polarisation 
division multiplexing. The activation function of the devel-
oped scheme makes it possible to take into account the non-
linear interaction of signals from different polarisation com-
ponents. For this scheme, the efficiency of compensation for 
nonlinear effects has been investigated as a function the NN 
parameters: the number of processed symbols at the input 
and the number of neurons on hidden layers. The efficiencies 
of the scheme in question, a linear scheme and a complex NN, 
which processes signals of different polarisations indepen-
dently, have been compared, and the superiority of the pro-
posed NN architecture has been demonstrated.
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