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Abstract.  All-glass microstructured optical fibres (MOFs) with a 
core 20 mm in diameter and two rings of circular fluorine-doped silica 
glass elements with a reduced refractive index, different diameters, 
and different distances between them are theoretically studied. The 
properties of these MOFs are numerically analysed using the finite 
element method. The leakage losses for the fundamental and higher-
order modes in the spectral range 0.75 – 1.65 mm are calculated for 
straight and bent MOFs. It is shown that the considered MOF 
design allows single-mode operation in the range 0.98 – 1.26 mm at 
a bending radius of down to 0.08 m, the leakage losses for the bent 
MOF at a wavelength of 1.05 mm being 0.046 dB m–1.

Keywords: microstructured optical fibres, single-mode optical 
fibres, large mode area fibres, finite element method.

1. Introduction

Single-mode optical fibres with a large mode area belong to the 
main elements of high-power fibre lasers and amplifiers, which 
are used in many fields, including processing of industrial 
materials, fundamental sciences, and medicine [1 – 5]. Similar 
properties are typical of various types of microstructured opti-
cal fibres (MOFs), such as photonic bandgap fibres [6 – 13], 
Bragg fibres [14 – 17], and leakage channel fibres (LCFs) 
[18 – 22]. The use of leakage channels is one of rather simple 
methods of forming single-mode MOFs with a large-diameter 
core and, hence, a large mode area by selecting hole diameters 
d and distances between them L that ensure low leakage losses 
for the fundamental mode (below 0.1 dB m–1) and simultane-
ously high leakage losses for higher-order modes (exceeding 
1.0  dB m–1) [18]. However, the MOF designs with air holes 
have some drawbacks related both to complicated fabrication 
of MOF structures with required parameters, especially if it is 
necessary to have holes with different diameters, and to the 
problems of their fusion with conventional fibres due to col-
lapse of holes, which leads to additional losses.

These drawbacks can be eliminated using all-glass MOFs 
with a cladding formed by elements of fluorine-doped silica 
glass with a reduced refractive index [23 – 27]. But the range of 
characteristics of these MOFs, both theoretically studied and 

fabricated to date, is limited due to the hexagonal configura-
tion of their elements, which implied the use of the method for 
assembling preforms of MOFs of rods with different compo-
sitions. In particular, bending losses for MOFs in [23] with a 
bending radius of 0.2 m exceeded 30 dB m–1. The authors of 
[24] succeeded to achieve bending losses of about 0.5 dB m–1 
for LCF7 at a bending radius of 0.15 m but only in the case of 
bending in one direction, while these losses in the case of 
bending in the other direction were an order of magnitude 
higher (about 5 dB m–1). Since, in practice, the orientation of 
the MOF internal structure with respect to the bending direc-
tion cannot be strictly controlled, these MOFs are not of 
much practical interest.

A considerably wider variety of the structural parameters 
of MOFs and, therefore, of their physical characteristics, is 
provided by the method consisting in the drilling of holes in a 
pure silica rod, subsequent insertion of fluorine-doped silica 
rods in these holes, and extrusion of this preform into a MOF 
with required parameters.

2. Geometric structure of MOFs

In the present work, we theoretically study an original design 
of an all-glass MOF that was previously proposed and par-
tially theoretically investigated by us in [28]. This MOF has a 
large pure silica glass core surrounded by two rings of circular 
elements with different diameters and distances between 
them, which are made of fluorine-doped silica glass with a 
reduced refractive index (Fig. 1).

The MOF core represented by the dashed circle has diam-
eter Dcore. The first ring contains six identical elements with 
diameter d1 and distance L1 between them. Twelve elements 
of the second layer have different diameters, namely, d2 > d1 
and d3 £ d2; the elements with diameters d2 are positioned 
opposite the spaces between the elements of the first ring and 
at distance L2 from these elements, while elements with diam-
eters d3 are located opposite the elements of the first ring at 
distance L3 from them. This variant is conventionally called 
MOF-18, where 18 is the total number of elements.

This algorithm of constructing the MOF-18 structure 
extends the possibilities of varying its parameters in order to 
optimize the MOF characteristics, in particular, leakage 
losses for the fundamental and higher-order modes. The opti-
mal relation between the MOF-18 parameters for a particular 
problem can be determined using the multi-objective optimi-
sation algorithm, but this may take several days of continu-
ous calculations even with the use of a supercomputer [29]. 
Because of this, we chose a relatively simple problem, namely, 
we tried to achieve single-mode operation in the spectral 
region near l = 1.05 mm for a MOF-18 with the core diameter 
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Dcore = 20 mm at a fixed relation between the diameters of 
elements, that is, at d2/d1 = 1.15 and d3 = d1. The other 
parameters of the MOF-18 structure were determined by 
trial and error with the purpose to obtain admissible leakage 
losses for the fundamental and higher-order modes at some 
chosen control wavelengths. In addition, since, in practice, a 
part of the optical fibre length can be straight and the other 
part can be bent, the appropriate structural parameters were 
sought taking into account losses for both straight and bent 
MOF-18.

In [28], we performed calculations for a MOF-18 with 
fluorinated silica glass elements whose refractive index was 
lower than that of pure silica glass by Dn ~ 1.5 ´ 10–3 and 
obtained single-mode operation in the spectral region near 
1.05 mm only at a bending radius down to 0.25 m. In the pres-
ent work, we chose Dn = 4 ´ 10–3 and tried to find the MOF-
18 structure parameters that ensured single-mode operation 
near 1.05 mm at a bending radius down to 0.08 m. The choice 
of this aim is explained by the existence of widespread optical 
fibre coils 0.16 m in diameter, which make it possible to design 
rather compact devices (for example, fibre lasers and ampli-
fiers). We also considered in detail the MOF-18 characteris-
tics for better understanding of its properties and possibilities 
of further improvement of its parameters for solving particu-
lar practical problems.

3. Calculation results

The MOF-18 characteristics were numerically calculated 
using the finite element method (FEM) with a cylindrical per-
fectly matched layer (PML), whose parameters provide a nec-
essary accuracy of determination of leakage losses in the case 
of a limited size of the model structure. From the physical 
point of view, the PML can be considered as a layer with 
almost ideal absorption. The PML in Fig. 1 is shown by a 
dark-grey ring. 

As a material for the MOF-18, we used silica glass with 
refractive index nsil, which was determined with the use of the 
Sellmeier equation [30].

3.1. Straight MOF-18

Figure 2 shows the spatial intensity distributions for two 
polarisations (denoted by red arrows) of the fundamental 
mode (1 and 2) and four higher-order modes (denoted by fig-
ures from 3 to 6 in descending order of the real part of their 
effective refractive index neff) at a wavelength of 0.9 mm for a 
straight MOF-18 with the following chosen parameters: d1/L1 
= 0.795, L2/L1 = 1.226, and L3/L1 = 1.103. Note that these 
parameters differ from the MOF-18 parameters given in 
Fig. 1, which are used only for illustration.

Modes 1 and 2 belong to the HE11 type and differ only in 
polarisation; mode 3 is the TM01 mode, 4 and 5 are the HE21 
modes, and 6 is the TE01 mode [31]. Leakage losses a (in 
dB m–1) were determined from the calculated imaginary part 
of refractive index keff by the formula [32]
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Figure 3 presents the spectral dependences of leakage 
losses for the fundamental and higher-order modes of the 
MOF-18 in the range of 0.75 – 1.65 mm and designates loss 
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Figure 1.  Transverse structure of MOF-18: d1/L1 = 0.82, d2/d1 = 1.25, 
d3/d1 = 0.90, L2/L1 = 1.25, and L3/L1 = 1.10.
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Figure 2.  (Colour online) Spatial intensity distributions of (1, 2) funda-
mental and (3 – 6) higher-order modes of a straight MOF-18 at d1/L1 = 
0.795, d2/d1 = 1.15, d3/d1 = 1.0, L2/L1 = 1.226, and L3/L1 = 1.103 for a 
wavelength of 0.900 mm.
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levels of 0.1 and 1.0 dB m–1, which allow one to determine the 
edges of the single-mode range [18]. One can see that the spec-
tral range of the single-mode regime for the straight MOF-18 
is 0.98 – 1.62 mm.

It should be noted that, at wavelengths longer than 
~0.9 mm, a noticeable part of the intensity of modes 3 – 6 is 
located between the rings of elements (for convenience, we 
will call this region the annular space). In this case, one 
observes additional modes, which have the same spatial inten-
sity distributions in the MOF-18 core as corresponding modes 
3 – 6 but different ratios of intensities in the core and the 
annular space, as well as different levels of leakage losses. In 
addition, these modes slightly differ in the real part of refrac-
tive index neff, because of which we will denote them as Ma, 
Mb, Мc, and so on (where M is the mode number from 3 to 
6) in descending order of their neff. Since the most important 
part of our problem (finding of the spectral range of the sin-
gle-mode regime of MOF-18) is to determine the minimal 
losses for higher-order modes, then, for the spectral depen-
dences shown in Fig. 3, we naturally selected from several 
modes Mi only one mode that had lowest leakage losses for a 
particular wavelength (for each number M). Note that, in the 
studied spectral range, the modes with numbers Mc (and fur-
ther) have considerably higher losses than modes Ma and 
Mb, because of which they are not considered.

To illustrate the aforesaid, Fig. 4 shows the spatial inten-
sity distributions of modes 3a and 3b for wavelengths of 
0.900, 1.050, 1.089, and 1.567 mm, and Fig. 5 presents the 
spectral dependences of leakage losses for these modes. One 
can see that, almost in the entire studied wavelength range, 
modes 3a and 3b are localised in both the core and the annu-
lar space (cladding), that is, strictly speaking, these modes are 
not purely core modes and must be generally considered as 
higher-order modes of MOF-18.

As follows from Fig. 4, the main difference between modes 
3a and 3b consists in the orientation of the electric field vector 
in the annular space, that is, this vector for mode 3a is directed 
radially either from or to the MOF-18 core identically with 
the electric field vector of this mode in the MOF-18 core, 
while the electric field vectors in the core and annular space 
for mode 3b are directed in opposite directions. The resultant 
spectral dependence of leakage losses for mode 3, which is 
shown in Fig. 3, corresponds to the minimum values among 
the losses for modes 3a and 3b presented in Fig. 5. This 
explains the noticeable bends in the resultant spectral depen-

dence of leakage losses for mode 3 (see Fig. 3) at wavelengths 
of 1.089 and 1.567 mm, where the losses for modes 3a and 3b 
become equal.

The situation for modes 4, 5, and 6 is in general similar, 
that is, for these modes one also observes two similar in spa-
tial intensity distributions in the MOF-18 core modes 4a and 
4b, 5a and 5b, and 6a and 6b. However, the spatial intensity 
distributions of these modes in the annular space have a spe-
cific azimuthal character different from that for modes 3a and 
3b. In this case, similar to modes 3a and 3b, the main differ-
ence between modes Ma and Mb (M = 4 – 6) consists in differ-
ent orientations of electric field vectors in the annular space. 
Thus, we can conclude that the higher-order modes of MOF-
18 have twofold degeneracy caused by the presence of addi-
tional different intensity maxima in the annular space for 
these modes.
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Figure 3.  Spectral dependences of leakage losses in a straight MOF-18 
for (1, 2) fundamental and (3 – 6) higher-order modes.
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Figure 4.  (Colour online) Spatial intensity distributions of modes (a – d) 
3a and (e – h) 3b in a straight MOF-18 for wavelengths of (a, e) 0.900, 
(b, f) 1.050, (c, g) 1.089, and (d, h) 1.567 mm.
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3.2. Bent MOF-18

The leakage losses for bent MOF-18 were calculated by 
replacing it with a straight fibre having an equivalent refrac-
tive index nequ determined (in the case of bending in the x axis 
direction) using the expression [33]

( , ) ( , )n x y n x y
R
x1equ = +` j,	 (2)

where n(x, y) is the initial refractive index profile of straight 
MOF-18 and R is the bending radius in meters. A similar 
equation but with replacement of x for y in (2) was used to 
calculate the leakage losses in MOF-18 bent in the y axis 
direction.

Figure 6a shows the spatial intensity distributions for two 
polarisations of the fundamental mode (1 and 2) and four 
higher-order modes (from 3 to 6 in the descending order of 
their neff) at a wavelength of 0.9 mm for a MOF-18 bent in the 
x axis direction with the bending radius Rx = 0.08 m. Modes 
3 and 4 belong to the LP11o type and differ only in polarisa-
tion, while modes 5 and 6 are LP11e modes and also differ only 
in polarisation [34]. 

For comparison, Fig. 6b presents the corresponding dis-
tributions for a MOF-18 bent in the y axis direction with 
bending radius Ry = 0.08 m. Since, as is seen from compari-
son of Figs 6a and 6b, the images of higher-order modes 
only slightly differ with bending in the y direction, they are 
denoted analogously to the higher-order modes in the case 
of bending in the x direction, although the real parts of their 
refractive indices neff vary differently. The denotation of 
fundamental modes 1 and 2 was chosen in the descending 
order of the absolute value of the imaginary part of their 
effective refractive index keff, that is, in the descending order 
of their leakage losses. This choice provides a bottom esti-
mate of the spectral range of single-mode regime when using 
fundamental mode 1, which ensures a certain reliability of 
determined values.

Figure 7 shows the spectral dependences of leakage losses 
for the fundamental and higher-order modes of MOF-18 bent 
in the directions of the x (Fig. 7a) and y (Fig. 7b) axes. One 
can see that the spectral range of a single-mode regime for 
bent MOF-18 is 0.93 – 1.11 mm in the case of bending in the x 
direction and 0.94 – 1.12 mm in the case of bending in the y 
direction, that is, the spectral ranges almost coincide. One can 
also note that the leakage losses for fundamental mode 1 at a 
wavelength of 1.05 mm are almost identical for bends in differ-
ent directions, namely, they are 0.049 dB m–1 for Rx = 0.08 m 
and 0.048 dB m–1 for Ry = 0.08 m.

A considerable part of the intensity distribution of modes 
3 – 6 in the bent MOF-18 (as well as in the straight one) is 
located in the annular space. In this case, there exist addi-
tional modes, which have the same spatial intensity distribu-
tions in the MOF-18 core as the corresponding modes 3 – 6 
but differ in the intensity ratios in the core and in the annular 
space, as well as in the leakage loss levels. In addition, they 
have somewhat different real parts of effective index neff, 
because of which we will again denote these modes as Ma, 
Mb, Mc, and so on (M is the mode number from 3 to 6) in the 
descending order of their neff. Similar to the above case with 
the straight MOF-18, to obtain the spectral dependences 
shown in Fig. 7, we selected from several modes Mi only one 
mode that had the lowest leakage loss for a particular wave-
length (for each M).
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Figure 5.  Spectral dependences of leakage losses in a straight MOF-18 
for modes 3a and 3b.
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Figure 6.  (Colour online) Spatial intensity distributions of (1, 2) fundamental and (3 – 6) higher-order modes in bent MOF-18 for a wavelength of 
0.900 mm at (a) Rx = 0.08 m and (b) Ry = 0.08 m.
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The aforesaid is illustrated in Fig. 8, which presents the 
spatial intensity distributions of mode pairs Ma and Mb (M = 
3 – 6) of bent MOF-18 for a wavelength of 1.175 mm at Rx = 
Ry = 0.08 m. Figure 9 shows the spectral dependences of leak-
age losses for modes 5a and 5b at Rx = 0.08 m. The resultant 
spectral dependence of leakage losses for mode 5 (see Fig. 7a) 
represents the minimum among the two curves for modes 5a 
and 5b given in Fig. 9. Thus, the higher-order modes in MOF-
18 bent in different directions are also at least doubly degen-
erate because they have additional different intensity maxima 
in the annular space.

4. Discussion of results

Returning to Fig. 7, note pronounced maxima in the spec-
tral dependences of leakage losses for fundamental modes 1 
and 2 near a wavelength of 0.8 mm. Although they lie rather 
far from the spectral region of interest (1.05 mm), it is neces-
sary to clearly understand the mechanism of their appear-
ance to take them into account and correct the MOF-18 
parameters when solving other problems. Despite the fact 
that the shapes of these maxima resemble some resonance 
dependences, in reality, this behaviour of losses is due to the 
presence of modes 1a and 1b, as well as 2a and 2b, near this 
wavelength, which have similar spatial intensity distribu-

1.0 1.2 1.40.8 l/mm

a/dB m–1

0.1

1

10

100

a

1
2
3
4
5
6

1.0 1.2 1.40.8 l/mm

a/dB m–1

0.1

1

10

100

b

1
2
3
4
5
6

Figure 7.  (Colour online) Spectral dependences of leakage losses in bent MOF-18 for (1 – 6) fundamental and higher-order modes at (a) Rx = 0.08 
m and (b) Ry = 0.08 m.
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Figure 8.  (Colour online) Spatial intensity distributions of higher-order 
modes in bent MOF-18 at a wavelength of 1.175 mm for modes (a) 3a 
and (b) 3b at Ry = 0.08 m, (c) 4а and (d) 4b at Rx = 0.08 m, (e) 5а and (f) 
5b at Ry = 0.08 m, and (g) 6a and (h) 6b at Rx = 0.08 m.
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Figure 9.  Spectral dependences of leakage losses in a bent MOF-18 at 
Rx = 0.08 m for modes 5a and 5b.
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tions in the MOF-18 core but simultaneously have addi-
tional intensity maxima in the annular space, that is, in the 
cladding.

This is illustrated in Fig. 10, which shows the spatial inten-
sity distributions of modes 1a and 1b of a MOF-18 bent with 
Rx = 0.08 m at wavelengths of 0.8050, 0.8075, and 0.8150 mm. 
One can see that the main difference between the additional 
maxima for modes 1a and 1b consists in the orientation of the 
electric field vector, that is, this vector for mode 1a in the 
annular space is directed similarly to this vector in the MOF-
18 core, while the corresponding vectors for mode 1b are 
directed oppositely.

Figure 11 shows the spectral dependences of leakage 
losses for modes 1a and 1b in the wavelength range 0.771 – 
0.849 mm. The character of these dependences well agrees 
with variations in the intensities of the main and additional 
maxima of modes 1a and 1b in the annular space as shown 
in Fig. 10. With decreasing wavelength, the integral frac-
tion of the intensity of mode 1a increases in the annular 
space located rather close to the outer boundary of the 
cladding, which leads to an increase in the mode leakage 
losses. On the contrary, an increase in leakage losses for 
mode 1b occurs with increasing wavelength and is also 
related to increasing integral fraction of the mode intensity 
in the annular space. The resultant spectral dependence of 

leakage losses for mode 1 in this range (see Fig. 7a) corre-
sponds to the minimum among the curves for modes 1a 
and 1b shown in Fig. 11. A similar situation is observed for 
mode 2, as well as for modes 1 and 2 in the case of bending 
in the y direction (Fig. 7b), with slight differences in the 
positions and heights of peaks.

Figure 11 also presents the spectral dependence of the dif-
ference between the effective refractive indices of modes 1a 
and 1b n1a – n1b in the wavelength range 0.771 – 0.849 mm, 
which shows that this difference is approximately 4 ´ 10–6 in 
the range centre and exceeds 2 ´ 10–5 at the range edges. It is 
important to note that the effective refractive index is always 
higher for mode 1a than for mode 1b. The observed difference 
in the effective refractive indices n1a – n1b can be qualitatively 
explained using the Kramers – Kronig relations, which reflect 
the causality principle and, in the particular case, indicate 
that the existence of absorption (loss) at some wavelength 
leads to a non-unity refractive index and vice versa. The 
Kramers – Kronig relations for effective refractive indices of 
modes in optical fibres were derived in [35], which showed 
that, if the dispersion and absorption of a material in a spec-
tral range of interest can be neglected, then the propagation 
(leakage) loss appears in these relations as an effective loss 
term. Thus, we can suggest that changes in the leakage loss 
lead to corresponding variations in refractive indices. Since 
the spectral dependences of leakage losses for modes 1a and 
1b (Fig. 11) have opposite characters, the real parts of refrac-
tive indices n1a and n1b deviate in opposite directions. As a 
result, the curve for the difference n1a – n1b has the shape 
shown in Fig. 11.

Since all these changes occur in a narrow spectral range, 
they can be in general conventionally described as quasi-
resonance transformation (with decreasing wavelength) of 
the fundamental mode 1a of the core into a cladding mode 
and simultaneous transformation of cladding mode 1b into 
the fundamental mode of the core. A similar situation was 
previously described by us in [36], but there we considered a 
MOF-30 with air holes and quasi-resonance transformation 
of higher-order core modes Ma (M = 3 – 6) into cladding 
modes and simultaneous transformation of cladding modes 
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Figure 10.  (Colour online) Spatial intensity distributions for modes 
(a – c) 1a and (d – f) 1b in a bent MOF-18 at Rx = 0.08 m for wavelength 
of (a, d) 0.8050, (b, e) 0.8075, and (c, f) 0.8150 mm.
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Figure 11.  Spectral dependences of leakage losses in a bent MOF-18 at 
Rx = 0.08 m for modes 1a and 1b in the range 0.771 – 0.849 mm, as well 
as difference between effective refractive indices n1а – n1b for these 
modes.
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Mb into higher-order core modes. In our case, the higher-
order core modes of MOF-18 have at least pairs of close 
modes Ma and Mb (M = 3 – 6) for both straight and bent 
waveguides. Although these pairs have somewhat different 
leakage losses, they are observed together almost in the entire 
studied spectral range. Thus, the higher-order modes in 
MOF-18 are at least doubly degenerate due to the existence of 
additional different intensity maxima in the annular space. 
This distinction from MOF-30 is explained by a considerably 
lower contrast of refractive indices of the basic MOF-18 
material (pure silica glass) and the material of the elements of 
its cladding (fluorine-doped silica glass), which was chosen to 
be Dn = 4 ´ 10–3, than this contrast for MOF-30 with air holes 
in the cladding, which was approximately two-orders of mag-
nitude higher.

Concerning some MOF-18 parameters important from 
the viewpoint of its applications, note again that, in prac-
tice, it is impossible to strictly control the orientation of 
the internal MOF structure with respect to the bend direc-
tion, because of which it is desirable to know parameters 
averaged over different bend directions. Accurate calcula-
tion of these averaged parameters is rather laborious, 
because of which we will try to estimate them approxi-
mately. As was noted above, the spectral ranges of the 
single-mode regime for MOF-18 bent in the directions of 
the x and y axes almost coincide and the leakage losses for 
fundamental mode 1 at a wavelength of 1.05 mm are also 
rather close for bends in different directions. Therefore, we 
can use as an estimate the arithmetic mean of the spectral 
dependences of leakage losses for different bend directions 
(for unpolarised radiation, they also should be averaged by 
polarisations, that is, by modes 1 and 2). The resulting 
spectral dependence of the leakage losses in MOF-18 for 
the fundamental mode at a bending radius of 0.08 m 
obtained from the data of Fig. 7 is given in Fig. 12. For 
higher-order modes, we are most interested in knowing 
their minimum losses, because of which we first determined 
from the data given in Fig. 7 the minimum leakage losses 
among all higher modes 3 – 6 and then found their arith-
metical mean over two bending directions (Fig. 12).

Figure 12 shows that the spectral range of the single-mode 
regime for a bent MOF-18 with a bending radius of 0.08 mm 
is 0.93 – 1.26 mm and the leakage losses for the fundamental 
mode at a wavelength of 1.05 mm are 0.046 dB m–1. As a 

result, taking into account the parameters for a straight 
MOF-18, the single-mode range is 0.98 – 1.26 mm. From 
Fig. 12, it is also possible to estimate that the ratio of leak-
age losses for the higher-order modes to that for the funda-
mental mode exceeds two orders of magnitude in the range 
of 1.00 – 1.65 mm and is higher than 200 in the range of 1.05 – 
1.65 mm.

One more important parameter of MOF-18 is the depen-
dence of its leakage losses on the bending radius. Figure 13 
presents the dependence of leakage losses for the fundamental 
mode of MOF-18 at a wavelength of 1.05 mm on the bending 
radius varying in the range 10 – 4 cm, which is averaged 
according to the method described above. Note that the losses 
relatively smoothly increase as the bending radius decrease 
from 10 to 7 cm, but then sharply increase and reach a maxi-
mum near 6 cm, after which decrease. This character (with 
very slight variations) is observed for modes 1 and 2 for bend-
ing in directions of both the x and y axes, which once again 
demonstrates the important MOF-18 feature consisting in 
relative independence of its parameters from the bending 
direction.

The physical mechanism of this increase in losses at a 
bending radius of about 6 cm is caused by the existence of 
modes 1a and 1b, as well as 2a and 2b, which have similar 
intensity distributions in the MOF-18 core but also have addi-
tional intensity maxima in the annular space, that is, in the 
cladding region. Therefore, we observe the same situation as 
in the case of a bending radius of 8 cm for a wavelength near 
0.8 mm (Fig. 7). Figure 14 shows the spatial intensity distribu-
tions of modes 1a and 1b of a MOF-18 bent in the x axis 
direction at a wavelength of 1.05 mm for bending radii of 5.85, 
5.95, and 6.05 cm. Comparison of Fig. 14 with Fig 10 allows 
us to unambiguously conclude that the physical mechanism is 
the same in both cases, that is, in the case of Fig. 10 (near a 
wavelength of 0.8 mm for a bending radius of 8 cm), a decrease 
in the wavelength is accompanied by quasi-resonance trans-
formation of the fundamental core modes 1a and 2a into clad-
ding modes and simultaneous transformation of cladding 
modes 1b and 2b into the fundamental modes of the core, 
and, in the case of Fig. 14 (near a bending radius of 6 cm at a 
wavelength of 1.05 mm), the same transformations occur with 
decreasing bending radius.
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Figure 12.  Spectral dependences of leakage losses in a MOF-18 for the 
fundamental (FM) and higher-order (HM) modes at a bending radius 
of 0.08 m averaged over bend directions.
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Figure 13.  Dependence of leakage losses in a MOF-18 for a wavelength 
of 1.05 mm on the bending radius averaged over bend directions.
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Although such a rapid growth of bend loss may be unde-
sirable, it can be easily eliminated if necessary. Our analysis 
performed in [36] showed that the positions of these maxima 
depend on the width of the annular space, because of which 
one should simply select appropriate MOF-18 parameters for 
a particular problem.

5. Conclusions

We performed detailed theoretical investigations of the char-
acteristics of original all-glass microstructured optical fibres 
MOF-18. The leakage losses for the fundamental and four 
main higher-order modes in the spectral range 0.75 – 1.65 mm 
are calculated for MOF-18, both straight and bent with a 
bending radius of 0.08 m in two orthogonal directions. It is 
shown that higher-order modes for MOF-18 are at least dou-
bly degenerate due to the presence of different additional 
intensity maxima in the annular space for both straight and 
bent waveguides. It is noted that, at the chosen parameters of 
the structure, MOF-18 have a rather close characteristics at 
bending in different directions, which is important for practi-
cal applications. It is also shown that MOF-18 with these 
parameters can operate in a single-mode regime in the spec-
tral range 0.98 – 1.26 mm at a bending radius of down to 
0.08 m, the leakage losses for bent MOF-18 at a wavelength 
of 1.05 mm being 0.046 dB m–1.
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