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Abstract.  The physical features of the divergence of laser beams 
with angular momentum are investigated. The beams are presented 
in the form of a coherent superposition of two modes without angu-
lar momentum. Analytical formulas are used that satisfy Maxwell’s 
equations for all components of the electric and magnetic fields of 
the initial modes. This allows one to describe the superposition of 
modes in terms of the components of the Umov – Poynting vector. 
The relationship between the beam divergence and its angular 
momentum, caused by the dependence of the radial and azimuthal 
components of the Umov – Poynting vector on the longitudinal com-
ponents of the fields, is demonstrated. The components of this vec-
tor are analysed for an annular beam obtained using the superposi-
tion of azimuthally and radially polarised modes at various phase 
shifts between them. According to the analysis, beams with angular 
momentum can propagate without divergence. A method for gener-
ating such beams is discussed.

Keywords: divergence of laser beams, laser modes with angular 
momentum, radially and azimuthally polarised modes.

1. Introduction

One of the fundamental differences between laser radiation 
and natural light is the low divergence of laser beams. Such 
parameters as the quality factor M2 and beam parameter 
product (BPP) are used to estimate the divergence of a real 
laser beam in comparison with a Gaussian one [1]. Laser 
beam divergence is often a key parameter that determines its 
applicability in many applications. Divergence has a particu­
lar importance for the technological process carried out at a 
great distance from the radiation source [2], for remote sens­
ing, for information transmission [3, 4], etc. The power den­
sity at an irradiated object depends linearly on the initial laser 
radiation power and quadratically on its angular divergence. 
Achieving the ‘diffractive divergence’ of a laser beam is the 
most important task in the development of various lasers 
[5 – 7].

The theoretical analysis of the angular divergence of a 
laser beam begins with the calculation of the radiation field 

distribution during beam propagation, and then the 
Umov – Poynting vector is calculated [8, 9]. A plane wave has 
no divergence, and its Umov – Poynting vector has one com­
ponent along the z axis of wave propagation. In contrast, a 
diverging beam has a curved wavefront. A nonzero radial 
component of the Umov – Poynting vector appears in cylin­
drical coordinates. If the distributions of the longitudinal and 
radial components of this vector are known, the calculation 
of the beam divergence becomes a purely technical problem.

In a theoretical analysis of the propagation of a laser 
beam in space, two main approaches are used. The most 
famous theoretical method for determining the field distribu­
tion is the solution of Maxwell’s equations. Usually the wave 
equation is solved in various approximations [10 – 12]. Suc­
cessful attempts have also been made to overcome the limita­
tions of scalar solutions that do not take into account the 
longitudinal components of the electric and magnetic fields 
[13, 14]. The second approach consists in solving diffraction 
problems using the Huygens – Fresnel principle [15], the 
Kirchhoff – Fresnel integral [16], or the Hertz vector [17]. 
Both approaches describe the propagation of typical laser 
beams with allowance for their divergence. However, the gen­
eralised form of such solutions does not make it possible to 
reveal the physical factors affecting the beam divergence.

For example, the physical reasons for the divergence of a 
Gaussian beam and a confined Bessel beam differ signifi­
cantly. A Gaussian beam is an eigensolution of the scalar 
wave equation in free space. Its divergence is minimal for a 
finite beam size, and the field distribution during beam prop­
agation remains Gaussian. The divergence of a Gaussian 
beam far from the waist is equal to the convergence of the 
beam produced by the focusing lens, which is typical for the 
geometric optics approximation. Diffraction phenomena play 
a special role in the waist region, where the beam radius is 
minimal. Here, a standing wave is formed in the radial direc­
tion, which determines the divergence of the beam behind the 
waist [18].

One of the scalar solutions to Maxwell’s equations is a 
Bessel beam that has an infinite cross section; such a beam 
propagates without divergence. An aperture-limited Bessel 
beam is not such a solution. The field distribution during the 
propagation of this beam is not preserved, and diffraction 
restores the field beyond the aperture edges. Durnin et al. [19] 
discussed the features of the divergence of Bessel beams with 
a finite aperture. The intensity at the centre of the beam does 
not change until the process of diffractive ‘decay’ reaches the 
centre. The term ‘diffraction free beams’ is incorrect for such 
beams.

The classical Laguerre – Gaussian modes TEMpq (p and q 
are the radial and azimuthal indices) can be observed during 
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lasing in cavities with circular mirrors. The field distributions 
of these modes are solutions to the scalar wave equation 
under the assumption of uniform linear polarisation in the 
beam cross section [11, 20]. Along with the classical modes, 
Kogelnik and Li [11] observed some other modes, which are 
formed as a result of the coherent superposition of classical 
modes. Later, these modes, for example, with azimuthal and 
radial polarisations, found a fairly wide application in tech­
nology and various studies [21]. The divergence of beams with 
such a field distribution was not specially investigated, since 
there was no reason to assume that there are significant differ­
ences from the case of ordinary modes.

In recent years, laser beams with spin [22] or orbital [23] 
angular momentum have attracted great interest due to the 
possibility of their use for trapping and moving micro- and 
nanoparticles or for transmitting information. In particular, 
Ustinov et al. [24] investigated the generation of laser beams 
with angular momenta of both types, with the total angular 
momentum being equal to zero. The divergence of such beams 
did not attract attention. This work is devoted to the study of 
the divergence of laser beams with angular momentum. The 
calculations were performed for modes with circular symme­
try of all parameters, including polarisation.

2. Physical principles and calculation methods 

The properties of laser beams are equally determined by both 
electric and magnetic radiation fields. Six field components 
are described by Maxwell’s system of equations. We will use 
all these components for the analysis. The fields of the electro­
magnetic wave and the practically measured parameters of 
the laser beam are related using three components of the 
Umov – Poynting vector S = E ́  H.

Time-averaged z-component (along the beam axis) of the 
Umov – Poynting vector

Sz = Sz1 + Sz2 µ (ErHj – Ej Hr)ez	 (1)

describes the transfer of energy in the direction of propaga­
tion of an electromagnetic wave. The radially directed com­
ponent

Sr = Sr1 + Sr2 µ (EjHz – EzHj)er	 (2)

is associated with the beam divergence. The azimuthally dir­
ected component

Sj = Sj1 + Sj2 µ (Er Hz – EzHr)ej	 (3)

is responsible for the formation of the angular momentum of 
the beam. For further calculations in a cylindrical coordinate 
system, the field components and the Umov – Poynting vector 
are conveniently represented in the form of a diagram shown 
in Fig. 1. The field components are at the vertices of the hexa­
gon. A feature of this representation is that when calculating 
the components of the Umov – Poynting vector, a nontrivial 
result can be obtained in the case of multiplying any field 
component by only two adjacent components.

Next, we turn to work [18], where it was shown that a nec­
essary condition for the divergence of the beam far from the 
waist region is the presence of a standing wave in it (Fig. 2). 
Consider an axially symmetric laser beam. After the beam 
passes through the lens, the Umov – Poynting vectors are 

directed at an angle to each other. They can be represented in 
the form of two components: longitudinal components equ­
ally directed along the beam axis and radial components dir­
ected perpendicular to the axis. The radially directed pulse 
generated by the lens does not disappear. The counterpropa­
gating waves associated with these radial components of the 
Umov – Poynting vector interfere in the focal region, produc­
ing a standing wave during their interaction. The maximum 
value of the field amplitude of such a wave is observed in the 
waist region. Travelling waves that have formed a standing 
wave continue to move. After the beam passes through the 
waist region, the radial components of the Umov – Poynting 
vector are directed from the beam axis, which leads to the 
beam divergence. This process is consistent with Maxwell’s 
equations and, in particular, satisfies the reciprocity principle.

3. Superposition of azimuthally and radially 
polarised modes with different phase shifts

Complete vector analysis using the lowest-order modes with 
azimuthal and radial polarisations is representative and infor­
mative. If these modes are combined coherently, then differ­
ent mode structures are obtained depending on the phase shift 
of the initial modes. Figure 3 shows two cases of superposi­
tion of modes with different phase shifts: Dc = 0 и and p /2. 
In the first case (Fig. 3a), the result of superposition is a lin­
early polarised mode with the same angle between the field 
vector and the radius vector at each point of the beam cross 
section. The superposition of modes in Fig. 3b is a circularly 
polarised mode with angular momentum.

The resulting modes are convenient for analysis, since 
there are analytical solutions for all field components of the 
initial modes that satisfy Maxwell’s equation in the paraxial 
approximation ÑF = 0 (F = E, H  ). For the vector description 
of each of the two initial modes, only three field components 
are required (Hj, Er, Ez and Ej, Hr, Hz), with the other three 
components being equal to zero. The solution of the vector 
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Figure 1.  ( Colour online) Graphical representation of the components 
of the electric and magnetic fields and the components of the Umov –
Poynting vector.
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Figure 2.  ( Colour online  ) Circular Laguerre – Gaussian mode focused 
by a lens. The components of the Umov –Poynting vector Sr and Sz are 
shown. A standing wave is formed in the waist region.
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wave equation for a mode with an azimuthally directed field 
vector (electric or magnetic) is a one-component solution with 
circular symmetry [25, 26]:

Ej = Hj = w
2 1
pc mR exp(– R2 ) exp( iq )

	 ´ exp [i(wt – kz)],	 (4)

where

q = 2 arctan Z – ZR2;    R = w
r ;   

w
w
0
2

2
 = (1 + Z2 );

Z = z
z
0
;   z0 = 

w0
2p

l
;	

(5)

and w0 is the beam waist radius. The solution for the azi­
muthal field in the waist (z = 0, w = w0) is written in the form

Ej = Hj = W exp(i wt),	 (6)

where

W (R) = zR exp (– R2 );   z = w
2 1

0p
.

The radial and z-components for each of the two modes are 
calculated by the formulae

H = i
k
(Ñ ́  E ),   Hr = – W exp(i wt),   Hz = iY exp(i wt),	

(7)

E = –  i
k
(Ñ ́  H ),   Er = W exp(i wt),   Ez = – iY exp(i wt),

where

Y (R) = 
¶
¶

R R
1J (RW ) = 2zJ (1 – R2 )exp(– R2 );

J  = 
k w
1 1

0
.	

(8)

To obtain expressions (7), we used the following intermediate 
calculations:

Ñ ́  Fj = –  ¶
¶

¶
¶( )

z
F

r r
rF

e e1
r z+

j j ,   Fj = Ej(r,z), Hj(r,z),

¶
¶
z
F

z 0

j

=
 » – ikW exp(i wt),    

¶
¶ ( )r r
rF1

z 0
j

=

	 = 
¶
¶ ( )w R R
R1 1

0
W; Eexp(i wt).	

(9)

Real and imaginary terms in (7) describe oscillations with a 
phase shift p/2 [18].

The complex form of expression (7) is inconvenient for 
calculating the components of the Umov – Poynting vector, 
since we are considering the multiplication of the field compo­
nents taking into account their phase shift. The phase shift p/2 
has an important physical meaning. If the field components 
with a phase shift p/2 are multiplied, then the time-avera­
ged Umov – Poynting vector describing the energy transfer is 
equal to zero [27]. However, when calculating the Sr compo­
nent, such a phase shift is indicative of the presence of a 
standing wave, which ‘decays’ into travelling waves directed 
from the beam axis after it passes through the waist region, 
thereby forming a diverging beam. In order not to lose the 
primary information about the standing wave, we use the trig­
onometric form of the field components, calculating them 
from (7) – (9) with the help of formulae Re [exp(i wt)] = 
cos(wt) and Re [iexp(i wt)] = – sin(wt).

Complete information about the initial modes, including 
their general form, all field components and components of 
the Umov – Poynting vector, is presented in Fig. 4. Each of 
the two modes has only three nonzero field components. The 
components of the Umov – Poynting vector for both beams 
are the same and have the following physical meaning:
– The time-averaged z-component is nonzero (Szr  ¹ 0). Energy 
is transferred in the direction of beam propagation.
– Nonzero oscillations of the radial component Sr in the 
absence of energy transfer in the radial direction (Srr  = 0) indi­
cate the presence of a standing wave. After the beam passes 
through the waist region, the standing wave decays, forming 
a diverging beam.

+ =

+ =

Dc = 0

Dc = p/2

a

b

Figure 3.  ( Colour online ) Superpositions of radially and azimuthally 
polarised modes with phase shifts Dc = ( a ) 0 and ( b ) p/2. For Dc = 0, 
the polarisation is linear at all points of the cross section of the resulting 
mode, and for Dc = p/2, it is circular. This illustrates the ‘tail’ from the 
rotation of the field vector.
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Figure 4.  ( Colour online ) Graphical representation of the initial beams 
with azimuthal and radial polarisations: modes 1 and 2 with the corre­
sponding field components and the Umov – Poynting vector. The for­
mulae for the components of this vector are given below. Here, as in 
Figs 5 – 7, the letter s is used for sin(wt) and the letter c for cos(wt).
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– The beams have no angular momentum, because Sj = 0. 
The necessary field components are simply absent.

The superposition of these modes with a zero phase shift 
is shown in Fig. 5. The result of this superposition has the fol­
lowing features:
– Energy is transferred along the beam axis (Szr  ¹ 0).
– A standing wave is formed in the waist for the r-component 
of the Umov – Poynting vector (Sr ¹ 0, Srr  = 0).
– There are field components necessary for the formation of 
the angular momentum, which is equal to zero, since, accord­
ing to (3), Sj = 0.

The considered version of superposition does not give 
qualitative changes in comparison with the original modes. It 
is easy to verify that the superposition of two initial modes 
with a phase shift p does not lead to any qualitatively new 
results. The superposition of two modes (1 and 2) with a 
phase shift p/2 is the most interesting case (Fig. 6). With such 
a phase shift, the field components of mode 2 undergo the fol­
lowing obvious changes: sin(wt + p/2) = cos(wt) and cos(wt + 
p/2) = – sin(wt). In this case, the resulting mode has several 
special properties:
– The standing wave is absent (Sr = 0), which presumably 
indicates the absence of beam divergence after the waist.
– A nonzero azimuthally directed component of the Umov –
Poynting vector indicates the appearance of angular momen­
tum, which is directly proportional to the Sj component.
– Nonzero components Sj и and Sz do not oscillate in time; 
time averaging is not required.

4. Discussion

A characteristic feature of the divergence of the Laguerre –
Gaussian mode without angular momentum is the presence of 
a standing wave in the waist region. In the case of a superposi­
tion of modes 1 and 2 (Fig. 4) with a quarter-wave phase shift, 
the energy flux in the radial direction is completely absent in 
the presence of angular momentum (Fig. 7). The time-aver­
aged radial component of the Umov – Poynting vector is 
always zero at the waist. However, in this case, the oscillating 
part of the radial component of this vector is also equal to 
zero, which indicates the absence of a standing wave, and 
hence the absence of beam divergence after its passage thro­
ugh the waist region. This beam is a nonoscillating spiral flux 
of light energy through the waist, since the nonzero compo­
nents Sj и and Sz do not oscillate in time, and the Sr compo­
nent is completely absent. It should be noted that the calcula­
tions were performed for a mode with unique parameters. 
The methods for generating such a beam are not associated 
with any ‘external influences’ on its structure (finite aperture 
or any other obstacle). The fields of the investigated beam 
satisfy Maxwell’s equations, have circular symmetry, and are 
described by relatively simple analytical solutions. The total 
angular momentum of the beam is zero.

As far as we know, the Laguerre – Gaussian mode with 
this field structure and angular momentum, shown in Fig. 
6, has not yet been experimentally realised. However, mod­
ern technologies make it possible to plan the generation of 
such modes. The simplest scheme consists of two stages. 
The first is the generation of an azimuthally polarised 
mode. There are different ways to obtain it [21]. At the sec­
ond stage, a p/2 phase shifter is used based on a spiral relief 
pattern with a period shorter than the radiation wave­
length [28, 29]. In this case, the period of the structure is 
inhomogeneous along the radius. An alternative solution 
(Fig. 8) is to rotate the field vector of the azimuthally 
polarised beam by 45° using conventional half-wave phase 
shifters [30]. Then, using a p/2 phase shifter with a relief 
pattern in the form of concentric circles with a constant 
step along the radius (Fig. 8d), a mode with angular 
momentum is formed.
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Dc = 0

Figure 5.  ( Colour online ) Superposition of modes 1 and 2 ( Fig. 4 ) with 
a zero phase shift. The components of the fields and the Umov – Poynting 
vector are shown on the right.
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Figure 6.  ( Colour online ) Superposition of modes 1 and 2 ( Fig. 4 ) with 
a phase shift p/2 and the components of the Umov – Poynting vector of 
the resulting mode.
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Figure 7.  ( Colour online ) Results of calculating the radial dependences 
of the components of the Umov – Poynting vector for two cases of su­
perposition of modes: at a zero phase shift, as in Fig. 5 ( top ), and at a 
phase shift p/2, as in Fig. 6 ( bottom ).
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It is well known that radially (R-TEMp1*) and azimuthally 
(A-TEMp1*) polarised modes can be represented as a super­
position of the classical linearly polarised Laguerre – Gaussian 
modes TEMp1 mentioned in the Introduction. (An asterisk in 
the subscript means that the desired mode is obtained with 
the corresponding mutual orientation of the initial modes and 
a zero phase shift.) In this work, the calculations are presented 
for the lowest order mode ( p = 0) with circular polarisation 
(C-TEM01*). The scheme of its formation can be written as 
follows: R-TEM01* + A-TEM01* ® C-TEM01* (Fig. 3b). It 
can be shown that the conclusions drawn for the C-TEM01* 
mode are also valid, in a more general case, for the higher-
order C-TEMp1* modes.

An exhaustive description of the fields on a given surface, 
including in the beam cross section (in our case, in the waist), 
determines its further propagation. Integral methods are usu­
ally used for such a description, for example, the Kirchhoff –
Fresnel integral [16]. However, these methods do not take 
into account the longitudinal field component in the original 
cross section. In this case, this is unacceptable. Longitudinal 
field components play an important role in the formation of 
angular momentum and divergence.

The presence of angular momentum is not a sufficient 
condition for the absence of divergence. For example, a beam 
with a spiral wavefront, the so-called spiral mode with uni­
form linear polarisation [23] and orbital angular momentum, 
also diverges according to similar calculations.

5. Conclusions

The study of the divergence of a laser beam with angular 
momentum has required a rethinking of the well-known con­
cept, which considers such beams as a superposition of two 
modes without angular momentum. The new approach used 
a full set of analytical formulae for six field components that 
satisfied Maxwell’s equations. The calculations have been 
performed using the example of the superposition of azi­
muthal and radially polarised modes. Superpositions of these 
modes at different phase shifts are fundamentally different, 
which follows from an analysis of the calculated components 
of the Umov – Poynting vector.

A convenient graphical method for representing the field 
components and the Umov – Poynting vector has been propo­
sed. The divergence of laser beams with angular momentum 
has been analysed based on all three components of the 
Umov – Poynting vector in the waist. It has been shown that 
the considered beam with angular momentum can propagate 
without divergence, since the radial component of the Umov –
Poynting vector is equal to zero. For beams without angular 
momentum, this component always exists and oscillates at 

doubled frequency. Another feature of this beam is that the 
nonzero components of the Umov – Poynting vector – azi­
muthal and longitudinal – do not oscillate in time.
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Figure 8.  ( Colour online ) Schematic of optical elements for generating 
a mode with angular momentum. An azimuthally polarized laser beam 
( a ) passing through a pair of phase shifters l/2 ( b ) acquires an interme­
diate polarisation state ( c ). The p/2 phase shifter based on an annular 
diffraction grating ( d   ) generates a laser beam with circular polarisation 
and angular momentum ( e ).


