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Abstract.  The dynamics of frequency-modulated pulses in fibres 
with sequentially inscribed refractive-index gratings having a dif-
ferent period is considered. It is shown that the proposed structure 
of the fibre can be used to generate picosecond and subpicosecond 
pulses with peak powers on the order of 1 MW.

Keywords: frequency modulated pulse, refractive index gratings, 
time compression.

1. Introduction

Since the advent of the laser, the most important branch of 
laser physics has been the development of ultrashort pulse 
generators, which provide a high peak radiation power. At 
present, such laser systems are in demand in many topical 
applications, including the processing and modification of 
materials, doping technologies, optical communications, 
medicine, nuclear and accelerator technologies, etc. [1 – 7].

One of the most common approaches used to obtain 
ultrashort pulses (USPs) is to generate pulses with a wide 
spectrum and linear frequency modulation (chirp) and then to 
compress them on an external compressor to compensate for 
the chirp. In practice, either a pair of diffraction gratings 
(prisms) or an anomalous-dispersion optical fibre is usually 
used as a compressor [8 – 10]. It was shown in [11 – 14] that the 
compression of frequency-modulated pulses (FMPs) of pico-
second duration is especially effective in optical fibres with an 
exponential profile of the group velocity dispersion (GVD) 
distribution.

The corresponding mechanism of FMP compression was 
considered using the example of inhomogeneous fibres with a 
W-shaped refractive index (RI) distribution profile [15, 16]. 
This mechanism of temporal compression of pulses may be 
most promising when realising a single-mode regime of large-
mode-area radiation propagation, provided that mode stabil-
ity is preserved. Increasing the field area of a fibre mode is one 
of the main ways to increase power and reduce negative non-
linear distortions during radiation propagation. Such fibres 
include, for example, tapered fibres, which ensure the stability 

of a single-mode radiation propagation regime with a signifi-
cant increase in the effective mode area [17 – 22].

In the last decade, another promising technique has been 
developed, which makes it possible to ensure the generation 
of large-mode-area single-mode wave packets (WPs). It con-
sists in the mechanism of ‘self-cleaning’ of wave beams in 
multimode gradient fibres (first of all, in parabolic-index 
fibres) [23 – 31]. In this case, a significant technical obstacle 
arises for realising the regime of strong time compression of 
FMPs in gradient fibres: in contrast to fibres with a transverse 
W-shaped RI profile, the value of the group velocity disper-
sion in these fibres is usually determined only by the disper-
sion of the material. One of the solutions to this problem can 
be the ‘inscription’ of RI gratings with a smoothly increasing 
period along the entire length of the fibre. In this work, we 
propose a method for compressing FMPS in a fibre with 
sequentially placed RI gratings having different periods and, 
as a consequence, with a sharply decreasing GVD value. It 
should be noted that the technology of manufacturing peri-
odic RI gratings has been quite well developed by now 
[32,  33]. For example, the specific features of the inscription 
of RI gratings in gradient multimode fibres are considered in 
detail in Refs [34 – 41].

2. Basic relations

The geometry of the considered waveguide structure with seg-
ments containing varying-period RI gratings is shown in 
Fig. 1. In the corresponding segments of the fibre, the distri-
bution of the refractive index along the length is given by the 
relation [32 – 37]

( ) cos / ( )n z n m z z1 2i 0 p L= - i^ h6 @ ,	 (1)

where n0 is the average refractive index of the fibre in the 
absence of the grating, m is the modulation depth of the RI 
grating, and Li is its period.

It is known that the contribution to the effective GVD 
made by the RI grating is much greater than the contribution 
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Figure 1.  Geometry of the structure in question.
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made by the material dispersion of the fibres. In this case, the 
expression for the second-order GVD takes the form [41 – 44]
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is the second-order dispersion parameter, determined by the 
fibre material, and Vg is the group velocity of a wave packet 
in a fibre without an in-fibre grating. The parameter k deter-
mines the coupling coefficient between the direct and reflected 
waves, takes into account the transverse changes in the RI, 
and in the case of a homogeneous grating can be written as 
k = 2pm/l0, where l0 is the centre (carrier) pulse wavelength. 
The quantity  determines the detuning of the carrier frequency 
w0 from the Bragg matching frequency wB:
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The sign of the parameter di determines the sign of the sec-
ond-order dispersion b2 of the corresponding lattice. Group 
velocity dispersion takes negative values in the spectral region, 
where the carrier wavelength is less than the Bragg wave-
length [42, 43]. Further analysis will be carried out under the 
condition of large detuning from Bragg matching: | d | >>  k, 
that is, we will assume that the carrier frequency of the WP is 
far from the Bragg frequency (band gap). For the band gap, 
we obtain the relation D lgap = /m n20l 0  <<  1 nm.

Note that, under conditions of large detuning from Bragg 
matching, the RI grating weakly affects the effective cubic 
(Kerr) nonlinearity, which in our case is determined exclu-
sively by the material parameters of the fibre. In this case, the 
use of RI gratings as dispersing elements inevitably leads to a 
strong influence of higher-order dispersion effects. The third-
order GVD is determined by the relation [41 – 44]
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Analysis shows that in a ‘standard’ single-mode fibre, the 
value of the parameter b3(z) is several orders of magnitude 
higher than the third-order material dispersion d3 [42, 45]. 
This circumstance negatively affects the quality of the FMP 
compression and can lead to a strong distortion of the pulse 
shape, including its rapid destruction.

An increase in the period L(z) of the inscribed RI gratings 
makes it possible to increase the detuning d and, as a conse-
quence, leads to a gradual decrease in the absolute value of 
the anomalous GVD. Thus, it can be seen from relations (2) 
and (4) that in the case of an increase in the period of a condi-
tional grating, the rate of a decrease in the second- and third-
order dispersion parameters occurs in proportion to d–3 and 
d–4, respectively. Thus, a rapid increase in the parameter d 
along the length of the fibre leads to an even more rapid 
decrease in the influence of dispersion parameters of higher 
orders (in the ratio bn: d–n). As will be shown below, this cir-

cumstance opens up the possibility of generating weakly 
deformed high-peak-power subpicosecond pulses.

Consider the dynamics of FMPs using the example of an 
initially secant-hyperbolic WP, given by the initial conditions

, ( / ) ( )( ) iA z A0 sech exp0 0 0
2t t t a t= = ,	 (5)

where t0 is the initial duration and a0 is the initial rate of fre-
quency modulation (chirp) of the pulse.

The WP dynamics in an inhomogeneous fibre, taking into 
account the influence of second- and third-order dispersion 
effects, is described by the equation [10, 42, 45]:
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Here 
z
/ ( )dt u

0
t x x= - y  is the time in the travelling coordinate 

system; u(z) is the WP group velocity; R(z) is the cubic nonlin-
earity coefficient; and tR is the nonlinear response time of the 
medium. It was shown in [11 – 14] that for FMPs with initial 
conditions (5), within the framework of the approximations 
b3(z) → 0, tR → 0, and R(z) = R0 = const, the strong time 
compression cam be realised in fibres with an exponential 
second-order GVD distribution profile:

exp( ) | | | |( )z z22 20 0 20b b a b= - - .	 (7)

In this case, the pulse duration is determined with a good 
degree of accuracy by the relation [13 – 15]

ts(z) » | |( )z2exp0 0 20t a b- .	 (8)

Thus, the use of fibres with a variable dispersion profile makes 
it possible to produce high-peak-power USPs.

In the case in question, a sharp decrease in GVD can be 
achieved by increasing the period L of each subsequent grat-
ing. As can be seen from relations (2) – (4), this will lead to an 
increase in the detuning d and, as a consequence, to a decrease 
in the corresponding dispersion parameters bn.

From the point of view of the implementation of optimal 
time compression of FMPs, the manufacture of long chirped 
RI gratings (with a length of more than 1 m) with a smooth 
change in the period and, accordingly, with a smooth change 
in dispersion parameters is a challenge. In this regard, as dis-
persing elements with parameters varying along the length, 
we will consider a sequence of in-fibre gratings with a period 
Li varying from segment to segment. It is assumed here that 
only the grating period changes with the fibre length. The 
average (unperturbed) refractive index n0 and the modulation 
depth m in all fibre segments are assumed to be the same.

Figure 2 shows the dependences of the change in the grat-
ing period along the fibre length (inset) and the detuning 
parameter d(z) corresponding to the GVD profile approxi-
mated by an exponential function. In this case, the width of 
the spectral interval between the centre wavelength and the 
centre of the band gap (Bragg wavelength) is estimated as  
Dl(z) » ( ) /zB0 0 0l w w w-   » ( ) /z V wg 00l d  » 2p( ) /z n0

2
0l d . 

The dependence of Dl on the fibre length is shown in Fig. 3. It 
can be seen from the figures that as the wave packet propa-
gates in a fibre with inscribed in-fibre gratings, both the 
detuning parameter d and the corresponding detunings D 
between the wavelengths significantly increase. This situation 
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of rapid ‘moving away’ of the band gap from the centre wave-
length of the WP is a feature of the technique proposed in this 
work.

The main condition for generating high-power FMPs is to 
provide a rapidly decreasing exponential dispersion profile. 
In our case, it is achieved by increasing the period of the 
inscribed RI gratings, which, in turn, leads to an increase in 
the detuning between the carrier and Bragg frequencies. 
Therefore, at the fibre exit, the interval Dl between the WP 
centre wavelength and the band gap centre is more than 
50 nm with a band gap of about 0.1 nm (see Fig. 3). Thus, the 
Bragg grating as a dispersing and stabilising element plays a 

maximum role at the initial stage of pulse propagation. At the 
final stages of propagation (in the vicinity of the point of 
maximum compression of the WP), its influence significantly 
decreases and its linear chirp begins to play the main stabilis-
ing role [15, 16].

Figure 4 shows the variation of the second- and third-
order dispersion as a function of the length travelled by the 
pulse in a fibre with a different number of RI gratings. The 
values for the periods of the gratings were chosen in accor-
dance with the data presented in Fig. 2. The solid line corre-
sponds to a continuous change in the second- and third-order 
dispersion due to a continuous change in the grating period 
and detuning parameter, respectively. This situation is 
realised when a large number (more than 100) gratings with a 
gradually increasing period are placed along the entire length 
of the fibre. The dots denote the values of the dispersion 
parameters of each of the segments of the fibre with sequen-
tially inscribed RI gratings when the fibre is divided into 5, 10, 
and 20 identical gratings with a length of each element of 4, 2, 
and 1 cm, respectively.

3. Compression of FMPs propagating through 
a fibre with RI gratings. Numerical analysis

Let a pulse with an envelope shape (5), a centre wavelength 
l0 = 1550 nm, an initial duration t0 = 10 ps, a frequency mod-
ulation rate a0 = 1023 s–2, and a peak power P0 = | A0 |2 = 
7.7 kW be introduced into a fibre with an unperturbed RI, 
n0  = 1.5. The Bragg wavelength (lB = 2pc/wB) at the fibre 
input, the detuning, and the grating modulation depth are, 
respectively, lB1(z = 0) º 2n0L1 = 1556 nm, d » 2.5 ́  104 m–1, 
and m = 5 ́  10–4. The selected parameter values correspond to 
the coupling coefficient k » 2.5 ́  103 m–1 and the initial 
parameters of the grating dispersion of the second and third 
orders: b2(0) » –5 ́  10–23  s2 m–1 and b3(0) » 3.6 ́  10–35 s3 m–1. 
The value of the cubic nonlinearity coefficient R = 10–3 (W m)–1 
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Figure 2.  Dependence of the detuning parameter d on the distance z 
travelled by the wave packet for a fibre containing (·) 5, (  ) 10, and ( ) 
20 RI gratings. The inset shows the dependence of the period L of the 
RI gratings on the fibre length.
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Figure 3.  Dependence of the spectral interval between the band gap 
centre and the centre wavelength of the FMP on the distance z travelled 
by the wave packet for a fibre containing (·) 5, (  ) 10, and ( ) 20 RI grat-
ings.
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Figure 4.  Normalised dependences of the second- and third-order GVD 
with an exponential profile on the distance z travelled by the wave pack-
et for a fibre containing (·) 5, (  ) 10, and ( ) 20 RI gratings. The fibre 
length is 0.19 m, and the dispersion parameters at z = 0 are | b20 | = 5 ́
10–23 s2 m–1,  | b30 | = 3.6 ́  10–35 s3 m–1.
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is typical for classical single-mode fibres at a wavelength of 
l0 = 1550 nm for a mode area Seff = 50 mm2 and a nonlinear 
response time of the medium tR » 5 ́  10–15 s. The dispersion 
parameters of the second, d2 = –2 ́  10–27 s2 m–1, and the third,  
d3 = 10–40 s3 m–1, orders are determined by the material of the 
fibre without the inscribed in-fibre gratings [42, 45]. Note that 
the influence of the corresponding parameters (especially the 
parameter d2) can turn out to be significant at the final stage 
of pulse compression under conditions when the spectrum 
width of the wave packet reaches its maximum, and the effect 
of dispersion parameters due to the presence of in-fibre grat-
ings becomes minimal. As mentioned above, the period of 
individual gratings was chosen so that the change in GVD 
could be approximated by some exponential relation of the 
form b2(z) = – | b20  |exp(–qz).

Figure 5 shows the shapes of the FMP envelopes at the 
output of a fibre containing an RI grating, the change in 
the period of which provides an exponential second-order 
GVD profile with q = 40 m–1. Since GVD in the fibre in 
question takes on the values that are orders of magnitude 
higher than GVD in classical fibre structures, the pulse in 
such a medium, starting from lengths z < 0.1 m, will rap-
idly compress with simultaneous spectral broadening while 
maintaining the chirp linearity. For the selected GVD 
value, the optimal pulse compression is realised at a fibre 
length z = 0.19 m [Fig. 5, curve ( 1 )] for a modulation depth 
m » 5 ́  10–4. At large values of m, a subpicosecond pulse 
with a megawatt peak power is formed over a fibre length 
of less than 20 cm, while its peak power increases by more 
than 100 times compared to the initial one. With decreas-
ing m, the relative contribution of third-order dispersion 
increases, which leads to a decrease in the peak power, an 
increase in the pedestal, and, as a consequence, to a signifi-
cant distortion of the pulse envelope. Under certain cir-
cumstances, it becomes possible to establish a multi-pulse 
regime [Fig. 5, curve ( 2 )].

Note that even when use is made of an RI grating with a 
small modulation depth, it is possible to generate pulses with 
peak powers over 100 kW.

In choosing a discrete GVD profile corresponding to a set 
of gratings with significantly different parameters, the degree 
and quality of time compression deteriorates. Figure 6 shows 
the time profiles of the compressed FMP envelope at the out-
put of a fibre containing 5, 10, and 20 RI gratings (the length 
of each individual grating – except for the last ‘shortened’ ele-
ment – is 4, 2, and 1 cm).

Note that in the case of a sufficiently long fibre having 
GVD with both a smooth profile and a profile consisting of 
individual segments, the FMP is rapidly destroyed, and the 
faster the less smooth the GVD profile. This is clearly seen 
when comparing the shapes of the pulse envelopes that have 
passed through a 0.19-m-long fibre. In all cases, the propaga-
tion of a pulse through fibres with a periodic segmented or 
continuous RI profile leads to the appearance of a large num-
ber of extraneous noise harmonics on the envelope, despite a 
very strong increase in the peak power of the main pulse. In 
this case, the passage through a fibre with a large number of 
RI gratings provides a higher energy concentration in the 
main pulse, and the use of a larger number of gratings with 
shorter periods provides a higher peak power and a smoother 
pulse pedestal.

4. Conclusions

We have considered the mechanism of compression of pico-
second frequency-modulated pulses in fibres with sequentially 
inscribed refractive-index gratings with stepwise increasing 
periods (and decreasing GVD). It is shown that such fibres 
make it is possible to produce subpicosecond FMPS with 
peak powers of up to 1 MW against the background of a long 
(relative to the main short pulse) noise pedestal. In the numer-
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Figure 5.  Time profiles of pulses after compression at modulation depths 
m = ( 1 ) 5 ́  10–4 and ( 2 ) 10–4 and an exponential profile b2. The inset 
shows the time profile of the input pulse. The fibre length is 0.19 m.
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fibre with a continuous exponential profile b2 varying along its entire 
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ical simulation of FMP compression, we have used the values 
of the parameters of a standard single-mode fibre with an 
effective mode area Seff = 50 mm2 and a cubic nonlinearity 
coefficient R = 10–3 (W m)–1. For fibres with a large mode 
area (Seff >>  100 mm2), for example, for gradient quasi-single-
mode fibres, the Kerr nonlinearity decreases significantly: 
R <<  10–3 (W m)–1. This opens up possibilities for obtaining 
picosecond pulses with huge (gigawatt and supergigawatt) 
peak powers using the proposed method.

Separately, we note that, despite the difficulties in fabri-
cating fibres with RI gratings with a total length of more than 
1 m, this problem looks quite solvable and very promising. 
Within the framework of the proposed concept, the use of 
fibres with a modulation depth of gratings, m < 10–4, will 
ensure the generation of megawatt (and super-megawatt for 
gradient fibres) peak powers for pulses with an initial peak 
power of less than 1 kW. The authors intend to return to the 
consideration of such structures after obtaining the first 
experimental results demonstrating the efficiency of the 
above-proposed model.
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